Search for $B_s^0 \rightarrow \mu^+\mu^-$ and $B^0 \rightarrow \mu^+\mu^-$ Decays in $pp$ Collisions at $\sqrt{s} = 7$ TeV

S. Chatrchyan et al.*
(CMS Collaboration)

(Received 29 July 2011; published 1 November 2011)

A search for the rare decays $B_s^0 \rightarrow \mu^+\mu^-$ and $B^0 \rightarrow \mu^+\mu^-$ is performed in $pp$ collisions at $\sqrt{s} = 7$ TeV, with a data sample corresponding to an integrated luminosity of 1.14 fb$^{-1}$, collected by the CMS experiment at the LHC. In both cases, the number of events observed after all selection requirements is consistent with expectations from background and standard-model signal predictions. The resulting upper limits on the branching fractions are $\mathcal{B}(B_s^0 \rightarrow \mu^+\mu^-) < 1.9 \times 10^{-8}$ and $\mathcal{B}(B^0 \rightarrow \mu^+\mu^-) < 4.6 \times 10^{-9}$, at 95% confidence level.

DOI: 10.1103/PhysRevLett.107.191802
PACS numbers: 13.20.He

In the standard model (SM) of particle physics, flavor-changing neutral current (FCNC) decays are forbidden at tree level and can only proceed through higher-order loop diagrams. The decays $B_s \rightarrow \ell^+\ell^-$ (where $\ell = e, \mu$), besides involving $b \rightarrow s(d)$ FCNC transitions through penguin and box diagrams, are helicity suppressed by factors of $(m_\ell/m_b)^2$, where $m_\ell$ and $m_b$ are the masses of the lepton and $B$ meson, respectively. They also require an internal annihilation within the $B_s$ meson that further reduces the decay rate by $(f_B/m_b)^2$, where $f_B$ is the decay constant of the $B$ meson.

The SM-predicted branching fractions, $\mathcal{B}(B_s^0 \rightarrow \mu^+\mu^-) = (3.2 \pm 0.2) \times 10^{-9}$ and $\mathcal{B}(B^0 \rightarrow \mu^+\mu^-) = (1.0 \pm 0.1) \times 10^{-10}$ [1], are significantly enhanced in several extensions of the SM, although in some cases the decay rates are lowered [2]. For example, in the minimal supersymmetric extension of the SM, the rates are strongly enhanced at large values of $\tan\beta$ [3,4]. In specific models involving leptoquarks [5] and in supersymmetric models with nonuniversal Higgs boson masses [6], the $B_s^0 \rightarrow \mu^+\mu^-$ and $B^0 \rightarrow \mu^+\mu^-$ branching fractions can be enhanced by different factors and, therefore, both channels must be studied in parallel. Several experiments have published upper limits at 95% confidence level (C.L.) on these decays: $\mathcal{B}(B_s^0 \rightarrow \mu^+\mu^-) < 5.1 \times 10^{-8}$ by D0 [7]; $\mathcal{B}(B_s^0 \rightarrow \mu^+\mu^-) < 5.8 \times 10^{-8}$ and $\mathcal{B}(B^0 \rightarrow \mu^+\mu^-) < 1.8 \times 10^{-8}$ by CDF [8]; $\mathcal{B}(B_s^0 \rightarrow \mu^+\mu^-) < 5.6 \times 10^{-8}$ and $\mathcal{B}(B^0 \rightarrow \mu^+\mu^-) < 1.5 \times 10^{-8}$ by LHCb [9]. CDF recently reported a new limit of $\mathcal{B}(B_s^0 \rightarrow \mu^+\mu^-) < 6.0 \times 10^{-9}$ and an excess of $B_s^0 \rightarrow \mu^+\mu^-$ events, corresponding to $\mathcal{B}(B_s^0 \rightarrow \mu^+\mu^-) = (1.8_{-0.9}^{+1.1}) \times 10^{-8}$ [10].

