Supplementary Material for
“Gapless excitations in strongly fluctuating superconducting wires”
Dganit Meidan1, Bernd Rosenow2, Yuval Oreg3 and Gil Refael4
1Dahlem Center for Complex Quantum Systems and Institut für
Theoretische Physik, Freie Universität Berlin, 14195 Berlin, Germany
2Institut für Theoretische Physik, Universität Leipzig, D-04103, Leipzig, Germany
3Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, 76100, ISRAEL
4Department of Physics, California Institute of Technology, Pasadena, California 91125, USA
(Dated: October 5, 2011)

MICROSCOPIC PHASE ACTION

In order to describe correlations of the order parameter in a superconducting wire we examine its microscopic action obtained from the BCS Hamiltonian by a Hubbard-Stratonovich transformation followed by an expansion around the saddle point [1, 2]. In the low temperature limit, this yields [1, 2]:

\[S = \nu_0 A \Delta_0^2 \int_0^L dx \int_0^{1/T} dt \left\{ \frac{\nu_0^2}{2} \ln (\rho^2) - 1 \right\} + 2\xi_0^2 \rho^2 \left[\phi'^2 + \frac{1}{v_{\phi}} \phi''^2 \right] + \xi_0^2 \left[\rho'^2 + \frac{1}{v_{\rho}} \rho''^2 \right] \],

where \(L \) and \(A \) are the wire’s length and cross section, respectively, \(\xi_0^2 = \pi D / 8 \Delta_0 \), \(v_{\rho} = \sqrt{3\pi/2} D \Delta_0 \), \(\phi = \sqrt{\pi D \Delta_0} (2AV_c \nu_0 + 1) \propto v_{\phi} \sqrt{N_\perp} \) the phase velocity, \(V_c \) the Fourier transform of the short range Coulomb interaction, \(N_\perp = p^2 F A / \pi^2 \) is the number of one dimensional channels in the wire, \(\nu_0 \) the density of states, \(D \) the electronic diffusion constant in the normal state, and the SC order parameter is parameterized as \(\Delta = \Delta_0 \rho e^{i\phi} \), with \(\Delta_0 \), the mean field solution. Rescaling the imaginary time by \(y = v_{\rho}\tau \), the low energy excitations of the system are phase fluctuations whose action follow:

\[S[\phi] = K/2 \int dxdy \left\{ (\partial_x \phi)^2 + (\partial_y \phi)^2 / N_\perp \right\}, \tag{1} \]

where the phase stiffness is

\[K = \frac{4\nu_0 A \Delta_0^2 \xi_0^2}{v_{\rho}} \approx \frac{R_Q}{2R_\xi}. \tag{2} \]

The system described by this model undergoes a Kosterlitz-Thouless phase transition between a quasi-ordered phase (superconductor) and a disordered phase where phase slip pairs unbind [3]. Correlations of the order parameter in the disordered phase decay exponentially:

\[\langle \Delta(x, \tau)\Delta^\dagger(0,0) \rangle = \Delta_0^2 e^{-x/\xi_{KT}} e^{-\tau/\tau_{KT}}, \tag{3} \]

over a typical length \(\xi_{KT} \), and time \(\tau_{KT} \). This corresponds to

\[\langle \Delta\Delta^\dagger \rangle_{q,\Omega} = \frac{\Delta_0^2 \xi_{KT} \tau_{KT}}{(1 + q^2 \xi_{KT}^2)(1 + \Omega^2 \tau_{KT}^2)} \]. \tag{4}

