Stochastic Distributed Protocol for Electric Vehicle
Charging with Discrete Charging Rate

Lingwen Gan, Ufuk Topcu, Member, IEEE, and Steven H. Low, Fellow, IEEE

Abstract—To address the grid-side challenges associated with
the anticipated high electric vehicle (EV) penetration level,
various charging protocols have been proposed in the literature.
Most if not all of these protocols assume continuous charging
rates and allow intermittent charging. However, due to charging
technology limitations, EVs can only be charged at a fixed rate,
and the intermittency in charging shortens the battery lifespan.
We consider these charging requirements, and formulate EV
charging scheduling as a discrete optimization problem.

We propose a stochastic distributed algorithm to approxi-
mately solve the optimal EV charging scheduling problem in an
iterative procedure. In each iteration, the transformer receives
charging profiles computed by the EVs in the previous iteration,
and broadcasts the corresponding normalized total demand to
the EVs; each EV generates a probability distribution over
its potential charging profiles accordingly, and samples from
the distribution to obtain a new charging profile. We prove
that this stochastic algorithm almost surely converges to one of
its equilibrium charging profiles, and each of its equilibrium
charging profiles has a negligible sub-optimality ratio. Case
studies corroborate our theoretical results.

Index Terms—distributed control, discrete optimization, s-
tochastic algorithm, electric vehicle charging.

NOTATION
n EVindex, n=1,...,N
t time slot index, t =1,...,T
D non-EV demand profile
Tn charging profile of EV n
r charging profile of all EVs
Fn the set of potential charging profiles for EV n
x! the transpose of a matrix (or vector) x
<x7y> <x7y> =a'y
el Nl = v/ )

I. INTRODUCTION

LECTRIC vehicles (EVs) offer significant potential for

increasing energy efficiency in transportation, reducing
greenhouse gas emissions, and relieving reliance on foreign
oil [1]. Currently, several types of EVs are either already
in the U.S. market or about to enter [2], and electrification
of transportation is at the forefront of many research and
development agendas [3]. On the other hand, the potential
comes with a multitude of challenges including those in
the integration into the electric power grid. For example,
EV charging potentially amplifies peak electricity load [4],
increases power losses and voltage variations [6], and reduces
the distribution circuit and transformer lifespan [5].
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Many studies demonstrate that adopting “smart” charging
strategies can mitigate some of the integration challenges,
defer infrastructure investment needed otherwise, and even
stabilize the grid. For example, scheduling EV charging so
that the aggregated EV load fills the overnight electricity load
valley may reduce daily cycling of the power plants [11].
Furthermore, the energy stored in the EVs may be utilized
as an ancillary service resource [7] for regulating voltage
profiles, ride-through support for fault protection, and even
compensating fluctuating renewable energy generation [8].

A potential EV charging control architecture is shown in
Figure 1 [9]. In this architecture, there is no communication
between the transformers and the substation, so that the control
is within systems composed of one transformer and several
EVs. For each such system, computation and communication
devices will be installed at the transformer and at the charger
of each EV to enable distributed control. The transformer will
broadcast signals like the price of electricity usage, to guide
the EVs in deciding when to charge their batteries. Centralized
control at the transformer will not be implemented due to its
high computational complexity.
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Fig. 1. A potential EV charging control architecture. Dashed red lines
represent power flow, and solid green lines represent communication.

Studies on EV charging scheduling roughly fall into two
categories: centralized charging control [6], [8], [10], and
decentralized charging control [11], [12]. Reference [6], [8],
[10] study centralized control strategies that minimize power
losses, load variance, or maximize load factor. Reference [11]



proposes a decentralized charging algorithm to flatten the total
demand with performance guarantee in the homogeneous case,
where all the EVs are essentially the same. Reference [12]
proposes a decentralized charging algorithm to flatten the
total demand with performance guarantee in all cases. All
the aforementioned works make the assumptions that (1) EV
charging can be intermittent; and (2) the charging rate takes
values in a continuous range. In reality, an EV either does not
charge or charges at a given rate, and interruptions in charging
should be avoided to protect the battery.

The contributions of the current paper include three folds.
First, we take into account the facts that charging rate is
fixed and charging should not be interrupted, and formulate
EV charging scheduling as a discrete optimization problem,
where the objective is to flatten the total demand. Second, we
compare deterministic and stochastic algorithms, and conclude
by establishing a counterexample that any deterministic algo-
rithm cannot in general flatten the total demand under the new
charging constraints. Third, motivated by this fact, we propose
a stochastic distributed algorithm to approximately solve the
optimal EV charging scheduling problem. We prove that our
algorithm almost surely converges to one of its equilibrium
charging profiles, and each of its equilibrium charging profiles
has a negligible sub-optimality ratio.

The rest of the paper is organized as follows. Section II
formulates EV charging scheduling as a discrete optimization
problem. Section III proposes a distributed stochastic solution
algorithm and provides performance guarantees for it. Case
studies are presented in section IV, and conclusions are
summarized in section V. For clarity, we skip the proofs in
the main sections, and present them in the appendix.