In this Letter, a simultaneous search for the $B_s^0 \rightarrow \mu^+\mu^-$ and $B^0 \rightarrow \mu^+\mu^-$ decays is presented, using a data sample of $pp$ collisions at $\sqrt{s} = 7$ TeV, corresponding to an integrated luminosity of $(1.14 \pm 0.07)$ fb$^{-1}$, collected in the first half of 2011 by the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC). An event-counting experiment is performed in dimuon mass regions around the $B_s^0$ and $B^0$ masses. To avoid any possible bias, the signal region was kept blind until after all selection criteria were established. The backgrounds are evaluated from the yields measured in data mass sidebands and from Monte Carlo (MC) simulations for rare hadronic two-body $B$ decays. The MC event samples are generated with PYTHIA 6.409 [11], the unstable particles are decayed via EVTGEN [12], and the detector response is simulated with GEANT4 [13]. Events of the type $B^+ \rightarrow J/\psi K^+$, $J/\psi \rightarrow \mu^+\mu^-$ are used as a normalization sample to minimize uncertainties related to the $b\bar{b}$ production cross section and to the integrated luminosity. The signal and normalization efficiencies are determined with MC simulation studies. A control sample of reconstructed $B_s^0 \rightarrow J/\psi \phi, J/\psi \rightarrow \mu^+\mu^-$ events is used to validate the MC simulation (such as the $B_s^0$ transverse momentum $p_T$ spectrum) and to evaluate potential effects resulting from differences in fragmentation between $B^+$ and $B^0$. The analysis is not affected by multiple $pp$ collisions in the same bunch crossing (pileup) because the spatial vertex resolution is good enough to correctly identify the $pp$ vertex from which signal candidates originate. In the present data set, an average of 5.5 primary vertices are reconstructed per event.

A detailed description of the CMS experiment can be found in Ref. [14]. The main subdetectors used in this analysis are the silicon tracker, composed of pixel and strip layers immersed in a 3.8 T axial magnetic field, and the muon stations, made of gas-ionization detectors embedded in the steel return yoke, and divided into a barrel section and two end caps. The muons are tracked within the pseudorapidity region $|\eta| < 2.4$, where $\eta = -\ln[\tan(\theta/2)]$ and $\theta$ is the polar angle with respect to the counterclockwise beam direction. A muon $p_T$ resolution of about 1.5% is obtained for muons in this analysis.
The events are selected with a two-level trigger system. The first level only requires two muon candidates, without an explicit $p_T$ requirement, while the high-level trigger (HLT) uses additional information from the silicon tracker. The HLT selection for the signal data sample requires two muons each with $p_T > 2$ GeV, dimuon $p_T > 4$ GeV, invariant mass within $4.8 < m_{\mu\mu} < 6.0$ GeV, and a 3D distance of closest approach to each other $d_{ca} < 5$ mm.

The normalization ($B^+ \rightarrow J/\psi K^+$) and control ($B^0 \rightarrow J/\psi \phi$) samples were collected with HLT requirements gradually tightened as the LHC luminosity increased. This time evolution does not affect the analysis presented here, which uses selection criteria significantly tighter than any trigger requirements. More than 95% of the normalization and control sample events were collected by requiring two muons each with $p_T > 3$ GeV, dimuon $p_T > 6.9$ GeV, invariant mass within $2.9 < m_{\mu\mu} < 3.3$ GeV, $d_{ca} < 5$ mm, and a larger than 0.5% probability of the $\chi^2$ per degree of freedom (d.o.f.) of the dimuon vertex fit. Two additional trigger requirements, measured in the transverse plane, significantly reduce the rate of prompt $J/\psi$ candidates: the significance of the flight distance $\ell_{xy}/\sigma(\ell_{xy})$ must be larger than 3, where $\ell_{xy}$ is the distance between the primary and dimuon vertices and $\sigma(\ell_{xy})$ is its uncertainty, and the pointing angle $\alpha_{xy}$ between the B candidate momentum and the vector from the primary vertex to the dimuon vertex must fulfill $\cos \alpha_{xy} > 0.9$. The average trigger efficiency, calculated after all other selection criteria have been applied, for events in the signal and normalization samples is about 80%, as determined from MC simulation. The uncertainty on the ratio of trigger efficiencies between the signal and normalization samples is estimated to be 2% by comparing these ratios in simulation studies and in data.