LEADING ORDER CORRECTION TO THE TUNNELING DENSITY OF STATES OF A FLUCTUATING SUPERCONDUCTOR

The tDOS is given by

\[\nu_e = -\frac{1}{\pi} \text{Im} G^R(r, r, \epsilon) = -\frac{1}{\pi} \text{Im} \int \frac{d^3p}{(2\pi)^3} G^R(p, \epsilon), \tag{5} \]

where \(G^R(r, r, \epsilon) \) is the retarded Green’s function which can be expressed to second order in the pairing amplitude:
\[G(p, \omega_n) = G_0(p, \omega_n) + T \sum_{q, \Omega} G_0(p, \omega_n) \Lambda(q, \omega_n, \omega_n + \Omega) G_0(p + q, \omega_n + \Omega) \Lambda(q, \omega_n + \Omega, \omega_n) G_0(p, \omega_n) \langle \Delta \Delta^\dagger \rangle_{q, \Omega}. \] (6)

Here:

\[G_0(k + q, \omega)^{-1} = i(\omega) + \frac{i}{2\tau} \text{sign}(\omega) - \xi \]

\[\Lambda(\omega, \omega + \Omega, q) = \frac{1}{2\tau} \frac{\Theta(\omega(\omega + \Omega))}{|2\omega + \Omega| + Dq^2 + 1/\tau_\phi}, \]

and correlations of the order parameter are given by Eq. (4). The density of states is then given by

\[\delta \nu(\epsilon) = \nu(\epsilon) - \nu_0 \nu_0 = -\frac{1}{\pi} \text{Im} \int d\omega \frac{\Theta(\omega_0(\omega_0 + \Omega))}{(2\omega_0 + \Omega)^2} \frac{\xi K_T}{2\pi^2 + q^2 \xi K_T^2} \]

\[\approx \frac{2\pi i \text{sign}(\omega_n) T \sum_{q, \Omega} \Theta(\omega_n(\omega_n + \Omega)) \tau K_T}{|2\omega_n + \Omega| + Dq^2 + 1/\tau_\phi} \int dq \frac{\xi K_T}{2\pi^2 + q^2 \xi K_T^2} \frac{\xi K_T}{2\pi^2 + q^2 \xi K_T^2} \langle \Delta \Delta^\dagger \rangle_{q, \Omega}, \] (7)

Using Eq. (4) to describe the phase fluctuations in a phase-slip proliferated wire, in the low energy limit \(\tau_\phi \ll \tau K_T \) we may approximate Eq. (7) as

\[I(\omega_n) \approx \frac{2\pi i \text{sign}(\omega_n) T \sum_{q, \Omega} \Theta(\omega_n(\omega_n + \Omega)) \tau K_T}{|2\omega_n + \Omega| + Dq^2 + 1/\tau_\phi} \int dq \frac{\xi K_T}{2\pi^2 + q^2 \xi K_T^2} \frac{\xi K_T}{2\pi^2 + q^2 \xi K_T^2} \frac{\xi K_T}{2\pi^2 + q^2 \xi K_T^2} \]

\[\approx \frac{\pi i \text{sign}(\omega_n) \xi K_T^2}{|2\omega_n + \Omega|^2} \left\{ \frac{i}{4\pi} \left[\frac{1}{2 \pi T} + \frac{\omega_n}{2 \pi T} \right] - \frac{\omega_n}{2 \pi T} - \frac{i}{2 \pi T \tau K_T} \right\} + \frac{1}{2} \coth \frac{1}{2 \pi T \tau K_T}, \] (8)

where \(\Psi(z) \) is the digamma function.

LEADING ORDER CORRECTION TO THE SELF ENERGY

FIG. 1: The leading order correction to the self energy, given by Eq. (9). The solid line is the bare electronic Green’s function, \(G_0 \), the double wavy is the renormalized pairing interaction, \(\langle \Delta \Delta^\dagger \rangle \), and the dashed lines are the impurity scattering.

