Search for a Standard Model Higgs Boson in the $H \rightarrow ZZ \rightarrow \ell^+\ell^-\nu\bar{\nu}$ Decay Channel with the ATLAS Detector

G. Aad et al.* (ATLAS Collaboration)

(Received 15 September 2011; published 22 November 2011)

A search for a heavy standard model Higgs boson decaying via $H \rightarrow ZZ \rightarrow \ell^+\ell^-\nu\bar{\nu}$, where $\ell = e, \mu$, is presented. It is based on proton-proton collision data at $\sqrt{s} = 7$ TeV, collected by the ATLAS experiment at the LHC in the first half of 2011 and corresponding to an integrated luminosity of 1.04 fb$^{-1}$. The data are compared to the expected standard model backgrounds. The data and the background expectations are found to be in agreement and upper limits are placed on the Higgs boson production cross section over the entire mass window considered; in particular, the production of a standard model Higgs boson is excluded in the region $340 < m_H < 450$ GeV at the 95% confidence level.

The search for the standard model (SM) Higgs boson [1–3] is one of the most important aspects of the Large Hadron Collider (LHC) physics program. Direct searches at the CERN LEP e^+e^- collider have set a lower limit of 114.4 GeV on the Higgs boson mass, m_H, at 95% confidence level [4]. Searches by the CDF and D0 experiments at the Fermilab Tevatron $p\bar{p}$ collider have explored the mass range up to 200 GeV and exclude the additional region $156 < m_H < 177$ GeV [5]. For m_H greater than twice the Z boson mass, m_Z, a significant fraction of Higgs bosons decay to two Z bosons. The $ZZ \rightarrow \ell^+\ell^-\nu\bar{\nu}$ decay channel offers a substantial branching fraction in combination with a good separation from potential background processes owing to the high transverse momentum, p_T, of the electron or muon pair from the leptonic Z decay and the high missing transverse momentum, E_T^{miss}, from the Z decaying to neutrinos.

The first cross section limits for a SM Higgs boson in the mass region $200 < m_H < 600$ GeV were set by the ATLAS and CMS collaborations in Refs. [6,7]. This letter extends the $H \rightarrow ZZ \rightarrow \ell^+\ell^-\nu\bar{\nu}$ results therein, with a 30-fold increase in the integrated luminosity, as well as a significant improvement in the event reconstruction and background rejection.

The data sample considered in this search was recorded by the ATLAS experiment during the first half of the 2011 LHC run at a center-of-mass energy $\sqrt{s} = 7$ TeV. The integrated luminosity of the data sample, considering only data-taking periods where all relevant detector subsystems were operational, is 1.04 fb$^{-1}$.

The ATLAS detector has been described elsewhere [8]. Simulated signal and background event samples are produced with Monte Carlo (MC) event generators, passed through a full GEANT4 [9] simulation of the ATLAS detector [10] and reconstructed with the same reconstruction software as the data.

$H \rightarrow ZZ \rightarrow \ell^+\ell^-\nu\bar{\nu}$ (\(\ell = e, \mu, \tau\)) events are modeled using the POWHEG [11,12] event generator, which includes matrix elements for the gluon fusion and the vector-boson fusion production mechanisms of the Higgs boson up to next-to-leading order. POWHEG is interfaced to PYTHIA [13] for the modelling of parton showers. The Higgs boson p_T spectrum is reweighted to the calculation of Ref. [14], which provides QCD corrections up to next-to-leading order and QCD soft-gluon resummations up to next-to-next-to-leading logarithms. An alternative sample of signal events is produced using the PYTHIA event generator, which includes only leading order matrix elements. In both cases PHOTOS [15] is used to model final-state radiation and TAUOLA [16] for the simulation of τ decays.