Muon candidates are required to be reconstructed by two different algorithms, one matching silicon-tracker tracks to segments in the muon stations and the other performing global fits using tracks in both detector systems [15]. The uncertainty on the ratio of muon identification efficiencies between the signal and normalization samples is estimated to be 5%.

The $B \rightarrow \mu^+ \mu^-$ candidates require two oppositely charged muons with an invariant mass in the region $4.9 < m_{\mu\mu} < 5.9$ GeV, after constraining their tracks to come from a common vertex. The B candidate momentum and vertex position are used to choose a primary vertex based on the distance of closest approach. Since the background level depends significantly on the pseudorapidity of the B candidate, the events are separated into two categories: the “barrel channel” contains the candidates where both muons have $|\eta| < 1.4$ and the “end cap channel” contains those where at least one muon has $|\eta| > 1.4$. An isolation variable $I = p_T(B)/(p_T(B) + \sum_{\text{tracks}} p_T)$ is calculated from the transverse momentum of the B candidate $p_T(B)$ and the transverse momenta of all other charged tracks satisfying

$$\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} < 1,$$

where $\Delta \eta$ and $\Delta \phi$ are the differences in pseudorapidity and azimuthal angle between a charged track and the B candidate momentum. The sum includes all tracks with $p_T > 0.9$ GeV that are consistent with originating from the same primary vertex as the B candidate or have a distance of closest approach $d_{ca} < 0.5$ mm with respect to the B vertex. The minimum distance of closest approach with respect to the B vertex among all tracks in the event, $d_{ca}^{\text{min}}$, is also determined as a complementary isolation variable. Figure 1 illustrates the transverse momentum, the 3D pointing angle $\alpha_{3D}$, the 3D flight length significance $\ell_{3D}/\sigma(\ell_{3D})$, and the isolation distributions for signal MC events and for sideband background data events. The sideband covers the range $4.9 < m_{\mu\mu} < 5.9$ GeV, excluding the signal window $5.2 < m_{\mu\mu} < 5.45$ GeV.

The following selection requirements were optimized for the best expected upper limit using MC signal events and data sideband events. The requirements were established before observing the number of data events in the signal region. The optimized requirements include $p_T > 4.5$ GeV on one muon and $p_T > 4.0$ GeV on the other, B candidate $p_T > 6.5$ GeV, $I > 0.75$, and B-vertex fit $\chi^2$/d.o.f. < 1.6. Two requirements are different for the barrel and end cap channels: $\alpha_{3D} < 0.050$ (0.025) and $d_{ca} < 0.5$ mm (0.7 mm) for the barrel (end cap) channel.

![FIG. 1 (color online). Comparison of MC signal and sideband data distributions, for the transverse momentum (top left), the 3D pointing angle (top right), the flight length significance (bottom left), and the isolation (bottom right). The MC histograms are normalized to the number of events in the data.](191802-2)
The event selection efficiencies for signal events $e_{\text{tot}}$, the SM-predicted number of signal events $N_{\text{signal}}^{\text{exp}}$, the expected number of combinatorial background events $N_{\text{comb}}^{\text{exp}}$, and peaking background events $N_{\text{peak}}^{\text{exp}}$, and the number of observed events $N_{\text{obs}}$ in the barrel and end cap channels for $B^0 \rightarrow \mu^+ \mu^-$ and $B^0 \rightarrow \mu^+ \mu^-$. 