The leading order correction to the self energy, shown in Fig. 1 is given by \(G^{-1} = G_0^{-1} - \Sigma \) with:

\[\Sigma = \sum_q T \sum_{\Omega} G(k + q, \omega + \Omega) \langle \Delta \Delta^\dagger \rangle_{q, \Omega} A^2(\omega, \omega + \Omega, q). \] (9)

The integral over fermionic momentum is dominated by \(\xi \approx 1/\tau \). Since, \(\omega_\tau, \Omega_\tau, Dq^2 \tau \ll 1 \), we can approximate \(\tilde{G}(k + q, \omega + \Omega) \approx \tilde{G}(k, \omega) \). This gives

\[\Sigma \approx \tilde{G}(k, \omega) \sum_q T \sum_{\Omega} \frac{\Theta(\omega(\omega + \Omega))}{4\pi^2 (2\omega + \Omega + Dq^2 + 1/\tau_\phi)^2} \langle \Delta \Delta^\dagger \rangle_{q, \Omega}, \]

\[\equiv \tilde{G}(k, \omega) A(\omega). \] (10)
Using this expression for the self energy we can write the Green’s function as:

\[G(k, \omega)^{-1} = i(\omega) + i \frac{2}{\pi} \text{sign}(\omega) - \xi_k - \Sigma(\omega) \]

(11)

\[= i\tilde{\omega} - \xi - \frac{1}{i\tilde{\omega} + \xi}A(\omega), \]

(12)

where \(\tilde{\omega} = \omega + \frac{1}{2\pi} \text{sign}(\omega) \). The density of states is given by:

\[\nu(i\omega) = \frac{i\nu}{\pi} \int dkG(k, \omega) = \frac{i\nu}{\pi} \int d\xi \frac{i\tilde{\omega} + \xi}{\tilde{\omega}^2 + \xi^2 + A(\omega)} \]

(13)

where the odd integral over \(\xi \) vanishes. In the limit of \(\omega\tau \ll 1 \) we have:

\[\nu(i\omega) \approx \nu \frac{i\text{sign}(\omega)}{\sqrt{\tilde{\omega}^2 + A(\omega)}} \]

(14)

In order to evaluate \(4\tau^2A(\omega) \), we note that \(4\tau^2A(\omega) \) is given by Eq. (7). Using Eq. (8) in the limit \(T \tau_K \ll 1 \) we find:

\[4\tau^2A(\omega) = \frac{\Delta_0^2}{2} \frac{1}{(2\omega + 1/\tau_\phi)^2} \left\{ \frac{i}{4\pi} \left[\Psi\left(\frac{1}{2} + \frac{\omega}{2\pi T} \right) + \Psi\left(\frac{1}{2} - \frac{\omega}{2\pi T} \right) - \Psi\left(\frac{1}{2} - \frac{\omega}{2\pi T} \right) - \Psi\left(\frac{1}{2} + \frac{\omega}{2\pi T} \right) \right] + \frac{1}{2} \coth\left(\frac{1}{2\tau_K T} \right) \right\} \]

(15)

Here we have assumed \(\omega \sim T \ll 1/\tau_K \). Performing the analytic continuation \(i\omega \rightarrow \epsilon + i\delta \) we find

\[4\tau^2A(i\omega \rightarrow \epsilon + i\delta) = \frac{\Delta_0^2}{2} \frac{1}{(-2\epsilon + 1/\tau_\phi)^2} \left\{ \frac{i}{4\pi} \left[i\pi + 2i\pi T \tau_K T - 2i\epsilon \tau_K T \right] + 1/2 \right\} \]

(16)

The density of states is given by

\[\nu(\epsilon) = \Im\nu(i\omega \rightarrow \epsilon + i\delta) = \Im \left[\frac{i\nu_0}{\Delta_0} 2 \frac{(2\epsilon + 1/\tau_\phi)}{\sqrt{4 + 4\epsilon^2 \tau_K T - T \tau_K T}} \right]. \]

(17)

In the low temperature limit \(T \tau_K, T \tau_\phi \ll 1 \), we can replace \(\nu(T) = -\int d\nu(\epsilon) \frac{d\epsilon}{d\nu} \approx \nu(\epsilon = 0, T) \), leading to:

\[\frac{\nu(T)}{\nu_0} = \frac{2\sqrt{2}}{\Delta_0 \tau_\phi(T)}. \]

(18)