II. PROBLEM FORMULATION

Consider the scenario where a transformer negotiates with
N electric vehicles (EVs) on their charging profiles for a
day-ahead scheduling. Partition the scheduling horizon into
T time slots of equal duration, for example, 15 minutes. Due
to the limitations in EV charging technology, EVs can only
be charged at a fixed rate. For example, household charging
rate is 3.3kW [13]. Besides, intermittency in charging shortens
the lifespan of a battery (which is very expansive). Hence, we
should not interrupt charging an EV in the day-ahead schedul-
ing. Consequently, we make the following assumptions.

Al An EV consumes a fixed power when it is charging.
A2 EV charging cannot be interrupted.

Then, an EV can only choose the time it starts charging, after
which it has to be charged at a fixed rate until its battery is
full.

A3 An EV starts charging at the beginning of a time slot.

We can relieve the restriction imposed by assumption A3 by
choosing a finer partition of the scheduling horizon. We make
assumption A3 so that an EV has only finite optional times to
start charging.

Remark 1: A few sample, hypothetical charging profiles
satisfying assumptions Al and A2 are illustrated in Figure
2(a). In practice, more realistic charging profiles look like the
ones in Figure 2(b): charging rate ramps up when an EV starts

(a) charging profiles satisfying A1 and A2
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Fig. 2. Hypothetical charging profiles. In this paper, we consider the charging
profiles in (a), but extension to the charging profiles in (b) is straight forward.

charging, slowly decreases as the battery gets full, and ramps
down when the charging process is about to end. In this paper,
we consider the charging profiles in Figure 2(a), but extension
to the charging profiles in Figure 2(b) is straight forward.

Let t = 1,...,T denote the time slots and n = 1,..., N
denote the EVs. Assume that the charging rate of EV n in
time slot ¢ is a constant, and denote it by r,,(¢). Define r,, :=
(rn(1),...,7,(T)) as the charging profile of EV n, and r :=
{r1,...,rn} as the charging profile of all EVs.

As an example, suppose that EV n becomes available for
charging at (the beginning of) time slot 4, and needs to finish
charging by (the beginning of) time slot 20. Its battery requires
6 time-slot durations to get fully charged (at its constant
charging rate). We call time slot 4 the plug-in time, time
slot 20 the deadline, and the number 6 of time-slot durations
charging length. We denote the plug-in time, deadline, and
charging length of EV n by plug,, dead,, and length,
respectively. Define S,, := (plug,, dead,,length,,), and call
it the specification of EV n.

In this example, the potential time slots to start charging
are slots 4,5, ..., 14. More generally, the set 7,, of potential
starting time slots for EV n is

Tn = {tn € Z | plug, <t, < dead, — lengthy,}.

Each potential starting time slot ¢, € 7, corresponds to
a potential charging profile, and we index these potential
charging profiles by a = 1,..., A,,, where

A, = dead,, — length, — plug, + 1

is the total number of potential starting time slots. Let 7y,
denote the a'" potential charging profile for EV n, and

Frni={rnaela=1,..., A5}

denote the set of all potential charging profiles for EV n.



We consider the case where the transformer knows the
inelastic non-EV demand, and aims to flatten the total de-
mand through scheduling the time slots EVs start charging.
Let D(t) denote the non-EV demand at time slot ¢ and
D :=(D(1),...,D(T)) denote the non-EV demand profile.
In practice, D is well predicted at the transformer level, and
charging control aims to avoid overheating the transformer.
Since we shape the total demand D + )", only through
shifting EVs’ energy consumption, the total energy consump-
tion Y, (D(t) + >, mn(t)) is fixed. Consequently, flattening
the total demand helps cooling the transformer. According to
[12], flattening the total demand D + ) r, is equivalent to
minimizing the objective function
2

L(r) = L(rq,. .. ()

aTN) =

D—I—Zrn

This leads to the following optimization problem, which we
call optimal discrete charging (ODC) hereafter.

L(?"l, ..
ODC

Each decision variable r,, takes discrete values in F,,, making
ODC hard to solve [16]. Furthermore, we need a distributed
algorithm to avoid high-complexity centralized computation,
adding extra difficulty.

Remark 2: In this paper, we consider the objective func-
tion in (1) for clarity, but the results extend easily to any
objective function of the form

L(ry,...,rn) = > _Cy <Z rn(t)> :

where for each t, C; is a convex function with the second
derivative C}' (3", rn(t)) < B¢ < oo for all r,,(t). Note that
o if C,(3, (1)) == (D(t) + 3, n(t))?, the function L
coincides with (1);
o if we want the total demand to track a given profile G(t),
then we can define C; as

Cy (Z Tn(t)> = (D(t) + Zrn(t) - G(t)> )

and use the corresponding L as our objective function.

minimize
TN

subjectto 7, € F,, n=1,...,N.