<table>
<thead>
<tr>
<th>$e_{\text{tot}}$</th>
<th>$N_{\text{signal}}^{\text{exp}}$</th>
<th>$N_{\text{comb}}^{\text{exp}}$</th>
<th>$N_{\text{peak}}^{\text{exp}}$</th>
<th>$N_{\text{obs}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(3.6 \pm 0.4) \times 10^{-3}$</td>
<td>0.065 ± 0.011</td>
<td>0.40 ± 0.23</td>
<td>0.25 ± 0.06</td>
<td>0</td>
</tr>
<tr>
<td>$(3.6 \pm 0.4) \times 10^{-3}$</td>
<td>0.80 ± 0.16</td>
<td>0.60 ± 0.35</td>
<td>0.07 ± 0.02</td>
<td>2</td>
</tr>
<tr>
<td>$(2.1 \pm 0.2) \times 10^{-3}$</td>
<td>0.025 ± 0.004</td>
<td>0.53 ± 0.27</td>
<td>0.16 ± 0.04</td>
<td>1</td>
</tr>
<tr>
<td>$(2.1 \pm 0.2) \times 10^{-3}$</td>
<td>0.36 ± 0.07</td>
<td>0.80 ± 0.40</td>
<td>0.04 ± 0.01</td>
<td>1</td>
</tr>
</tbody>
</table>

The total efficiency for $B^+ \rightarrow J/\psi K^+ \rightarrow \mu^+ \mu^- K^+$, including the detector acceptance, is $e_{\text{tot}} = (7.7 \pm 0.8) \times 10^{-4}$ and $(2.7 \pm 0.3) \times 10^{-4}$, respectively, for the barrel and end cap channels, where statistical and systematic uncertainties are combined. The acceptance has a systematic uncertainty of 4%, estimated by comparing the values obtained with different $b\bar{b}$ production mechanisms (gluon splitting, flavor excitation, and flavor creation). The uncertainty on the event selection efficiency for the $B^+ \rightarrow J/\psi K^+$ normalization sample is 4%, evaluated from differences between measured and simulated $B^+ \rightarrow J/\psi K^+$ events. The uncertainty on the signal efficiency (7.9%) is evaluated using the $B_s^0 \rightarrow J/\psi \phi$ control sample. The invariant mass distributions are fitted with a Gaussian function for the signal and an exponential (barrel) or a first-degree polynomial (end cap) plus an error function for the background, as shown in Fig. 3. Applying the same selection requirements as for the signal sample, the observed number of $B^+ \rightarrow J/\psi K^+$ candidates in the barrel (end cap) channel is $N_{\text{obs}}^{B^+} = 13,045 \pm 652$ $(4450 \pm 222)$. The uncertainty includes a systematic term estimated to

$\ell_{\text{3D}}/\sigma(\ell_{\text{3D}}) > 15.0$ $(20.0)$ for the barrel (end cap). Furthermore, for events in the end cap there is an additional requirement, $d_{\text{caim}} > 0.15$ mm. The signal efficiencies $e_{\text{tot}}$ of these selections are provided in Table I. The dimuon mass resolution for signal events depends on the pseudorapidity of the $B$ candidate and ranges from 36 MeV for $\eta = 0$ to 85 MeV for $|\eta| > 1.8$, as determined from simulated signal.