$H \rightarrow ZZ \rightarrow \ell^+\ell^-\nu\bar{\nu}$ and $H \rightarrow ZZ \rightarrow \ell^+\ell^-q\bar{q}$ samples are also simulated using the same generators as for the $H \rightarrow ZZ \rightarrow \ell^+\ell^-\nu\bar{\nu}$ samples, while $H \rightarrow W^+W^- \rightarrow \ell^+\nu\ell^-\bar{\nu}$ events are produced using the MC@NLO generator [17], interfaced to HERWIG [18] and JIMMY [19] in the gluon fusion channel and the SHERPA [20] generator in the vector-boson fusion channel. These channels contribute to the signal yield and are considered as part of the signal. In particular, $H \rightarrow W^+W^- \rightarrow \ell^+\nu\ell^-\bar{\nu}$ decays contribute as much as 77% to the signal expectation after the full selection for $m_H = 200$ GeV decreasing to 13% at $m_H = 300$ GeV. Independence of the analysis with respect to other ATLAS Higgs boson searches [21–23] is ensured through mutually exclusive selection requirements on the dilepton invariant mass, the number of leptons or the event missing transverse momentum.
The cross sections for Higgs boson production, the associated branching fractions \cite{24}, as well as their uncertainties, are compiled in Ref. \cite{25}. They correspond to next-to-next-to-leading order in QCD for the gluon fusion \cite{26-31} and the vector-boson fusion \cite{32} processes. In addition, QCD soft-gluon resummations up to next-to-next-to-leading logarithms are available for the gluon fusion process \cite{33}, while next-to-leading order electroweak corrections are applied to both the gluon fusion \cite{34,35} and the vector-boson fusion \cite{36,37} processes. These cross section calculations do not account for the width of the Higgs boson, which is implemented through an \textit{ad hoc} Breit-Wigner line shape applied at the event generator level. Recent studies \cite{25,38} have indicated that effects due to off-shell Higgs boson production and interference with other SM processes may become sizeable at the highest masses ($m_H > 400$ GeV) considered in this search. In the absence of a full calculation, a conservative estimate of the possible size of such effects was made and the impact on the obtained limits in this channel was found to be less than 2\% for $m_H = 400$ GeV growing to about 25\% at $m_H = 600$ GeV.

Different event generators are chosen to model a range of important background processes. The ALPGEN generator \cite{39} interfaced with \textsc{herwig} and \textsc{hadronisation} is used to simulate $W/Z + $ jets backgrounds. \textsc{mc@nlo}, interfaced to \textsc{herwig} and \textsc{mmmy}, is used for the production of top-pair, single top and diboson (WW, WZ and ZZ) backgrounds. \textsc{pythia} is used to simulate bb and $c\bar{c}$ samples as well as alternative samples for the Z and ZZ backgrounds. All simulated background samples are scaled to the highest available precision calculations for the relevant process. An overview of the used predictions and their uncertainties is given in Ref. \cite{40}.

Data used for the search in the electron and muon channels were collected primarily using single lepton triggers with $p_T > 20$ GeV and pseudorapidity $|\eta| < 2.47$.

Electron candidates are reconstructed from electromagnetic calorimeter clusters, with shapes consistent with those expected from electromagnetic showers, matched to tracks reconstructed in the inner detector. Details of the electron reconstruction and identification can be found in Ref. \cite{41}. The electron candidates are required to pass the standard ATLAS “medium” selection criteria and have $p_T > 20$ GeV and pseudorapidity $|\eta| < 2.47$.

Muons are identified by reconstructing tracks in the muon spectrometer. These tracks are then extrapolated back to the beam line to find a matching inner detector track. Details of muon reconstruction and identification can be found in Ref. \cite{41}. Only muons with $p_T > 20$ GeV and $|\eta| < 2.5$ are considered.

Jets are used in this analysis to reject backgrounds from events with heavy quark decays or from events with fake E_T^{miss} due to mismeasured jets. For this purpose jets are reconstructed from clusters of energy deposits in the calorimeters using the anti-k_T algorithm \cite{42} with a radius parameter $R = 0.4$. Only jets with $p_T > 25$ GeV and $|\eta| < 2.5$ are considered.

To remove leptons associated with jets, such as those originating from semileptonic decays of b hadrons, leptons are not considered in the analysis if the sum of inner detector track momenta in a cone $\Delta R < 0.2$ around the lepton direction is greater than 10\% of the p_T of the lepton itself or if the lepton is within a distance $\Delta R < 0.4$ of the nearest jet.

The missing transverse momentum is measured as the (negative) vectorial sum of the transverse momenta of all clusters in the calorimeters within $|\eta| < 4.5$ and all selected muons in the event. Calorimeter deposits associated with muons are subtracted to avoid double counting.

