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Analyses of Hydrodynamic Radial
Forces on Centrifugal Pump
Impellers

Hydrodynamic interactions that occur between a centrifugal pump impeller and a
volute are experimentally and theoretically investigated. The theoretical analysis
considers the inability of the blades to perfectly guide the flow through the impeller,
and also includes a quasi-one dimensional treatment of flow in the volute. Flow
disturbances at the impeller discharge and the resulting forces are determined by the
theoretical model. The model is then extended to obtain the hydrodynamic force
Dperturbations that are caused by the impeller whirling eccentrically in the volute.
Under many operating conditions, these force perturbations were found to be
destabilizing. Comparisons are made between the theoretical model and the ex-
Dperimental measurements of pressure distributions and radial forces on the impeller.
The theoretical model yields fairly accurate predictions of the radial forces caused
by the flow through the impeller. However, it was found that the pressure acting on
the front shroud of the impeller has a substantial effect on the destabilizing
hydrodynamic forces.

Introduction

This study investigates the forces that result from the
hydrodynamic interaction between the impeller and the volute
in a centrifugal pump. Figure 1 shows a common type of cen-
trifugal pump with a few of the key components identified.
Volutes are usunally constructed to provide a uniform impeller
discharge when the pump operates at design conditions.
However, the discharge flow pattern will no longer be uniform
at off-design conditions. Once the flowrate changes, the
discharge conditions around the impeller become asymmetric
for any given volute. Even at the volute design flowrate, the
discharge conditions could still become asymmetric if the im-
peller is displaced from the ‘‘design’’ center of the volute by
shaft deflection, bearing wear, etc. In either case, a net radial
force on the impeller will result from the asymmetric discharge
conditions.

It is customary in rotordynamic analyses to linearize the
radial forces acting on the rotor in terms of a steady portion
acting on the centered impeller, and a time dependent part
caused by the impeller whirling. Here it will be assumed that
the impeller whirls in a small circular orbit. Referring to Fig.

1, these terms may be expressed as,
€* cos wt
) Y
€* sin wt

=< _ ¢+
Fy F, » Ay
where F, and F, result from the interaction of the centered im-
peller with the volute, and the matrix [4] relates the perturbed
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force to the eccentric position of the impeller. The [A] matrix
will be a function of the whirl speed, w, and is often expressed
as a quadratic in w so that the system resembles a simple stiff-
ness, damping, and mass model.
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Fig. 1 Description of a centrifugal pump
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The steady or mean forces, F, and F,, have been examined
in several studies and an understanding of them has been
greatly enhanced through papers by Iversen et al. (1960),
Csanady (1962), and Agostinelli et al. (1960) to name a few.
All of these authors have shown that there is a particular flow-
rate where forces on the impeller will be minimized for a given
volute. Previous experimental (Chamieh et al., 1982, and Jery
et al., 1984) and theoretical (Colding-Jorgensen, 1980) in-
vestigations have also shown that the components of [A4] are
such that a whirling motion of the impeller would be en-
couraged rather than dissipated by the hydrodynamic effects.
This finding has generated concern that the rotor assembly
may whirl at one of its natural frequencies even though the
shaft may be rotating well above this speed. If the impeller
whirls at a subsynchronous speed, the shaft will be subjected
to alternating flexural stresses that can cause metal fatigue (see
Ehrich and Childs, 1984).

- In the current study, a theoretical model of the volute and
impeller flows will be developed and compared to experimen-
tal results. Previously, a potential flow model for the steady
forces on a centered impeller was given by Csanady (1962) and
this work was later extended by Colding-Jorgensen (1980) to
include the effects of the impeller whirling within the volute.
Two dimensional potential flow models for whirling impellers
have also been developed by Shoji and Ohashi [1980] and
[1987]. In potential flow models, however, problems arise in
relating the two dimensional theoretical volute profiles to the
three dimensional geometries of real volutes. To avoid this
problem, the model developed in this paper uses a bulk flow
description of the volute flow which can use measured volute
geometries directly. A similar treatment of the volute flow was
presented by Iversen et al. (1960), but the influence of this
flow on the impeller discharge conditions was largely ignored
and only the non-whirling impeller was considered. The im-
peller/volute interaction will be included along with the effects
of impeller whirl in the present analysis.