The reconstruction of $B^+ \rightarrow J/\psi K^+ \rightarrow \mu^+ \mu^- K^+$ ($B^+ \rightarrow J/\psi \phi \rightarrow \mu^+ \mu^- K^+ K^+$) candidates requires two oppositely charged muons with an invariant mass in the range 3.0–3.2 GeV, which are combined with one (two) track(s), assumed to be (a) kaon(s), fulfilling $p_T > 0.5$ GeV and $|\eta| < 2.4$. To ensure a well-measured trigger efficiency, the selected candidates must have dimuon $p_T > 7$ GeV and the two muons must bend away from each other in the magnetic field (to avoid spurious detector-induced pair correlations). The $d_{\text{caim}}$ between all pairs among the three (four) tracks is required to be less than 1 mm. For $B^0 \rightarrow J/\psi \phi$ candidates the two assumed kaon tracks must have an invariant mass in the range 0.995–1.045 GeV and $\Delta R(K^+, K^-) < 0.25$. The tracks from all decay products are used in the $B$-vertex fit and only $B$ candidates with an invariant mass in the range 4.8–6.0 GeV are considered. The efficiencies of individual selection criteria agree to better than 4% (6%) between data and MC simulation for the normalization (control) sample, where the efficiencies have been calculated for each selection requirement with event yield fits after applying all other selection criteria.

Figure 2 compares several distributions for $B^0 \rightarrow J/\psi \phi$ candidates between MC simulation and sideband-subtracted data.

The total efficiency for $B^+ \rightarrow J/\psi K^+ \rightarrow \mu^+ \mu^- K^+$, including the detector acceptance, is $e_{\text{tot}} = (7.7 \pm 0.8) \times 10^{-4}$ and $(2.7 \pm 0.3) \times 10^{-4}$, respectively, for the barrel and end cap channels, where statistical and systematic uncertainties are combined. The acceptance has a systematic uncertainty of 4%, estimated by comparing the values obtained with different $b\bar{b}$ production mechanisms (gluon splitting, flavor excitation, and flavor creation). The uncertainty on the event selection efficiency for the $B^+ \rightarrow J/\psi K^+$ normalization sample is 4%, evaluated from

FIG. 2 (color online). Comparison of measured and simulated $B^0 \rightarrow J/\psi \phi$ distributions, for the transverse momentum (top left), the 3D pointing angle (top right), the flight length significance (bottom left), and the isolation (bottom right). The MC histograms are normalized to the number of events in the data.
be 5% from MC studies by considering alternative fitting functions.

To quantify a possible dependence on the pileup, the efficiencies of the isolation and the flight length significance requirements are calculated as functions of the number of reconstructed primary vertices. No dependence is observed for events with up to 12 primary vertices for the normalization and control samples.

The \( B^0 \to \mu^+ \mu^- \) branching fraction is measured separately in the barrel and end cap channels using

\[
\mathcal{B}(B^0 \to \mu^+ \mu^-) = \frac{N_S}{N_{B^0}} \frac{f_s}{f_{\text{tot}}} \mathcal{B}(B^+),
\]

and analogously for the \( B^0 \to \mu^+ \mu^- \) case, where \( N_S \) is the background-subtracted number of observed \( B_{d(i)} \to \mu^+ \mu^- \) candidates in the signal window (5.3 < \( m_{\mu\mu} \) < 5.45 GeV for \( B^0 \) and 5.2 < \( m_{\mu\mu} \) < 5.3 GeV for \( B^0 \)) and \( e_{\text{tot}} \) is the total signal efficiency of all selection requirements. The ratio of the \( B^0 \) and \( B^+ \) meson production fractions is \( f_s/f_{\mu} = 0.282 \pm 0.037 \) and \( \mathcal{B}(B^+) = \mathcal{B}(B^+ \to J/\psi K^+ \to \mu^+ \mu^- K^+)/(6.0 \pm 0.2) \times 10^{-3} \) [16]. (We use \( f_s = 0.113 \pm 0.013 \) and \( f_{\mu} = 0.401 \pm 0.013 \) from the main section of Ref. [16] and account for the correlations in the ratio.)

