A Caltech Library Service

How to reduce suspension thermal noise in LIGO without improving the Q of the pendulum and violin modes

Braginsky, V. B. and Levin, Yu and Vyatchanin, S. P. (1999) How to reduce suspension thermal noise in LIGO without improving the Q of the pendulum and violin modes. Measurement Science and Technology, 10 (7). pp. 598-606. ISSN 0957-0233.

Full text is not posted in this repository. Consult Related URLs below.

Use this Persistent URL to link to this item:


The suspension noise in interferometric gravitational wave detectors is caused by losses at the top and the bottom attachments of each suspension fibre. We use the fluctuation-dissipation theorem to argue that by careful positioning of the laser beam spot on the mirror face it is possible to reduce the contribution of the bottom attachment point to the suspension noise by several orders of magnitude. For example, for the initial and enhanced LIGO (Laser Interferometer Gravitational Wave Observatory) design parameters (i.e. mirror masses and sizes, and suspension fibres' lengths and diameters) we predict a reduction of ~100 in the `bottom' spectral density throughout the band 35 - 100 Hz of serious thermal noise. We then propose a readout scheme which suppresses the suspension noise contribution of the top attachment point. The idea is to monitor an averaged horizontal displacement of the fibre of length l; this allows one to record the contribution of the top attachment point to the suspension noise, and later subtract it from the interferometer readout. This method will allow a suppression factor in spectral density of 7.4(l/d^2)√Mg/π E), where d is the fibre's diameter, E is it's Young modulus and M is the mass of the mirror. For the test mass parameters of the initial and enhanced LIGO designs this reduction factor is 132 × (l/30 cm)(0.6 mm/d)^2. We offer what we think might become a practical implementation of such a readout scheme. We propose to position a thin optical waveguide close to a fused silica fibre used as the suspension fibre. The waveguide itself is at the surface of a solid fused silica slab which is attached rigidly to the last mass of the seismic isolation stack (see figure 5). The thermal motion of the suspension fibre is recorded through the phaseshift of an optical wave passed through the waveguide. A laser power of 1 mW should be sufficient to achieve the desired sensitivity.

Item Type:Article
Related URLs:
URLURL TypeDescription
Additional Information:© 1999 IOP Publishing Ltd. Received 9 November 1998, accepted for publication 16 April 1999. We thank Sergey Cherkis, Michael Gorodetsky, Ronald Drever, Viktor Kulagin, Nergis Mavalvala, Peter Saulson and Kip Thorne for interesting discussions. We are grateful to Kip Thorne for carefully looking over the manuscript and making many useful suggestions. This research has been supported by NSF grants PHY-9503642 and PHY-9424337, and by the Russian Foundation for Fundamental Research grants #96-02-16319a and #97-02-0421g.
Funding AgencyGrant Number
Russian Foundation for Fundamental Research96-02-16319a
Russian Foundation for Fundamental Research97-02-0421g
Subject Keywords:gravitational wave detection, thermal noise, precision measurements
Classification Code:PACS: 95.55.Ym; 04.80.Nm; 42.79.Gn; 42.81.Cn; 07.60.Ly; 05.40.Ca; 42.62.Eh
Record Number:CaltechAUTHORS:20120110-083340421
Persistent URL:
Official Citation: How to reduce suspension thermal noise in LIGO without improving the Q of the pendulum and violin modes V B Braginsky et al 1999 Meas. Sci. Technol. 10 598
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:28724
Deposited By: Ruth Sustaita
Deposited On:10 Jan 2012 17:33
Last Modified:10 Jan 2012 17:33

Repository Staff Only: item control page