'7TN)

III. ALGORITHM

In this section, we propose a distributed solution algorithm
for the discrete optimization problem ODC.

A. Information Flow Pattern

We focus on distributed algorithms in which the transformer
and the EVs exchange information in multiple iterations to
agree on a charging profile r. As mentioned in the intro-
duction, the transformer broadcasts control signals (like the
price of electricity usage), and the EVs choose slots to start
charging accordingly. The resulting information flow pattern
is depicted in Figure 3. The transformer knows the non-
EV demand D and each EV n knows its own specification

Sn = (plugn,dead,,length,). For each variable, let the
superscript k£ denote its respective value in iteration k. For
example, r* denotes the charging profile r,, computed by EV
n in iteration k. In iteration k = 1,2,...:

F1 The transformer receives charging profiles r’f -1 .,rﬁfl
computed by the EVs in the previous iteration!, and
calculates a control signal d* based on these charging
profiles and the non-EV demand D according to

d* = f(D,ri~ b k) )

where the map f is to be designed. After calculating d¥,
the transformer broadcasts d* to all the EVs.

F2 Each EV n receives the broadcast signal d* computed
by the transformer in the current iteration, and calculates
a new charging profile ¥ based on d*, its specification
S, and its previously calculated charging profiles r*~!
according to

k=g (d*, S, rE7Y), 3)

where the map g is to be designed. After calculating ¥,
EV n reports r* to the transformer.

Transformer

d* =f(D,r1k"1,...,r1§'l)

k
d h v

EV1

nt=g(d*s,1")

EV N

r}’f, =g(dk,SN,r]f,'1)

Fig. 3. Information flow pattern in the proposed iterative, distributed decision-
making process. The transformer is considered to know the non-EV demand
D and each EV n knows its specification Sy, = (plugn, deady,lengthy).

Remark 3: The transformer uses the broadcast signal d*
to guide the EVs in choosing their charging profiles, so that
objectives like flattening the total demand can be achieved. An
example of the signal d* can be the price of electricity usage.

B. Deterministic v.s. Stochastic Algorithms

With the information flow pattern in section III-A, determin-
istic algorithms will not in general be able to flatten the total
demand. We start by formalizing the notions of deterministic
and stochastic algorithms.

Definition 1: A map f : X — Y is deterministic provided
that for all x € X, f(x) =y for some y € ).

k—1

U1f iteration k is the first iteration EV n computes 7, then ry, = 0.



Definition 2: Let Y = {y1,...,ya} be a finite set. The
vector p := (p1,...,pa)’ is a probability distribution over )
with p, being the mass probability of y, for a = 1,..., A,
provided that (i) p, > 0 for a =1,...,A; (ii) Zlepa =1

Definition 3: Let Y be a finite set, f : X — ) be a map,
and Oy be the set of all probability distributions over ). The
map f is stochastic provided that for all x € X, f(x) is a
random variable with some probability distribution 6(z) €
Oy, that is parametrized by .

Given an input # € X, a deterministic map f% gives a
deterministic output 4 € ), and a stochastic map f° gives
an output that is a random variable, which takes values in ).

Definition 4: A distributed algorithm using the information
flow pattern described in F1 and F2 is deterministic (stochas-
tic), provided that the map g in (3) is deterministic (stochastic).

In order to prove the claim at the beginning of section III-B,
consider the homogeneous case, where the specifications .S,
of all the EVs are the same.

Proposition 1: In the homogeneous case, every determin-
istic algorithm using the information flow pattern described
in FI and F2 will get the same charging profile for all EVs
in all iterations, i.e., 7%, = rk holds for any iteration k > 1
and any two EVs m and n.

Proof: See Appendix A. O

Proposition 1 implies that in general, deterministic algo-
rithms will not be able to spread out the time slots EVs start
charging. Consequently, the total demand cannot be flattened.
However, in the well-studied continuous charging rate setting
where the charging rate of an EV can take continuous values,
various deterministic algorithms have been proposed to flatten
the total demand with optimality guarantees in the homoge-
neous case [11], [12]. Where does this “contradiction” comes
from? We call our setting where an EV can only be charged
at a fixed rate the discrete charging rate setting.

In the continuous charging rate setting in the homogeneous
case, though deterministic algorithms get all the EVs to charge
at the same time with the same rate, they can change the total
demand at slot t through adjusting EVs’ charging rates at time
t. However, in the discrete charging rate setting, the only way
to change the total demand at slot t is to change the number
of EVs that charge at slot t. For deterministic algorithms,
this number is either 0 or N. Consequently, deterministic
algorithms cannot flatten the total demand. In conclusion,
there is no contradiction between Proposition 1 and the afore-
mentioned results on using deterministic algorithms to flatten
the total demand.