Events are required to contain a reconstructed primary vertex formed from at least 3 tracks and exactly two oppositely charged electrons or muons, consistent with originating from the primary vertex. The dilepton mass distribution is shown in Fig. 1. Inclusive Z boson production is the dominant background at this stage of the analysis. To suppress backgrounds from top, W, and QCD multijet production, the dilepton invariant mass, $m_{\ell\ell}$, is required to satisfy $|m_Z - m_{\ell\ell}| < 15$ GeV.

To reduce the background from events with fake E_T^{miss} due to mismeasured jets, events are rejected if the azimuthal angle between the missing transverse momentum vector, \vec{p}_T^{miss}, and the leading jet in the event satisfies $\Delta \phi(\vec{p}_T^{miss}, \vec{p}_T^{jet}) < 0.3$. To reduce the background from top quark production, events with one or more b-tagged jets are rejected, where the b tagging is based on a single

![FIG. 1 (color online). The dilepton invariant mass distribution for events with exactly two oppositely charged electrons or muons. The inset at the bottom of the figure shows the ratio between the data and the combined background expectations as well as a band corresponding to the combined systematic uncertainties of the analysis.](221802-2)
To exploit the mass dependent kinematic features of $H \rightarrow ZZ \rightarrow \ell^+\ell^-\nu\bar{\nu}$ production, the search is subdivided into a low Higgs boson mass ($m_H < 280$ GeV) and a high Higgs boson mass ($m_H \geq 280$ GeV) search region, where dedicated cuts are applied to two important discriminating variables used to reduce the background contributions: E_T^{miss} and the azimuthal angle between the two leptons, $\Delta \phi(\ell, \ell)$. Figure 2 shows the distributions of these variables after the application of the $m_{\ell\ell}$ window cut. Since inclusive Z production gives rise to a steeply falling E_T^{miss} distribution, systematic uncertainties on the E_T^{miss} reconstruction are particularly important to estimate this background correctly. The dominant contributions to the E_T^{miss} uncertainty come from the knowledge of the jet energy scale and the modelling of inclusive Z production. Figure 2 shows that a good agreement within systematic uncertainties is observed between data and the combined background expectation. In the low m_H region, events are required to satisfy $E_T^{\text{miss}} > 66$ GeV, while in the high m_H region the requirement is $E_T^{\text{miss}} > 82$ GeV. These cuts reduce significantly the backgrounds from processes with no or modest genuine missing transverse momentum originating from unobserved neutrinos.

The boost of the Z bosons originating from a Higgs boson decay increases with m_H, thus reducing the expected opening angle between the leptons. In the low m_H region this boost is expected to be modest and a cut $1 < \Delta \phi(\ell, \ell) < 2.64$ is applied. In the high m_H region an upper limit $\Delta \phi(\ell, \ell) < 2.25$ is required.

Finally, in the high m_H region, events are also rejected if the azimuthal angle between the missing transverse momentum vector and the direction of the $Z \rightarrow \ell\ell$ boson candidate is $\Delta \phi(p_T^{\text{miss}}, \vec{p}_T^{\ell\ell}) < 1$. The efficiency of the event selection is very similar in the electron and muon channels, ranging from 3% for $m_H = 200$ GeV to about 48% for $m_H = 600$ GeV.

SM pair production of Z bosons has a final state identical to the signal, and is therefore expected to survive most of the applied selection criteria and form a continuum in the transverse mass distribution (defined below). The normalization for this background is obtained from a calculation including next-to-leading order terms [44] with an additional 6% term to account for missing quark-box diagrams ($gg \rightarrow ZZ$) [45]. A 11% normalization uncertainty is assigned to this background, estimated from scale, PDF and model uncertainties. WW and WZ backgrounds are normalized in a similar way.

The background from inclusive Z production is derived from MC, after checking that the simulation describes well the data in samples selected by requiring the presence of a lepton pair. The background from top events is also taken from the MC prediction. This prediction is verified to agree with data, within systematic uncertainties, in two independent control samples: the first one requires at least one identified b-jet, while the second selects events containing electron-muon pairs.