Theoretical Analysis

In developing the current theoretical model, the problem is
broken into its two natural parts; models are constructed for
the flow through the impeller and in the volute. The equations
that are generated in these two parts are then combined by
matching the pressures and velocities at the impeller discharge
to those at the volute inlet. A full development of this model is
given by Adkins (1985) and only a brief summary will be
presented here.
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Fig. 2 Geometry of a centrifugal pump impeller

Governing Equations for the Impeller. Figure 2 illustrates
the geometries used in developing the impeller model. To
relate the pressure between the inlet and discharge of the im-
peller, a simplified unsteady form of Bernoulli’s equation is
written as,

P,' 02 92’.”2
p 2 2
av
+ S , —— ds” ——mzeS cos(wt—Qt—04” )ydr”
s at s
—wZeS sin{wt —Qt—6”)r"de” =F(t), )
5

Here the flow is assumed to be two dimensional and the im-
peller whirl speed constant.

To simplify the model, certain assumptions must be made
about the velocity field within the impeller. Specifically, the
flow in the impeller is assumed to follow a spiral path with in-
clination angle, v, which is fixed relative to the impeller for a
given flowrate and head rise so that,

07=0" +tany In(r” /R,). A3)

Here (", 68”) and (R,, 04) are the coordinates of a general
point on a streamline within the impeller and at the position of
discharge respectively. The flow path angle, y, of the
streamlines is permitted to deviate from the impeller blade
angle and it is found by equating theoretical and experimental
head/flowrate characteristics (see Closure Conditions). To ac-
count for the impeller flow asymmetry caused by the volute, a
circumferential perturbation is superimposed on the mean im-
peller flow. This flow perturbation is assumed to be stationary

Nomenclature

b = width of impeller discharge passage

h = total head (#* = 2h/pI’R3)

j=N-1

k = impeller phase coefficient = cos (tan y In

(R)) + j sin (tan vy In (R))

r, § = polar coordinate system
s = length in tangential direction
t = time
v = relative velocity in impeller
w = width in volute
_ __x,¥,z = rectangular coordinate system
A, rA, rrA “

moments of volute cross-sectional area
(defined in equations (14a-¢))

Inrd, rinrA =

Ay = (i = xy,j = x,y) components of
generalized hydrodynamic force matrix [4]
(A; = A;/prbQ?R3)

C; = ( = xy,J = x,y) components of damping

force matrix [C] (C}; = Cy/pwbQR3)
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>
I

. pressure coefficient at volute inlet =
2P, (R3, 6°) — hy)/pQPR3

F = force acting on impeller (F* = F/pmbQ*R3)
F(t) = integration constant in Bernoulli’s equation
Ji = ( = x.»y,j = x,y) coefficients of the jerk
force matrix [J] (J§ = J;/pwbR}/Q)
K; = (i = x,y,j = x,y) components of stiffness
force matrix [K] (K} = K;/pnb1*R3)
My = (I = x,y,j = x,y) components of inertia
force matrix [M] (M}, = M;/p7wbR3)
P; = pressure in impeller (P} = 2P;/pQ*R3)
P, = pressure in volute (P} = 2P,/pQ*R3)
R = impeller radius (with no subscript, R =
R,/Ry)
R, = radius of pressure tap ring
V = velocity in volute (with no subscript, V* =
Vo' /QR;)
W; = external width of impeller at R, (W =
W,/b)
B = perturbation function for impeller flow
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in the volute reference frame. Together, these stipulations re-
quire that,

v= (V2 +vi7)" =pQR3B(8” ,r” Qt,wt,e)secy/r". (4)