Proposition 1 only discusses deterministic algorithms using
the information flow pattern described by F1 and F2. It is
possible to find a deterministic algorithm that flattens the total
demand using other information flow patterns. For instance,
consider the following information flow pattern: in each it-
eration k, the transformer uses the most recently calculated
r1,...,rN to compute the broadcast signal d*; and only one of
the EVs (in turn) computes a new charging profile, and reports
it to the transformer. In the homogeneous case, a deterministic
algorithm that uses this information flow pattern and flattens
the total demand can be found. However, such an information
flow pattern requires higher communication overhead and is

likely to converge slower.

Besides the disadvantage of deterministic algorithms in
Proposition 1, there is an advantage of stochastic algorithms.
We illustrate the advantage through an example where there
are a large number of homogeneous EVs. For each EV n,
define a charging profile matrix

Ry = (rpn1,.--,Tn,A,) € RT*An

whose columns are all potential charging profiles for EV n.
Define ©,, as the set of all probability distributions over F,, =
{rni,--sTn.A,}

When the EVs are homogeneous, we neglect the subscript
nin ry 4, An, Ry, Fpn, ©p, and denote them by r,, A, R, F,
© without ambiguity. Suppose that all the EVs choose their
charging profiles according to the same probability distribution
p = (p1,...,pa) over F, where p, is the mass probability
of r, for a = 1,...,A. By the law of large numbers,
the average charging profile of the EVs is approximately
Y -aPaTa = Rp. Note that Rp is a convex combination of
the charging profiles in F, and as p traverses O, Rp traverses
the convex hull conv(F) of F. Hence, we can approximately
relax the constraint r,, € F,, to r,, € conv(F,) by exploiting
stochasticity, and then problem ODC is turned into a convex
optimization problem [15].

Due to the aforementioned disadvantage of deterministic
algorithms and advantage of stochastic algorithms, we develop
a stochastic algorithm in the following section.

C. A Stochastic Algorithm

In this section, we propose a distributed stochastic algorithm
that almost surely converges to one of its equilibrium charging
profiles, and show that each of its equilibrium charging profiles
has a negligible sub-optimality ratio. Recalling the definition
of R, and ©,, in section III-B, we give the
Distributed Stochastic Charging (DSC) Algorithm:

The transformer knows the non-EV demand D and the number
N of EVs; each EV n knows its set F,, of potential charging
profiles. Initialize r% := 0 for all n.
Transformer’s algorithm: At iteration k = 1,2, ..,

1) the transformer receives charging profiles r’f - ,rfv_l
calculated by the EVs in the previous iteration?, and
computes the corresponding normalized total demand

D+ rk=t
-5 :
2) the transformer broadcasts d* to all EVs.
EV n’s algorithm (n =1,..., N): At iteration k = 1,2, ...,

1) EV n receives broadcast signal d* from the transformer,
and computes probability distribution

dr -

2

N C)

p* := argmin

pPEB®,

N _

2) EV n draws a sample ¥ according to the probability
distribution p%, and reports ¥ to the transformer.

n

2f k = 1, use the initialized value ) = 0,...,r% = 0.



After a fixed number K (for example, K = 20) of iterations,
terminate the iterative procedure. The transformer and the EVs
agree on charging profile r = {rf ... r&}.

Remark 4: Note that EV n needs to know N in calculating
(4). In practice, the transformer can broadcast N together with
d* in iteration 1. Besides, since the term % is close to
1 when N is large, the EVs may substitute % by 1 in
calculating (4) so that they do not need to know N.

After giving the distributed stochastic algorithm DSC, we
formalize the statements at the beginning of section III-C. We
start with the definition of an equilibrium charging profile.

Definition 5: For a given stochastic algorithm, let % de-
note its charging profile in iteration k. A charging profile r¢
is an equilibrium for the given stochastic algorithm, provided
that the escape probability P““P¢(r¢) at r° is zero:

Pescape(,re) 1= sup Pr{rk+1 7é ,,,k | Tk — T‘e} =0. 5
k>0

If the transition probability Pr{r¥*1 | v*} is k-independent,
then (5) is equivalent to

peeare(p€) .= Pr{rt 0% | r* =r¢} = 0.

In whichever iteration k, if 7* equals an equilibrium r¢, then
pktl pk+2  will stay at ¢ with probability 1.
Definition 6: A stochastic algorithm is convergent, if
(a) it has equilibrium charging profiles;
(b) the sequence v*,r?, ... of charging profiles generated by
the stochastic algorithm converges to one of its equilib-
rium charging profiles with probability 1. This type of

convergence is also called almost surely convergence.
Theorem 1: Algorithm DSC has equilibrium charging pro-
files.
Proof: See Appendix D. (]
All the proofs for this paper can be found in [?]. Note that
prominent stochastic algorithms like simulated annealing [18]
and genetic algorithm [19] do not have equilibrium points ¢,
since for both algorithms, the following probability is nonzero
at any iteration k and any point r:

Pr{r*tt £ % | P =11 > 0. (6)

One of the reasons these algorithms satisfy (6) is that they
aim to escape from non-optimal points, but it turns out that
they escape from optimal points as well. The methodology in
these stochastic algorithms is that as iterations evolve, the mass
probability of the optimal point gets larger. Eventually, the
optimal point (if it is unique) will have a mass probability close
to 1. This process usually takes a large number of iterations.

Instead of taking a large number of iterations to find an
optimal charging profile for the discrete optimization problem
ODC (which is NP hard), Algorithm DSC turns to finding
a good enough sub-optimal charging profile through a small
number of iterations: it sets the escape probability to be 0
at some good enough (quantified later) sub-optimal charging
profiles. At the expense of small sub-optimality, Algorithm
DSC obtains existence of equilibrium charging profiles, which
is essential for a stochastic algorithm to be convergent. Fur-
thermore, the following theorem shows that Algorithm DSC
is indeed convergent.

Theorem 2: Algorithm DSC is convergent, i.e., the se-
quence 1,712, ... generated by Algorithm DSC converges to
(one of its) equilibrium charging profiles with probability 1.

Proof: See Appendix E. ]

After studying the convergence of Algorithm DSC, we
evaluate the sub-optimality of its equilibrium charging profiles.

Theorem 3: Let v° = {r{,...,r%} be an arbitrary equi-
librium charging profile of Algorithm DSC, then r° is a Nash
equilibrium. That is, if only one EV n changes its charging

profile from r{, to Ty, then the cost function does not decrease,

ie.,
HD + Z re,
m

Proof: See Appendix F. ]
Theorem 3 is an interesting qualitative result. But in general,

a Nash equilibrium can be arbitrarily worse than the optimal
point. Hence, we give the following quantitative result. Let

<D+ >t + i
m#n

r = {r1,...,rx} be an arbitrary charging profile, and r°P¢ =
{rPPC, ..., rQPC} be an optimal charging profile for problem

ODC. Define the sub-optimality gap G(r) at r as

2
G(r) = L(r)—L (r°°¢) = ‘ D+ ral| - ’D +
and the sub-optimality ratio R(r) at r as
L - L ODC
R(r) = G0 L) —L (%)
L (roDC) L (rODC)

Since L (r°PC) is the same for all optimal charging profiles
rOP€. G(r) and R(r) are defined without ambiguity. For
each EV n, all its potential charging profiles are time-shifted
versions of each other. Hence,

Irn il = = llrn,a, 17
Define C,, := ||r,1]/% then C,, = ||r,||* for any feasible
charging profile r,, € F,,.
Theorem 4: Let ¢ = {r§,...,rS%} be an arbitrary e-

quilibrium charging profile of Algorithm DSC, then its sub-
optimality gap G(r) satisfies

N
G(r) <2 Cp.
n=1

Proof: See Appendix G. ]

Theorem 4 gives an upper bound for the sub-optimality gap

G(r®), but we are more interested in the sub-optimality ratio
R(r¢). Hence, we derive an upper bound R for R(r¢)

~ 2 C, .
= ‘L(ZTTOLDC) > R(r°).

When the number N of EVs is small, the norm || D|| for non-
EV demand is much larger than the norm Hzn TSDCH for
aggregated EV demand. Then

230 = 23 | <2

ID|* < L (%),

2

ODC
2
n

<

N

2

i
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Fig. 4.
probabilities for each iteration are shown in the legends.

and the upper bound R is much smaller than 1.

When the number N of EVs is big, the norm || D|| for non-
EV demand is much smaller than the norm HZW rgDCH for
aggregated EV demand. Then we derive another upper bound

. 2 C, 2 C, ~
R 22 5 > o 5 =R>R(r%)
152, 79PC(™ 1D + 32, rPC]|

for the sub-optimality ratio R(r°). Note that as IV increases,
| D]l becomes increasingly negligible in comparison with
||Zn robc |, and R and R become closer. The reasons we
look into the looser upper bound R are:

N R does not depend on non-EV demand D, but R does;

(2) It is clear how R scales with N. Slnce 25, C, scales
linearly with N and ||}, ODCH
with N, R scales with N as O ().

Since its upper bound R scales with N as O (%), the sub-
optimality ratio G(r¢) remains small when N is big.

In conclusion, not only does Algorithm DSC converge to
one of its equilibrium charging profiles with probability 1,
but also each of its equilibrium charging profiles has a small
sub-optimality ratio.

scales quadratically

V. CASE STUDIES

In this section, we evaluate the convergence rate and sub-
optimality ratio of Algorithm DSC numerically. Consider a
24-hour scheduling horizon, and divide it into 96 slots of
15 minutes. We choose the average residential load profile
in the service area of South California Edison from 20:00 on
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Average total demand profiles (per household) and escape probabilities in the first 20 iterations of Algorithm DSC in a 100 EV case. Escape

02/13/2011 to 20:00 on 02/14/2011 [14] as the average non-
EV demand per household on the scheduling horizon.

We consider different penetration levels of EVs in 100
households. Without loss of generality, we assume that all the
EVs plug in at (the beginning of) slot 1 with a deadline at (the
end of) slot 96. According to the EV charging characteristics
in [13], we set the charging rate 7, (¢) to be 3.3 kW if EV n
is charging at time ¢, and assume that each EV needs to be
charged for 16 consecutive slots (4 hours).

A. Convergence Rate

Let 7* denote the charging proﬁle of Algorithm DSC in
iteration k, then the sequence {r',r? ...} is a Markov chain
[17, Chapter 6]. Define the escape probablhty Pemlpe =
Pr{rktt o ¥ | vk} for k > 02 If Pf,,. = O, then r*
is an equilibrium for Algorithm DSC; otherwise, the inverse
1/ Pe’gcape is the expected number of iterations it takes to have
a charging profile update*. For example, if Pe’gcape 0.3, then
roughly speaking, we have to wait for 3.3 iterations before
observing a charging profile update. At such an updating
speed, we should stop the iterative procedure in Algorithm
DSC to reduce communication overhead.

To visualize the relationship between charging profile up-

dates and escape probability, we show the average total

3In fact, Pk, ape 18 the escape probability at r* in Definition 5.
4If =1 — = ¢k then Pr{rFtl £ phtl-1 | phti-11 —
P pe for any 1 > 1. Hence, the number [ of iterations it takes to have

rh+l £ pk+l=1 (charging profile update) follows a geometric distribution
with parameter pfscape. Consequently, the expected number of iterations it

takes to have a charging profile update is E(I) = 1/ pé“scape [17, Chapter 3.5].



demand (per household) as well as the escape probabilities
in the first 20 iterations of Algorithm DSC in a 100 EV case
in Figure 4. It can be seen that the total demand profile only
changes slightly from iteration 6 to iteration 10, where the
escape probability is between 0.3 and 0.6; and almost does
not change from iteration 11 to iteration 20, where the escape
probability is below 0.3. Hence, the escape probability Pelgcape
is a “measure” of how “close” the charging profile r* is to an
equilibrium charging profile: in this particular example, when
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Fig. 5. Escape probability Pe’:wpe with various numbers of EVs.
Figure 5 shows the (average) escape probability ngcape

(of 10 simulations) in the first 40 iterations of Algorithm
DSC, with various numbers of EVs. It can be seen that the
escape probability (on average) becomes less than 0.3 within
20 iterations. Hence, we terminate the iterative procedure in
Algorithm DSC after 20 iterations, and let the transformer
and the EVs agree on the charging profile 2. We call r2°
the output charging profile of Algorithm DSC hereafter.

B. Sub-Optimality Ratio

Figure 6 shows the average total demand (per household) in
iteration 20 of Algorithm DSC, with various number of EVs. It
can be seen that the total demand is always close to flat, even
in the case where there are only 20 EVs. Note that completely
flat total demand is not achievable since the charging rate of
an EV is either 0 or 3.3kW. To quantify the sub-optimality
of output charging profile 72°, we evaluate its sub-optimality
ratio R (rzo) numerically in this section.

Since the change in charging profiles becomes negligible
after 20 iterations, we think of 72° as an equilibrium charging
profile. Then, the sub-optimality gap G (r?°) at 7%° satisfies

N 16
G(r*)<2) C,=2N> 33 =34848N
n=1 t=1

according to Theorem 4. When G (r*°) < L (r°°¢) the

51t can be inferred from Figure 7(a) that G (r29) < L (r9PC€) holds.

Fig. 6.

DSC, with various number of EVs.

Average total demand per household in iteration 20 of Algorithm

upper bound R for sub-optimality ratio R (rgo) satisfies

P 23,0, __ 348.48N

L (rODC) ~

L(r20) -~

We plot the (approximation for) upper bound Rin Figure 7(a).
It can be seen that R is smaller than 2.6% for any number of
EVs. The shape of the R curve is explained as following:
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(a) upper bound R

(a) upper bounds R and R
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Fig. 7. Upper bounds R and R for the sub-optimality ratio R (7"20), as the
number N of EVs varies from 20 to 240.

(a) When the number N of EVs is small, the cost L (r?°) =
D+ 3, 72°||? is dominated by || D%, and R roughly
increases linearly with NV.

(b) When N is big, L (r?°) is dominated by || >, 72°||%,
which scales quadratically with N. Then, R scales with
N as O (%).

To emphasize (b), we plot (approximation for)®

348.48N 348.48N
2~ 2
122 r2el™ I, 0l

®Since R < 1, L(r?°) = L (r°P), |32, TSDC”Q ~ |, 7"%0H2.

R:




together with (approximation for) R in figure 7(b). It can be
seen that as IV gets larger, R roughly scales as O (%), and
the two upper bounds R and R get closer.

V. CONCLUSIONS

We have taken into account the facts that charging rate is
fixed and charging should not be interrupted, and formulated
EV charging scheduling as a discrete optimization problem
ODC, where the objective is to flatten the total demand.
We have shown that under the new charging constraints, any
deterministic algorithm (that uses a common information flow
pattern) cannot in general flatten the total demand.

Motivated by this fact, we proposed a stochastic distributed
algorithm DSC to approximately solve problem ODC in an
iterative procedure. In each iteration, the transformer receives
charging profiles computed by the EVs in the previous iter-
ation, and broadcasts the corresponding normalized total de-
mand to the EVs; each EV generates a probability distribution
over its potential charging profiles accordingly, and samples
from the distribution to obtain a new charging profile.

We proved that Algorithm DSC converges almost surely
to one of its equilibrium charging profiles, and each of
its equilibrium charging profiles has a small sub-optimality
ratio. Preliminary case studies confirm fast convergence of
Algorithm DSC, and indicate less than 2.6% sub-optimality
after 20 iterations, with any number of EVs.
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APPENDIX
A. Proof of Proposition 1

For any given deterministic algorithm, let g denote its
corresponding deterministic map in (3). We prove Proposition
1 by induction over the iteration index k.

e k = 1:For all n, the new charging profile r} is calculated
according to (3) with deterministic map g. Since the
inputs d' and S, is the same for all n, and 70 = 0,
7y is the same for all n.

o Assume 7% is the same for all n in iterations k =

1,...,m (m > 1), now we show that rk“ is the same
for all n in iteration m + 1.
For all n, the new charging profile 7 is calculated
according to (3) with deterministic map g. Since the
inputs d™ %1, S, r™ is the same for all n, r™*! is the
same for all n.

m—+1

Hence, Proposition 1 follows. O

B. Preliminaries for Supermartingale

Constructing a supermartingale is the starting point of de-
signing Algorithm DSC. We now provide some preliminaries
following [17, chapter 12]. For a real-valued scalar z, define
its negative part = := max{0, —z}.

Supermartingale: Let .% be a filtration of the probability
space (£2,.#, P), and let Y be a sequence of random variables
which is adapted to .7 . We call the pair (Y, .%) a supermartin-
gale if, for all k£ > 0,

(@) E(Y, ) < oc;
(b) E(Yk+1 | Fi) < Y.

We can change £ > 0 to k& > 1 in the definition. The
following martingale convergence theorem [17, page 454] will
be used in Appendix C.

Martingale convergence theorem: Let (Y,.%) be a super-
martingale and suppose that E(Y,) < M for some M and all
n. These exists a random varlable Y. such that Y,, =5 Y
as n — oo.

C. Constructing Supermartingale

Let sample space € be the set of all sequences {r°, 7!, ...}
of charging profiles generated by Algorithm DSC, and define
o-algebra %, = o(r?,...,rF) for k > 0, then .F :=
{%, #1,...} is a filtration. Given any initial distribution of
r0, the probability space (Q2,.%, P) is defined, and .7 is a
filtration of the probability space. Define a random variable

2

= ‘D + Z rﬁ

and a stochastic process
L:={Ly,Lo,...},

then L is adapted to .#, and L, =0 for all k.

We need an algorithm such that the sequence Lq, Lo, ...
generated by it converges with probability 1. Recalling the
martingale convergence theorem, we only need to design the
algorithm such that (L,.%) is a supermartingale. To make

the pair (L, %) a supermartingale, we are left to design the
algorithm such that E(Lgy1|%;) < Ly for k > 1. Without
loss of generality, fix a k£ > 1, and define

D+Z kogk =

as the corresponding total demand, normalized total demand,
and change in the charging profile of EV n. Define a scalar
variance

—, T =Rtk

Var(z| %) := E (22| Fx) — ||E(9c|¢?k)||2 ,
then
E(Li11|Z%) — Ly
- 22 Dk E(z,| %) —‘rZVCLT T |- F)
+Z (Tm|Fk), E(zn| Fi))
< 22 (D*, E(z,|F) +ZVar T Fr) +NZHE 20 )|

NZ(

Noting that if 75+1 follows the probability distribution p =
(0,...,0,1,0,...,0) where the 1 corresponds to 7%, then

2(d",

Bwal #1)) + 1B 70 + NvaT(xn|yk)) .

n’

1
E(zn| Zk)) + | E(za] Z0)|° + NVar(xﬂﬁk) =0.
(N
Hence, optimizing over the set ©,, of all probability distribu-
tions yields

1
k 2
. — <0.
pnm€1é1n2 (d*, E(z,|Z3))+| E (2] Z0) | +NVar(a:n\ﬁk) <0
®)
Let p be a solution for the optimization (8). If 75+ follows

the distribution p7, for all n, then E(Lj41|-%k) < Ly, .
Now we derive p}, for the optimization in (8). With proba-
bility distribution p = (p1,...,p4, ),

E (T1’i+1|yk) = Rnp»

and the scalar variance
2

Var(r,|Zx) =

Tn,a

!/
§ parnﬁarn a
a

== Cn - P/R%Rnp

Then

. 1
argmin 2 <dk7E(xn|yk’)> + ||E(1""L|g\k)||2 + NV(IT(JL‘”L?\]C)
PEO,
1
= argmin |d* —rf + Rnp||2 — —p'R/ R.p
PEO, N
2
= argmin (d* —rF)y + R,p
PEO,

‘N -1
This leads to Algorithm DSC, which we described in section

II-C. Hence, in Algorithm DSC, E(Lgy1|-Zk) < Ly, for any
fixed £ > 1. The following theorem follows.



Theorem 5: If the stochastic process L is generated by
Algorithm DSC, then (L, %) is a supermartingale.

It follows from martingale convergence theorem that

Corollary 1: L; 2% Lo as k — oo

Noting that ©,, is a compact convex set, and R,, is full
column rank for all n, the following lemma holds.

Lemma 1: For any EV n and any iteration k > 1, the
problem in (8) is strictly convex and has a unique solution,
provided that N > 2.

We only consider the case where N > 2 and F,, # () for
all n in this paper.

D. Proof of Theorem 1
Define the subset S of charging profiles

S:={r| E(Lys | T =r) =L}

Lemma 2: The set S # (), and a charging profile 7 is an
equilibrium for Algorithm DSC if and only if r € S.

Proof: Since the optimal charging profile r* for problem
ODC isin S, S # 0.

(<) Atany r = (rq1,...,ry) €S, pl computed according
to (4) must satisfy (7) holds for n € A. Since the probability
distribution p = (0,...,0,1,0,...,0) where 1 corresponds
to r¥ satisfy (7) and p is unique, p! = p. Hence, r is an
equilibrium point for Algorithm DSC.

(=) Tt is trivial that all equilibrium points are in S. O

Theorem 1 directly follows from Lemma 2.

E. Proof of Theorem 2

Let R denote the set of all feasible charging profiles for
problem ODC. Since R is finite, S as a subset of R is also
finite. Define X' := {r € R | if 70 = r, 7F %2 S} as the set
of initial charging profiles that do not almost surely converge
to S, and M as the largest invariant set of X'

Lemma 3: [f M =0, then X = 0.

Lemma 3 follows from the fact that R is finite and the
transition matrix from ¥ to r**! is k-independent.

Lemma 4: If M # (), then M NS # (.

Because the charging profile r ; := argmin L(r) € MNS.
remM

Lemma 5: r* 25 S as k — oc.

Proof: Suppose not. Then X # (), M # 0, M NS # 0.
However, M C X implies that M NS C X NS = (), leading
to a contradiction. O

Theorem 2 follows from Lemma 5 and the fact that S is
discrete.

FE. Proof of Theorem 3

Let ¢ = (1§,...,7%) € S denote an arbitrary equilibrium
for algorithm DSC, and p® = (p§,...,p% ) the corresponding
distribution. Then for each n, p¢, has only one non-zero entry,
and satisfies

= Rapy,.

Equation (4) implies that

2
Py, = argmin ,
PEO,

N € €
’N—l(d —15) + Rap

from which we obtain
N 2
N )t

e _ .
r, = argmin

rn Econv(Fp)

The first order optimality condition for this optimization
problem implies that

<D+Zr,3, rn—r5>>0 ©)

k#n
for any r,, € conv(F,). Define

'D+§n:rn

then J,(r) is convex in r,. Equation (9) implies that for any
Fo=A{r T T T T ) T € conu(Fy), we
have J,,(7) > J,(r¢). Restricting to r,, € F,,, J,(r) = L(r)—
Cy. Hence, L(7) > L(r®). O

2

2
= lIrll”

In(r) ==

G. Proof of Theorem 4

Let 7OPC denote the optimal charging profile for problem
ODC with optimal value p*. Let 7* an optimal charging profile
for the following relaxed optimization problem (RLX)

minimize L(ry,...,rN)
RLX{ rmioorw
subject to 1, € conv(F,), n=1,...,N,

where the constraints r,, € F,, for problem ODC is relaxed to
the new constraints r,, € conv(F,). Then L(r*) < p*. Let r°
be an arbitrary equilibrium charging profile, D¢ and D* be the
total demand profile corresponding to ¢ and r* respectively.
Then L(r¢) — L(r*) is an upper-bound for the sub-optimality
gap L(r¢) — L(rOPC).

Theorem 6: The difference between total demand D* and
total demand D¢ is upper-bounded by

|D* = D> <Y C.
n

Proof: 1t follows from the first optimality condition for

RLX that
<D+Zr,§, Ty —rfl> >0
k

for all n. Combining inequalities (9) and (10), we get
2
YIRS I
n n
< D e =) <Y G O

n

(10)

* e|2
|1D* = D" =

We come back to the proof of Theorem 4.
L(r°PC) — L(r¢) > L(r*) — L(r°)

= 2 <De, Z(r; — 7’2)> + Z(T’: —ry)

n n

22(7"2,1":77"?)2—220”. O
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