Additional backgrounds can arise from QCD multijet events or inclusive W production due to heavy flavour decays or jets faking leptons. The normalization of the W background is obtained from the ratio between data and MC in control samples of like-sign electron-electron and electron-muon events with high E_T^{miss}. The QCD multijet background in the electron channel is determined using a data sample based on a loosened electron selection, thus dominated by jets; this sample is scaled to describe the tails of the $m_{\ell\ell}$ distribution. In the muon channel, the background from heavy flavour decays is studied using simulation, whereas other muon sources from multijet events are constrained using a sample of like-sign muon pairs in data. In both cases the background is found to be negligible.

The signal efficiencies and overall background expectations are similar in the electron and the muon channels,
The systematic uncertainties include experimental uncertainties related to the selection and calibration of electrons, muons, jets and b jets, which are also explicitly propagated to the E_T^{miss} calculation. Shape uncertainties for the signal and for the single Z and ZZ backgrounds are estimated using PYTHIA as an alternative MC generator.

Normalization uncertainties for signal (gluon fusion $^{+14\%}_{-10\%}$ and VBF 4%) and diboson backgrounds (11%) are obtained from theory [25]; uncertainties for the inclusive Z boson production (2.5%), top quark production (9%), inclusive W boson production (100%) and QCD multijet production in the electron channel (50%) are estimated from data. A 3.7% luminosity uncertainty [46] is included for those processes for which the normalization is not obtained from the data. The dominant systematic uncertainties in the analysis are the E_T^{miss} uncertainties for the Z background, the b-tagging uncertainty for the top background and the normalization uncertainties for the signal and the W and diboson backgrounds.

After the event selection, the Higgs boson search is performed by looking for an excess of data over the SM background expectation in the transverse mass distribution of the selected $ee\nu\nu$ and $\mu\mu\nu\nu$ events. The transverse mass is calculated from the lepton pair and the p_T^{miss} vector as

$$m_T = \sqrt{m_Z^2 + |p_T^{\ell\ell}|^2 + m_Z^2 + |p_T^{miss}|^2} - |p_T^{\ell\ell} + p_T^{miss}|^2. $$

Table I. The expected number of background and signal events for the Higgs boson search in the $H \rightarrow ZZ \rightarrow \ell^+\ell^{-}\nu\bar{\nu}$ channel, along with the observed numbers of candidates in data, for an integrated luminosity of 1.04 fb$^{-1}$. The quoted uncertainties are statistical and systematic, respectively. Signal to background ratios are also given for various masses (see text).

<table>
<thead>
<tr>
<th>Source</th>
<th>low m_H search</th>
<th>high m_H search</th>
<th>s/b</th>
<th>m_H (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>$19.1 \pm 2.6 \pm 0.9$</td>
<td>$6.0 \pm 1.4 \pm 1.8$</td>
<td>$7%$</td>
<td>200</td>
</tr>
<tr>
<td>W</td>
<td>$8.5 \pm 2.3 \pm 8.5$</td>
<td>$3.1 \pm 1.0 \pm 3.1$</td>
<td></td>
<td>300</td>
</tr>
<tr>
<td>top</td>
<td>$29.9 \pm 1.3 \pm 6.0$</td>
<td>$14.9 \pm 0.8 \pm 3.1$</td>
<td></td>
<td>400</td>
</tr>
<tr>
<td>multijet</td>
<td>$0.4 \pm 0.4 \pm 0.2$</td>
<td>$0.0 \pm 0.0 \pm 0.0$</td>
<td></td>
<td>500</td>
</tr>
<tr>
<td>ZZ</td>
<td>$17.6 \pm 0.4 \pm 2.1$</td>
<td>$14.7 \pm 0.4 \pm 1.7$</td>
<td></td>
<td>600</td>
</tr>
<tr>
<td>WZ</td>
<td>$16.7 \pm 0.6 \pm 2.0$</td>
<td>$12.1 \pm 0.5 \pm 1.4$</td>
<td></td>
<td>700</td>
</tr>
<tr>
<td>WW</td>
<td>$12.4 \pm 0.4 \pm 1.5$</td>
<td>$4.6 \pm 0.3 \pm 0.5$</td>
<td></td>
<td>800</td>
</tr>
<tr>
<td>Total</td>
<td>$104.6 \pm 3.8 \pm 16.0$</td>
<td>$55.3 \pm 2.0 \pm 7.8$</td>
<td></td>
<td>900</td>
</tr>
</tbody>
</table>

Figure 3 shows the m_T distribution in the high m_H search region. Signal to background ratios for different m_H values, determined in a m_T window defined to enclose 95% of the corresponding signal events, are listed in Table I.