From continuity considerations, the perturbation function, 8,
must be constant along a streamline. For whirl motions with
small eccentric orbits, 3 may be linearized as,

B(8” ,r" Qt,wt,e) = B(0,)+e* (B, (0;)coswt + B, (Oy)sinwt ). (5)

Equations (4) and (5) can now be substituted into equation (2).
The pressure at the impeller discharge is then given as a func-
tion of § and the inlet pressure. If it assumed that the total
head is circumferentially constant at the impeller inlet and
there is no inlet pre-swirl, the inlet pressure can be written as,

P,-*(RI,OI)Ehl‘—¢RB(02){¢RB(02)+2e* % sin(f, —wt)}

—2e*¢2R2B(0,)1 8. (6,)coswt + B, (0,)sinwt ], (6)
for small eccentric displacements. By utilizing equations (4)
through (6), and neglecting terms of order ¢? and higher, Ber-
noulli’s equation can now be separated into harmonics with
steady, € cos w?, and e sin wf dependence as,

dB . _
2 2 1=
¢sec 'y[2 In (R) a0, + ¢p ] +Dp 1=0, (7a)

d, _
B+ o8 +2 ),

2¢sec?y [ln(R) 0,

db ]
? 42 2 [¢RBsin@, +tanyn(R))
a,

+ Dpc‘ - Sin92

w2

—cos(8, + tanyIn(R))/R] -2 D [cosf,

~cos(f, + tanyIn(R) )/R]/tan?>y =0, (7b)

d ~ I3
2 5 —_——
2¢secty [ln(R) 0, + 8, a In(R )Bc]
+ Dy, +cost, db, 22 [¢RBcos(0, + tanyIn(R) )
do, @

2
+5in(f, + tanyIn(R) ) /R] — 2 % [sing,

—sin(@, + tanyIn(R) ) /R]/tan?y =0, (7o)
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Fig. 3 Geometry of a volute

where,
D,(6") =I)_,, (0")+e*[D,. (0" )coswt + D, (67 )sinwt].  (8)

In equations (7a-c) the volute inlet pressure coefficient,
D,(0’), has been transformed into the impeller reference
frame by the approximation, 6, = 6’ + €* sin (6’ — wf). This
will prove convenient in the future, because the impeller
discharge pressure will be equated with the volute inlet
pressure.

Governing Equations for the Volute, The geometries used
in developing the volute model are shown in Fig. 3. The volute
flow will be described by a continuity equation, a moment of
momentum equation, and an equation of motion in the radial
direction. Each of these three equations can be written respec-
tively as,

’ 'Y o,
A(wl, )+3(wr - )=0

\ 9
a6’ ar’ @
A(wr'Vyr V) + A(wr'r'VyV,r)
a9’ ar’
7% wr’ 0P,
= ——_— 10
+wr'r o PRTT (10)
and,
op, =ﬂ"',_V”'_ . (1)

ar’ r
Here it has been estimated that V,- and V,/ (and their gra-
dients) are much smaller than V-, except at the inlet of the
volute.

Nomenclature (cont.)

¢ = angular location of the impeller center
(=wt = constant)
v = angle of flow path through impeller
¢ = distance between impeller and volute
centers (¢* = e/R;)
p = fluid density
¢ = flow coefficient = flowrate through
pump/27bQR3
Y = total head rise coefficient = (h; —
h,)/ pQ R}
w = orbit speed of impeller center (whirl speed)
Q = rotational speed of impeller (shaft speed)
Subscripts
c,s = cos wf and sin wf components
(nondimensional)
d = downstream of pump
exp = experimental result
m = force component due to momentum

exchange

22/Vol. 110, MARCH 1988

p = force component due to pressure
r,0 = radial or angular component
x,y = components in rectangular directions (real
= x and imaginary = y)
1,2 = impeller inlet and discharge
Superscripts