Events in the signal window can result from real signal decays, combinatorial background, and “peaking” background from decays of the type \( B_{d(i)} \to hh' \), where \( h, h' \) are charged hadrons misidentified as muons. The expected number of signal events, \( N_{\text{signal}}^{\exp} \), is calculated assuming the SM branching fraction and is normalized to the \( B^+ \) yield. The expected number of combinatorial background events, \( N_{\text{comb}}^{\exp} \), is evaluated by interpolating to the signal window the number of events observed in the sideband regions which is equal to three (four) for the barrel (end cap) channel. The interpolation procedure assumes a flat background shape and has a systematic uncertainty of 4%, evaluated by varying the flight length significance selections and by using a floating slope. The expected number of peaking background events, \( N_{\text{peak}}^{\exp} \), is evaluated from MC simulation and muon misidentification rates measured in \( K^0_s \to \pi^+ \pi^- \), \( \phi \to K^+ K^- \), and \( \Lambda \to p \pi^- \) samples [15].

Figure 4 shows the measured dimuon invariant mass distributions. Three events are observed in the \( B^0 \to \mu^+ \mu^- \) signal windows (two in the barrel and one in the end cap), while only one event is observed in the \( B^0 \to \mu^+ \mu^- \) end cap channel. This observation is consistent with the SM expectation for signal plus background. Upper limits are determined with the CL_s approach [17]. Table I shows the values needed for the extraction of the results, separately for the barrel and end cap channels. The obtained upper limits on the branching fractions are \( \mathcal{B}(B^0 \to \mu^+ \mu^-) < 1.9 \times 10^{-8} \) (1.6 \( \times 10^{-8} \) and \( \mathcal{B}(B^0 \to \mu^+ \mu^-) < 4.6 \times 10^{-9} \) (3.7 \( \times 10^{-9} \)), at 95% (90%) C.L. The median expected upper limits at 95% C.L. are 1.8 \( \times 10^{-8} \) (4.8 \( \times 10^{-9} \)) for \( B^0 \to \mu^+ \mu^- \) and \( B^0 \to \mu^+ \mu^- \). The background-only \( p \) value is 0.11 (0.40) for \( B^0 \to \mu^+ \mu^- \) (corresponding to 1.2 (0.27) standard deviations). The \( p \) value is 0.053 when assuming a \( B^0 \to \mu^+ \mu^- \) signal at 5.6 times the SM value, as reported in Ref. [10].

In summary, a search for the rare decays \( B^0 \to \mu^+ \mu^- \) and \( B^0 \to \mu^+ \mu^- \) has been performed on a data sample of \( pp \) collisions at \( \sqrt{s} = 7 \) TeV corresponding to an integrated luminosity of 1.14 fb\(^{-1}\). The observed event yields are consistent with those expected adding background and SM signals. Upper limits on the branching fractions have been determined at 90% and 95% C.L.

We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, MEC, and HIP.
(Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and USASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST, MAE and RFBR (Russia); MSTD (Serbia); MICINN and CSIC (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (U.S.).

126 Fairfield University, Fairfield, Connecticut, USA
127 Fermi National Accelerator Laboratory, Batavia, Illinois, USA
128 University of Florida, Gainesville, Florida, USA
129 Florida International University, Miami, Florida, USA
130 Florida State University, Tallahassee, Florida, USA
131 Florida Institute of Technology, Melbourne, Florida, USA
132 University of Illinois at Chicago (UIC), Chicago, Illinois, USA
133 The University of Iowa, Iowa City, Iowa, USA
134 Johns Hopkins University, Baltimore, Maryland, USA
135 The University of Kansas, Lawrence, Kansas, USA
136 Kansas State University, Manhattan, Kansas, USA
137 Lawrence Livermore National Laboratory, Livermore, California, USA
138 University of Maryland, College Park, Maryland, USA
139 Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
140 University of Minnesota, Minneapolis, Minnesota, USA
141 University of Mississippi, University, Mississippi, USA
142 University of Nebraska-Lincoln, Lincoln, Nebraska, USA
143 State University of New York at Buffalo, Buffalo, New York, USA
144 Northeastern University, Boston, Massachusetts, USA
145 Northwestern University, Evanston, Illinois, USA
146 University of Notre Dame, Notre Dame, Indiana, USA
147 The Ohio State University, Columbus, Ohio, USA
148 Princeton University, Princeton, New Jersey, USA
149 University of Puerto Rico, Mayaguez, Puerto Rico, USA
150 Purdue University, West Lafayette, Indiana, USA
151 Purdue University Calumet, Hammond, Indiana, USA
152 Rice University, Houston, Texas, USA
153 University of Rochester, Rochester, New York, USA
154 The Rockefeller University, New York, New York, USA
155 Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA
156 University of Tennessee, Knoxville, Tennessee, USA
157 Texas A&M University, College Station, Texas, USA
158 Texas Tech University, Lubbock, Texas, USA
159 Vanderbilt University, Nashville, Tennessee, USA
160 University of Virginia, Charlottesville, Virginia, USA
161 Wayne State University, Detroit, Michigan, USA
162 University of Wisconsin, Madison, Wisconsin, USA