The number and distribution of candidate $H \rightarrow ZZ \rightarrow \ell^+\ell^-\nu\bar{\nu}$ events observed in the data agree with the expected backgrounds within the uncertainties, with no indication of an excess. Upper limits are set on the Higgs boson production cross section relative to its predicted SM value as a function of m_H. The limits are extracted from a maximum likelihood fit to the m_T distribution following the CLs modified frequentist formalism with the profile likelihood test statistic [47,48]. All systematic uncertainties are taken into account.

Table I. The expected number of background and signal events for the Higgs boson search in the $H \rightarrow ZZ \rightarrow \ell^+\ell^-\nu\bar{\nu}$ channel, along with the observed numbers of candidates in data, for an integrated luminosity of 1.04 fb$^{-1}$. The quoted uncertainties are statistical and systematic, respectively. Signal to background ratios are also given for various masses (see text).

The number and distribution of candidate $H \rightarrow ZZ \rightarrow \ell^+\ell^-\nu\bar{\nu}$ events observed in the data agree with the expected backgrounds within the uncertainties, with no indication of an excess. Upper limits are set on the Higgs boson production cross section relative to its predicted SM value as a function of m_H. The limits are extracted from a maximum likelihood fit to the m_T distribution following the CLs modified frequentist formalism with the profile likelihood test statistic [47,48]. All systematic uncertainties are taken into account.

Figure 4 shows the expected and observed limits at the 95% confidence level. The expected limit is lowest around $m_H = 380$ GeV where it is 1.1 times the SM Higgs boson cross section. Fluctuations in the background can lead to better or worse expected limits. Over the entire mass range the observed limits agree with the expectations within the 2σ band. A SM Higgs boson in the range 340 < m_H < 450 GeV is excluded at the 95% confidence level.

In summary, results of a search for a heavy SM Higgs boson with a mass in the range 200 < m_H < 600 GeV decaying to $ZZ \rightarrow \ell^+\ell^-\nu\bar{\nu}$ have been presented. These results are based on a data sample corresponding to an integrated luminosity of 1.04 fb$^{-1}$, recorded with the ATLAS detector at the LHC. No evidence for a signal is observed and cross section limits are placed over the entire mass range, excluding the production of a SM Higgs boson in the region 340 < m_H < 450 GeV at the 95% confidence level.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina;
YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRS, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNI SW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR, MSTD, Serbia; MSSR, Slovakia; AARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, and Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