= measurement made in volute reference
frame
” = measurement made from frame fixed to
rotating impeller
* = pondimensionalized quantity

Special Notation

F = bold type denotes vector quantity
¥V = overbar denotes centered impeller value
(nondimensional)
[A] = square brackets denote a matrix quantity
x = dot represents a time derivative
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Flow within the volute is considered to be primarily in the 8’
direction and the velocity profile is assumed to be flat. This
treatment will allow equations (9), (10), and (11) to be in-
tegrated over the volute cross-section. When these equations
are combined with equations (4) and (5), the pressure and
velocity distributions in the volute will be given in terms of
moments of the volute cross-sectional area and the perturba-
tion function, 5. Both equations (9) and (10) can then be
separated into three parts (steady, € cos w?, and € sin wf) as
follows:

Continuity:
d(VA) .
a0 g, (12a)
d(chi)_W‘ d(Vcos @)
dor do’
0 d(B sin 0’)]
+-§ sin 6 +¢[ﬁf+—da,—— R (12b)
d(V,A) e d(Vsin6')
dor a9’
w , d(8 cos 0’)]
—acos 8 +¢[Bs I (120)
Moment of momentum:
rA dD,  d(rAV?)
2 dot dg’
—rlnrA d;r)+¢(]——¢tan'yﬁ)5, 13a)
rA dD,, d(rAVV,)
2 do de’
w - —_—
+-§ (Wsin 8’ V—rrAV)
.. =, d(V2cos ') __——— d(VV,)
+(Wi +rA)——do,—— 2rinrA a0
+ ¢2sin 07 5% + dcosh’ (—3+ 2—2¢ tan 'yB)B
1-2 B( g 2B, Wr a"uT
+@(1 —2¢tan vG@) { B, +sin 0 2 cos @
(13b)
rA _dD, _ _, drAVV,)
2 4o dg’
w . o —_—
Y (Wicos 'V —rrAV,)
— V2sin ¢’ — d(VV,
+(Wp+7A) i(‘;f““—ymm _%TS)'
—¢2c059’32+¢sin0’(-;—+2—2¢ tan -yB)B
, dj 144 dD,
_ _ v i ol 4 s
+¢(1 —2dtan yﬁ)(ﬁs cos @ Y + 3 n 0
(130)
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where,

B R3
A= SR wdr’ /bR,,
2

RI
Tnrd (6') = S; In(-’ /Ry wdr' /bRy,
2
— Ry
FA0') = SR r*wdr' /bRS,
2

— Rj
rrA(6’) = S; r'r’wdr’ /bR3,
2

’

R
rnrA(8’) = SRS r'in(r’ /R,)wdr’ /bR3, (14a-e)
2
and,
7, Vol VB’
V*0')=V(6')+€e*[V,.(0' )cos wt+ V(8 )sinwt] = .
QR,
13

In equations (12a-¢) and (132-c) the perturbation function, 3,
has been transformed into the volute reference frame for con-
venience in obtaining a solution.

To complete the basic equations for the volute problem,
equation (11) may be integrated to give the radial pressure
variation in the volute as,

Py =17p +2]72[ln(r’/R2) —e*cos (0’ —wi)]
+€*[D, +4VV In(r’ /Ry)]cos wt

+€*[Dys +4VV,In(r' /Ry)lsin o, (16)

Closure Conditions. Equations (7), (12), (13), and (16)
will describe the flow in the impeller and the volute after cer-
tain boundary conditions are satisfied. Even though S is re-
ferred to as the perturbation function, it was never assumed to
be small. However, from the definition of the flow coefficient,
@ is required to have an average of one. The flow perturbation
is further assumed to possess at least zeroth order continuity
around the periphery of the impeller. This restriction on 8 can
be met by satisfying the condition,

B(R;,0)=B(R,,2m), amn

At the tongue of the volute, it is assumed that the average
total head of the recirculated flow will be constant across the
tongue, so that,

O P 3 /2)1 ’
ij’a» (Po oV /D)o’ —onwer
R3(0)
=£, (P, +oV 3 /2)g qwdr’, (18)
R3(0)

From the remaining flow that is discharged, the flow path
angle, v, will be determined. This angle will vary with flowrate
and total head and it can be found by equating the predicted
and experimental total head rise across the pump as,

Yoxp =¥ =[D,27) + C, > (2m))/2, (19)

where,
C,=14+2[lnrAQ2r) - InrdO))/[A@2r) — A(0)].

Admittedly, using an experimental result does limit the
preliminary design applications of this model. However, the
“H/Q" curve (in dimensionless form the function Verp(®)) is
normally available for any pump and it is important that this
fundamental characteristic is properly represented in the
model.

This completes the development of equations necessary to
determine the flow properties, 8, D,, V, and y. However,
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some guidance on obtaining a solution is needed. Volute pro-
perties specified in equation (14a-€) are introduced as second
order spline curve-fits of measured volute dimensions. The
nine ordinary differential equations (7), (12), and (13) are
written in a centered difference form and solved in an iterative
manner. Steady flow properties are obtained as follows:

(@) Assume 3(6,) = 1 and choose D,(2w) —D,(0) and v.

(b) Calculate V(0) using the steady part equation (16) com-
bined with equation (18). Solve equation (124) for
V(e’).

(¢) Solve equation (13a) for [)p 6). l-),,(O) is chosen so that
the 0 to 2« integral of equation (7a) is satisfied.

(d) If D, 27) —D,(0) does not match the original estimate,
update the estimate and return to step (b).

(e) Solve for 3(0,) using equation (7a) and the closure con-
dition in equation (17).

(H If B(8,) does not match the original estimate, update
the estimate on 3(6,) and return to step (¢). (Note, the
average of 8 must equal one.)

(g) When (6,) has converged, check that equation (19) is
satisfied. If this condition is not met, return to step (b)
with a new estimate of v.

(h) After equation (19) is satisfied, the solution has con-
vergedand B3, D,,, V, and v are known.

The numerical solution was tested using exact solutions for
sinusoidal § distributions. Flow properties for an off-centered
impeller were obtained with a similar iterative procedure ex-
cept v is assumed to be fixed by the steady flow computations.
For a whirling impeller, the cosw? and sinw? terms become
coupled and parts (b) and (c) of equations (7), (12), and (13)
must be solved simultaneously.

Hydrodynamic Forces on the Impeller. Basically, there
are two sources that contribute to the radial hydrodynamic
forces on an impeller. One part is due to an asymmetric
pressure distribution around the impeller and the other part is
caused by the asymmetric momentum fluxes at the impeller in-
let and discharge. The first contribution is evaluated by in-
tegrating the pressure around the inlet and discharge of the im-
peller:

27

F,= (F,+jF,), =b§ Pi(R,0,)R,€"" db,

0

2x .
~w| " PRy 0IRE a0, 20)

where j denotes the imaginary part that corresponds to the y
direction (see Fig. 2). The second contribution is found by ap-
plying the momentum equation to obtain,

F,, _ (Fy+jF,) p

pb ob

j2t a 21" Rz ” Tay 7 0” ” ” ”
=—e/ arto Jr (v, +jvy")el r"dr”db
1

2z . Ry
_ejnt[so (vr” +jU5”)U,”ela r”dol;] |R
1

. 2r pRy .
—819’295 S v, " —v” )e r"dr”de”
o Jry

+w2em (RS — RYe . [73))

When the pressure distributions of equations (6) and (7),
and the velocity profiles described by equations (3)-(5) are ap-
plied to equations (20) and (21), the resulting force on the im-
peller is,

F*=F}; +F}, =F+¢e*(F, cos wt +F, sin wt), 22)
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where,

- 2 N
F=¢1>2[I/V,-“‘secz'y+kR—2+2jtan'y]S0 ,32(02)e”2d02/21r

2z .
— jo[Wrsecry In(R) + 1] SO B(0,)¢" db,/x, (230)
27 .
F, = [Wrsec’y+ KR —2+ 2 tan ] SO B(0,)B.(0,)€" db,/m

27 -
—jpUWrsecty n(R) +11{ * B.(0,)" doy/

2 -
+% o[Wrsecty In(R) +k/R —1] SO B, (0,)" do, /=
2% .
+%[¢ R W,-*So B(0,)sin(d, +tan v In (R))e"™ d02/7r]
w .
—q o+ Wi/ &R)

2
—% (W1 —1/(kR)]/tan?y— 1+ 1/R?}, (23b)

2r

F, =2 (W}secy+kR -2+ 2jtan 1 [ 808, (00¢™ do/x

0

2r

— ol sectyIn(R) +11{ ” 8, (6,)¢" dby/x

0

27

w * 2 72
iy o[ WiEsecty In(R) +k/R— I]S B.(0)e “db,/x

0

27 .
—%[qb R W} SO B(8,)cos(d, +tan y In (R))e"> d02/7r]

——;ij[zj'¢+ W/(kR)]

2

g /W= V/(&R)V/tany — 1+ 1/R?), (23¢)

and, k = cos (tan y In (R)) + jsin (tan vy In (R)). Expressed
in the terms used in equation (1), these components are,

F:Fx+jﬁ'y, F.=A} +jA}, and F,=AF +jA},.
(24a-c)

Presentation of the calculated results will be postponed so
that the experimental and theoretical results can be discussed
together.

Test Facility

The experimental results presented in this paper were ob-
tained using the Rotor Force Test Facility at the California In-
stitute of Technology, Pasadena. Details of the equipment
have been given in previous papers (Brennen et al., 1980,
Chamieh, 1983, and Jery et al., 1984), so only a brief descrip-
tion will be presented here. Figure 4 shows the test section
where the centrifugal pump being examined is located. The
impeller is mounted on the internal balance and the entire
assembly is turned by the main shaft. The main shaft passes
through an eccentrically drilled cylinder, which when rotated,
causes the impeller to whirl in a 2.51 mm diameter circular or-
bit. Forces on the impeller are sensed through strain gauges on
four posts Icoated in the internal balance. The relationships
between the strains and forces were found by static calibration
tests.
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Fig. 4 Schematic of the test section
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Fig. 6 Dimensions of Volute A

Descriptions of the test impeller and volute are given in
Figs. 5 and 6. The impeller (referred to as Impeller X) is a five
bladed cast bronze impeller with a specific speed of 0.57 and
blade angle of 65 deg. The 86 deg spiral volute (Volute A) is
constructed of fiberglass and designed to be ‘“well matched”’
with Impeller X at a flow coefficient of 0.092. The dimensions
of the volute cross-sections, shown in Fig. 6, were used in
evaluating the integrals of equations (14a-¢).

For this study, the test facility has been modified slightly
from the configuration used by Chamieh [1983] and Jery et al.
[1984]. The modifications shown in Fig. 7 were considered
necessary in order to isolate the interaction between the im-
peller and the volute from external influences. To separate the
flow in the volute from the annular gap region, rings were in-
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Fig. 7 Modifications of the test facility

stalled 0.13 mm from the edge of the impeller. In addition, the
front flange of the test section was removed so that the front
shroud of the impeller was exposed to the ‘‘reservoir-like’’
conditions of the test chamber (see Fig. 4).

The removal of the front flange of the test section was
judged to be essential after pressure measurements were made -
in the annular gap region with the flange in place and the rings
removed. The measurements indicated that the fluid trapped
in this region was responsible for a hydrodynamic stiffness
(see equation (26)) given approximately by,

{ K. K, [ -1.6 0.3
K. K, | | ~03-16]
When compared with Chamieh’s (1982) direct measurements

of the total hydrodynamic stiffness on the impeller (annular
gap plus volute) given approximately by,

K. K, -2.0 09

K, K, -0.9 -2.0 |
it is seen that the contribution from the annular gap is signifi-
cant. Impeller shroud forces also had a dominant influence on
the hydrodynamic stiffnesses measured by Jery et al. [1984].

With the flange removed, the fluid forces on the front shroud
of the impeller were largely eliminated.

Comparisons Between Experimental and Theoretical
Results

The numerical results in this paper can be duplicated using
Impeller X properties given in Fig. 5, the Volute A properties
in Fig. 6, and the pump performance curves in Fig. 8. A
preliminary step in the theoretical calculations is to obtain the
impeller flow path angle, v (see Closure Conditions). By set-
ting ¥ = Yy, the flow path angle, v, shown in Fig. 9 was ob-
tained. Note that the typical magnitude of + is about 80 deg
while the blade angle of Impeller X is 65 deg.

Measurements of the static pressure at the discharge from
the impeller were made using holes. drilled at the inlet to the
volute (see Figs. 6 and 7). The circumferential pressure
distributions are compared with the theoretical results in Figs.
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10 and 11. The pressure taps are alternately located in the
front and back of the volute, resulting in the slight oscillation
of the data. The results were obtained for a range of shaft
speeds from @ = 800 to 1200 rpm, but the nondimensionalized
pressures were found to be independent of the speed. Figure
10 shows that the theory gives a good approximation of the
pressure distributions over a moderate range of flow coeffi-
cients. However, for flow coefficients below this range, the
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Fig. 8 Total head coefficient versus the flow coefficient for the Im-
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pressure predictions begin to falter as shown in Fig. 11. The
model’s assumption of log spiral stream paths through the im-
peller probably fails at lower flowrates. For higher flow coef-
ficients, it was concluded that the deviation was caused by the
inadequacy of a one dimensional treatment of the flow near
the tongue of the volute. At the higher flowrates, it has been
suggested (Lazarkiewicz and Troskolanski, 1965) that there is
a reversal of the direction of flow in the region just inside the
tongue. The effect on the pressure distribution of displacing
the impeller is also demonstrated in Fig. 11. The model ap-
pears to follow the changes that occur, even when the absolute
pressure predictions are rather poor.

A comparison between the experimental and theoretical
steady forces on the impeller is given in Fig. 12, One set of ex-
perimental results was obtained by placing the impeller in four
equally spaced orbit positions and then averaging the internal
balance force measurements. The second set of experimental
results (for ¢ = 0.06 and 0.10) was obtained by integrating the
discharge pressure measurements. The theoretical model tends
to overpredict the steady or average radial forces somewhat,
but it does give reasonable results considering the crudeness of
the model. Colding-Jorgensen’s (1980) steady force calcula-
tions for a 67.5 deg blade angle impeller in an 86 deg spiral
volute are also shown in Fig. 12. The present model appears to
give a more accurate assessment of the measured steady
forces. The agreement between the two sets of experimental
data indicates that the primary cause of the radial forces is the
asymmetric pressure distribution at the discharge of the im-
peller. Moreover, the theoretical model predicted that the
discharge pressure was responsible for 99 percent of the total
force on the impeller while the net momentum flux contribu-
tion was essentially negligible. It might also be. of interest to
note that over the entire range of flowrates for which
theoretical results are presented, the predicted perturbation in
the impeller discharge flow never exceeded 6 percent of the
mean flow.

Figure 13 presents the components of the generalized
hydrodynamic force matrix, [A4], that results when the im-
peller whirls in an eccentric orbit at the pump design flowrate
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Fig. 11 Experimental and theoretical pressure distributions at the inlet
of the volute for two different flowrates with the impeller placed near to
and far from the volute tongue. (Uncertaintyin P} = =3 x 10™%,in¢ =
+2 x 10~3,in6 = =0.25deg, in{ = =0.5 deg)
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(¢ = 0.092). Cross-coupled terms (i.e., A, 4,,) in the ex-
perimental data suggest that forces act in the direction of the
whirl orbit up to w/Q = 0.10. This destabilizing influence is
predicted by the theoretical model to occur up to w/Q = 0.14.
Due to the coupled nature of equations (7) and (7¢), it was
not possible to calculate [4] beyond the range of whirl ratios
shown in Fig. 13. This problem is believed to result from cur-
rent limitations of the iterative technique used in obtaining a
numerical solution.

As was mentioned in the introduction, it is a standard prac-

tice to express the matrix elements of [4] in powers of w. By
examining the A, term in Fig. 13, it is apparent that a
quadratic in » will not adequately describe the features of the
matrix element. However, a cubic in w can approximate all of
the [A] matrix element variations with w. The coefficients of
such an expansion can be written as,

[A”Axy}=

Ay Ay
— Ko —0Cyy + M + 3Ty, —Ky +0Cp + 0? M,y — T
[— K, —oCyy+ ? M +*J,, —K,, +0C,, + WM, ~ “’3Jyx}

(25)

or alternatively as,

o () {7} (]
w{nf)

x=ecoswt and y=esinwt.

The [K], [C], and [M] matrices correspond to the stiffness,
damping, and inertial components that are commonly

(26)

where,
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employed in rotordynamics. Since the [J] matrix is related to
the third order time derivative of the impeller displacement
(which is conventionally known as the jerk), it will be referred
to as the “‘jerk’’ matrix.

The resulting [K] matrix elements of the cubic expansion are
given in Fig. 14, and the [C], [M], and [/] matrix elements are
presented in Fig. 15. Included in Fig. 14 are the stiffnesses that
were calculated using the force measurements (from the inter-
nal balance and the pressure distributions) taken at four im-
peller positions. Also shown in Fig. 14 are the stiffnesses
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predicted by Colding-Jorgensen (1980) for an 86 deg spiral
volute. With the exception of the K % term, the current model
does a fair job of describing the variation of stiffness with
flowrate. The magnitudes, however, tend to be underpredicted
by the theory. Over most of the range of flow coefficients, the
stiffness is such that it would encourage the whirling motion
of the impeller. The same is also true of the damping when the
flowrate drops below ¢ = 0.07 as shown in Fig. 15. The
magnitude of the damping components computed by Colding-
Jorgensen (1980) were less than 10 percent of those predicted
by the present model. In general, the inertial force would
discourage an orbital motion of the impeller, but it will tend to
drive the impeller in the direction of the displacement. The
jerk force attains significant values only at the lower flow
coefficients. However it must be emphasized that the damp-
ing, mass and jerk components have not been experimentally
validated.

Closing Comments

A theoretical model has been developed to describe the flow
in the impeller and the volute, along with the interactions that
occur between them. This investigation was undertaken to
provide a better understanding of the destabilizing
hydrodynamic forces that have been observed by Chamieh et
al. (1982) and Jery et al. (1984) on a whirling centrifugal pump
impeller. To implement the model requires only a knowledge
of the dimensions of the volute and impeller, and the total
head rise across the entire pump. Comparisons be-
tween the predicted and experimental results are encouraging.
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Experimentation with different volute geometries and over a
wider range of operating conditions (flow coefficient and
whirl ratio) would provide a more crucial test of the
theoretical model. It might also be useful to incorporate the
effects of inducers and diffuser vanes into the theoretical
model. These devices are now commonly employed on many
high performance centrifugal pumps.

Previous experimental results (Chamieh et al., 1982, and
Jery et al., 1984) have tended to over-estimate the contribution
of the volute/impeller interaction to the total stiffness force
acting on the impeller. The over-estimation came about
becanse of an asymmetric pressure distribution in the fluid
trapped on the front shroud of the impeller. Since real pumps
do have fluid in this region, it will be important in the future
to perform a detailed study of this area. Some work is begin-
ning to appear in this important area (Childs, 1986).
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