\footnote{Deceased.}
\footnote{Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.}
\footnote{Also at Universidade Federal do ABC, Santo Andre, Brazil.}
\footnote{Also at California Institute of Technology, Pasadena, California, USA.}
\footnote{Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.}
\footnote{Also at Suez Canal University, Suez, Egypt.}
\footnote{Also at British University, Cairo, Egypt.}
\footnote{Also at Fayoum University, El-Fayoum, Egypt.}
\footnote{Also at Ain Shams University, Cairo, Egypt.}
\footnote{Also at Soltan Institute for Nuclear Studies, Warsaw, Poland.}
\footnote{Also at Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.}
\footnote{Also at Université de Haute-Alsace, Mulhouse, France.}
\footnote{Also at Brandenburg University of Technology, Cottbus, Germany.}
\footnote{Also at Moscow State University, Moscow, Russia.}
\footnote{Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.}
\footnote{Also at Eötvös Loránd University, Budapest, Hungary.}
\footnote{Also at Tata Institute of Fundamental Research–HECR, Mumbai, India.}
\footnote{Also at University of Visva-Bharati, Santiniketan, India.}
\footnote{Also at Sharif University of Technology, Tehran, Iran.}
\footnote{Also at Isfahan University of Technology, Isfahan, Iran.}
\footnote{Also at Shiraz University, Shiraz, Iran.}

191802-14
Also at Facoltà Ingegneria Università di Roma, Roma, Italy.
w Also at Università della Basilicata, Potenza, Italy.
x Also at Università degli studi di Siena, Siena, Italy.
y Also at Faculty of Physics of University of Belgrade, Belgrade, Serbia.
z Also at University of California, Los Angeles, Los Angeles, California, USA.
aa Also at University of Florida, Gainesville, Florida, USA.
b Also at Université de Genève, Geneva, Switzerland.
c Also at Scuola Normale e Sezione dell’ INFN, Pisa, Italy.
d Also at INFN Sezione di Roma, Università di Roma “La Sapienza,” Roma, Italy.
e Also at University of Athens, Athens, Greece.
f Also at The University of Kansas, Lawrence, Kansas, USA.
gg Also at Paul Scherrer Institut, Villigen, Switzerland.
hh Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.
i Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.
jj Also at Gaziosmanpasa University, Tokat, Turkey.
kk Also at Adiyaman University, Adiyaman, Turkey.
ll Also at The University of Iowa, Iowa City, Iowa, USA.
m Also at Mersin University, Mersin, Turkey.
n Also at Izmir Institute of Technology, Izmir, Turkey.
o Also at Kafkas University, Kars, Turkey.
op Also at Suleyman Demirel University, Isparta, Turkey.
qq Also at Ege University, Izmir, Turkey.
rr Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.
s Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.
t Also at INFN Sezione di Perugia, Università di Perugia, Perugia, Italy.
u Also at Utah Valley University, Orem, Utah, USA.
vv Also at Institute for Nuclear Research, Moscow, Russia.
ww Also at Erzincan University, Erzincan, Turkey.