18a Department of Physics, Bogazici University, Istanbul, Turkey
18b Division of Physics, Dogus University, Istanbul, Turkey
18c Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
18d Department of Physics, Istanbul Technical University, Istanbul, Turkey
19a INFN Sezione di Bologna, Italy
19b Dipartimento di Fisica, Università di Bologna, Bologna, Italy
20 Physikalisches Institut, University of Bonn, Bonn, Germany
21 Department of Physics, Boston University, Boston Massachusetts, USA
22 Department of Physics, Brandeis University, Waltham Massachusetts, USA
23a Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil
23b Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
23c Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil
23d Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
24 Physics Department, Brookhaven National Laboratory, Upton New York, USA
25a National Institute of Physics and Nuclear Engineering, Bucharest, Romania
25b University Politehnica Bucharest, Bucharest, Romania
25c West University in Timisoara, Timisoara, Romania
26 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
27 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
28 Department of Physics, Carleton University, Ottawa ON, Canada
29 CERN, Geneva, Switzerland
30 Enrico Fermi Institute, University of Chicago, Chicago Illinois, USA
31a Departamento de Fisica, Pontificia Universidad Católica de Chile, Santiago, Chile
31b Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
32a Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
32b Department of Modern Physics, University of Science and Technology of China, Anhui, China
32c Department of Physics, Nanjing University, Jiangsu, China
32d High Energy Physics Group, Shandong University, Shandong, China
33 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France
34 Nevis Laboratory, Columbia University, Irvington New York, USA
35 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
36a INFN Gruppo Collegato di Cosenza, Italy
36b Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy
37 Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Krakow, Poland
38 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
39 Physics Department, Southern Methodist University, Dallas Texas, USA
40 Physics Department, University of Texas at Dallas, Richardson Texas, USA
41 DESY, Hamburg and Zeuthen, Germany
42 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
43 Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
44 Department of Physics, Duke University, Durham North Carolina, USA
45 SUPA-School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
46 INFN Laboratori Nazionali di Frascati, Frascati, Italy
47 Fakultät für Mathematik und Physik, Justus-Liebsch-Universität, Freiburg i. Br., Germany
48 Section de Physique, Université de Genève, Geneva, Switzerland
49a INFN Sezione di Genova, Italy
49b Dipartimento di Fisica, Università di Genova, Genova, Italy
50a E. Andronikashvili Institute of Physics, Georgian Academy of Sciences, Tbilisi, Georgia
50b High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
51 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
52 SUPA-School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
53 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
54 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
55 Department of Physics, Hampton University, Hampton Virginia, USA
56 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge Massachusetts, USA
57 Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
58 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
59 ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
58 Faculty of Science, Hiroshima University, Hiroshima, Japan
117 Department of Physics, Oxford University, Oxford, United Kingdom
118 INFN Sezione di Pavia, Italy
119 Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, Pavia, Italy
120 Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
121 Petersburg Nuclear Physics Institute, Gatchina, Russia
121a INFN Sezione di Pisa, Italy
121b Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
122 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
123 Laboratorio de Instrumentacao e Fisica Experimental de Particulas-LIP, Lisboa, Portugal
123a Departamento de Fisica Teorica y del Cosmos and CAPEP, Universidad de Granada, Granada, Portugal
124 Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
125 Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
126 Czech Technical University in Prague, Prague, Czech Republic
127 State Research Center Institute for High Energy Physics, Protvino, Russia
128 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
129 Physics Department, University of Regina, Regina SK, Canada
130 Ritsumeikan University, Kusatsu, Shiga, Japan
131 INFN Sezione di Roma I, Italy
131a INFN Sezione di Roma Tor Vergata, Italy
131b Dipartimento di Fisica, Università La Sapienza, Roma, Italy
131c INFN Sezione di Roma Tre, Italy
131d Dipartimento di Fisica, Università Roma Tre, Roma, Italy
131e Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies-Université Hassan II, Casablanca, Morocco
132 Centre National de l’Energie des Sciences Techniques Nucléaires, Rabat, Morocco
132a Université Cadi Ayyad, Faculté des sciences Semlalia Département de Physique, B. P. 2390 Marrakech 40000, Morocco
133 Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco
134 Faculté des Sciences, Université Mohammed V, Rabat, Morocco
134a Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco
134b Faculté des Sciences, Université Mohamed V, Rabat, Morocco
134c Universite Cadi Ayyad, Faculté des sciences Semlalia Département de Physique, B. P. 2390 Marrakech 40000, Morocco
134d Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco
134e Faculté des Sciences, Université Mohamed V, Rabat, Morocco
135 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France
136 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, California, USA
137 Department of Physics, University of Washington, Seattle, Washington, USA
138 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
139 Department of Physics, Shinshu University, Nagano, Japan
140 Fachbereich Physik, Universität Siegen, Siegen, Germany
141 Department of Physics, Simon Fraser University, Burnaby BC, Canada
142 SLAC National Accelerator Laboratory, Stanford, California, USA
143 Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava, Slovak Republic
144 Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
145 Department of Physics, University of Johannesburg, Johannesburg, South Africa
146 School of Physics, University of the Witwatersrand, Johannesburg, South Africa
147a Department of Physics, Stockholm University, Sweden
147b The Oskar Klein Centre, Stockholm, Sweden
147c Physics Department, Royal Institute of Technology, Stockholm, Sweden
148 Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York, USA
148a Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
149 School of Physics, University of Sydney, Sydney, Australia
150 Institute of Physics, Academia Sinica, Taipei, Taiwan
151 Department of Physics, Technion: Israel Inst. of Technology, Haifa, Israel
152 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
153 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
154 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
155 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
155a Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
155b Department of Physics, University of Toronto, Toronto ON, Canada
155c TRIUMF, Vancouver BC, Canada
156 Department of Physics and Astronomy, York University, Toronto ON, Canada
157 Institute of Pure and Applied Sciences, University of Tsukuba, Ibaraki, Japan
158 Science and Technology Center, Tufts University, Medford, Massachusetts, USA
159 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia