CARNEGIE INSTITUTION OF WASHINGTON

MOUNT WILSON OBSERVATORY

PASADENA, CALIFORNIA

LIST OF LANTERN SLIDES AND PHOTOGRAPHS

1932
PRICES
ADD 5 PER CENT FOR POSTAGE AND PACKING

SLIDES
4x3 3/4 in., 75 cents each
Certain slides may be colored to order
At an additional charge of 75 cents each

PAPER PRINTS
8x10 in., 50 cents each
16x20 in. from all marked*, $2.00 each
Other enlargements will be made to order

TRANSPARENCIES
Glass 8x10 in., $2.00
10x12 in., 3.00
14x17 in., 6.00
16x20 in., 8.00
Transparencies mounted with ground-glass 20 per cent extra

Film 8x10 in., $1.50
10x12 in., 2.50
14x17 in., 4.00
16x20 in., 5.00
LIST OF SLIDES AND PHOTOGRAPHS

SERIES A. INSTRUMENTS AND BUILDINGS

A 2 Snow telescope building from the southeast
3 Snow coelostat and second mirror from the southeast
4 Snow coelostat and second mirror from inside the rolling shelter
5 Interior of the Snow telescope showing concave mirror
6 Five-foot spectroheliograph showing the slit end
7 Five-foot spectroheliograph showing the optical train
10 Sixty-foot tower telescope from the northeast
16 Interior of the physical laboratory in Pasadena
17 Diagram of the one-hundred-fifty-foot tower telescope
18 Diagram of the upper end of the one-hundred-fifty-foot tower telescope and dome
20 Sixty-foot dome from the east
21 Sixty-foot dome from the sixty-foot tower
22 Sixty-inch reflecting telescope from the west
25 Sixty-inch reflecting telescope showing plate-holder attachment
26 Sixty-inch mirror on grinding machine tipped forward for testing
27 Sixty-inch reflecting telescope with Cassegrain spectrograph
*28 Dome of the one-hundred-inch Hooker reflector from the south showing shutter open
29 One-hundred-fifty-foot tower telescope from the sixty-foot tower telescope
*30 One-hundred-fifty-foot tower telescope from the northeast
31 Top of the seventy-five-foot spectrograph
32 One-hundred-foot dome from the one-hundred-fifty-foot tower
33 Model of top of Mt. Wilson showing buildings of the Observatory
34 View from the balcony of the Hooker telescope dome showing the sixty-inch telescope dome, the sixty-foot tower telescope and the one-hundred-fifty-foot tower telescope
35† Site for the telescope. Concrete footings for the building being put in. Photographed from the one-hundred-fifty-foot tower telescope
36 Pier for the telescope under construction. Photographed from the one-hundred-fifty-foot tower telescope.

† Nos. 35 to 76 and 79 all pertain to the one-hundred-inch Hooker telescope.
A 37 Pier for the telescope under construction. Forms for the floor and supporting brackets in place
38 Putting in the reinforcing rods for the concrete floor of the pier
39 Pier and a few columns for the building as seen from the southwest
40 Same as A 39, except as seen from the northeast. Also showing the one-hundred-fifty-foot tower telescope in the distance
41 Surfacing the rails for the dome by means of a motor-driven grinder, pushed along by a motor-driven truck and guided by a steel boom pivoted in the center
42 Erection of the building. Inner sheathing on lower part in place. Lower part of dome framework up
43 Detail view of rails, trucks, and framework of balcony of dome
44 Top section of main girder of the dome ready for hoisting
45 Top section of main girder being hoisted into place
46 Framework of the dome completed and inner sheathing begun
47 Putting on the inner sheathing, brackets and ribs for the outer sheathing
48 Near view of the building and dome completed, except the outer balcony, showing the shutter wide open
49 Dome completed, showing the fin used to balance the wind pressure on the shutter
50 Drawing of a section of the building and dome, the pier, and the telescope as seen from the west
51 North pedestal of the telescope, also showing the ten-ton crane used in the erection
52 West member of the fork for the telescope being swung into place
53 Lower section of the telescope tube placed in the fork
54 Second section of the tube in place, and third section ready to be hoisted
55 Driving clock of the telescope, set up in the shop for testing
56 Drawing showing the driving clock, worm wheel, south spherical bearing, mercury trough and steel float, also quick-motion drive in right ascension
57 Cutting the teeth in the worm wheel
58 Driving clock, worm and part of the worm wheel
59 Mirror on the grinding machine ready for concaving the surface
60 Mirror on the grinding machine, with concave surface polished and ready for parabolizing, showing the full-sized polishing tool and the band for supporting the mirror when the turn-table was tipped forward for testing
LIST OF SLIDES AND PHOTOGRAPHS

A 61 Mirror silvered and tipped forward on turn-table for testing
62 Bottom of the cell with lever system and plates for supporting the mirror, also showing piping for temperature control
63 Lowering the mirror on to the support system
64 Lowering the ring of the cell over the mirror
65 Mirror in its cell in the silvering room under the main floor of the pier, showing the silvering band and spout in position
66 Mirror in its cell being raised above the pier floor after having been resilvered
67 Mirror in its cell back in the lower end of the tube ready to be bolted tight
68 Fork of the elevator descending after the cell has been bolted to the telescope
69 Switchboard for the dome drive, showing faces of the motor-driven rheostats and automatic switches
70 Drawing, showing assembly of the declination bearings, tube, mirror in its cell, and coils of pipes for temperature control
71 Drawing, showing assembly of the coude and Cassegrain convex mirror mountings and cages
72 Drawing, showing assembly of the Newtonian flat mirror mounting and cage
73 Interior of the dome, showing the telescope, Cassegrain observing platform, etc., as seen from the west
74 Cassegrain spectograph attached to the telescope; Cassegrain platform
75 Twenty-foot interferometer beam on the tube, showing mirrors 12 feet apart
76 Diagram of light path when the interferometer is used
77 Pasadena offices, laboratory and shop
78 Thermocouple used for stellar and planetary radiation
79 View of observer at Cassegrain focus of one-hundred-inch telescope
80 Hale Solar Laboratory in Pasadena
81 Top of large spectrohelioscope at Hale Laboratory
82 Drawing of optical parts of spectrohelioscope as adapted to general use
83§ Airplane view of Observatory from the southeast
84 Airplane view of Observatory from the south
85 Airplane view of Observatory from the southwest

§ Nos. 83 to 87 are available through the courtesy of E. R. Hoge, Fairchild Aerial Surveys, Los Angeles
A 86 Airplane view of Observatory from the northwest
87 Airplane view of Pasadena and Mount Wilson from the southwest
88 Fifty-foot interferometer from the south
89 Fifty-foot interferometer from the north showing shelter
90 Fifty-foot interferometer from the north
91 Fifty-foot interferometer, showing lower section

SERIES B. SOLAR PHENOMENA

B 2 Comparison photographs of the sun, taken with the calcium Hα line and direct image, July 30, 1906
3 Comparison photographs of part of the sun, taken with the hydrogen Hδ and the iron line λ 4045.9, November 13, 1907
4 Part of the sun photographed with the hydrogen Hα line, April 30, 1908
5 Part of the sun photographed with the calcium Hβ line, April 30, 1908
6 Part of the sun, direct photograph, April 30, 1908
*7 The sun photographed with the Hα line, October 7, 1908
8 Series of four photographs taken with the hydrogen Hα line, showing the motions of a very dark hydrogen flocculus near a spot, June 2 and 3, 1908
9 Part of the sun photographed with the hydrogen Hα line, showing right- and left-handed unipolar vortices, September 9, 1908
10 Part of the sun photographed with the hydrogen Hα line, showing a multipolar group of spots with fine stream lines, September 2, 1908
11 Same as No. 9, except photographed October 7, 1908
12 Series of twelve photographs of an eruptive prominence projected on the sun's disk, made with the Hα line, September 10, 1908
13 Series of four photographs of a spot group taken with the Hα line, showing motions of the flocculi, August 29, 1908
14 Series of four photographs of two spots, north and south of the equator, taken with the Hα line, October 4, 1908
*15 Prominence 80,000 miles high, photographed with the Hα line, August 21, 1909
16 Chromosphere and prominences photographed with the Hα line, August 20, 1909
*17 Photograph of spot group taken with the Hα line, showing bipolar type of solar vortices, September 10, 1909
B 18 Chromosphere and prominences photographed with the hydrogen Hα line, August 25, 1909
20 Series of four photographs of a prominence taken with the hydrogen Hα line, October 10, 1910
21 Chromosphere and prominences photographed with the hydrogen Hα line, September 20, 1909
22 Chromosphere and prominences photographed with the hydrogen Hα line, September 21, 1909
23 Chromosphere and prominences photographed with the hydrogen Hα line, September 22, 1909
24 Large sun-spot group, June 17, 1907
*25 Series of four photographs of the southwest quarter of the sun, taken with the hydrogen Hα line on August 3, 5, 7 and 9, 1915
26 Part of the sun, photographed with the hydrogen Hα line, September 9, 1915. Two exposures showing large prominence (dark) on the disk
27 Combined photograph of the sun and prominences of May 22, 1916, taken with the K line of calcium
28 Two views of the prominence of May 22, 1916, photographed with the hydrogen Hα line; one showing prominence at limb; the other, projected on disk and running off, over and beyond limb
29 Five exposures on a portion of the sun taken with the Hα line, showing the appearance at different levels, May 29, 1916. Slit moved from center of line 0.33 A towards red between exposures
30 Remarkable twenty-four-hour development of sun-spot group, August 18 and 19, 1916
31 Northwest quarter of the sun photographed with the hydrogen Hα line showing a large spot group with beautiful stream lines, January 5, 1917
*32 The great sun-spot group of February 8, 1917
33 Large quiescent prominence, 110,000 miles high. Four views photographed with the Hα line, June 10, 1917
*34 Large active prominence, 140,000 miles high, photographed with the K line of calcium, July 9, 1917
35 The great sun-spot group of August 8, 1917
36 Comparison photographs of the sun, taken with the hydrogen Hα line, and direct image, August 12, 1917
*36a Photograph of sun showing direct image only, August 12, 1917
*36b Photograph of sun showing Hα image only, August 12, 1917
B 37 Series of exposures on four consecutive mornings, showing the western part of the sun, illustrating the way in which the (dark) prominences on the disk are carried over the limb by rotation. Photographed with the Hα line; June 27, 28, 29, 30, 1917

42 Solar corona photographed at Green River, Wyoming, June 8, 1918, exposure 65 sec. through clouds

43 Solar corona photographed at Middletown, Connecticut, exposure 2 sec., January 24, 1925

44 Solar corona photographed at Middletown, Connecticut, exposure 15 sec., January 24, 1925

45 Solar corona photographed through red filter at Middletown, Connecticut, exposure 73 sec., January 24, 1925

46 Large bi-polar spot group photographed with the hydrogen line Hα, showing stream lines, August 30, 1924

47 Large prominence, July 9, 1926

48 Comparison of prominence in hydrogen Hα and calcium K light, March 10, 1926

49 Comparison photographs of the sun, taken with the hydrogen Hα line, and direct image, June 16, 1926

50 Comparison photographs of the sun, taken with the calcium K line, and direct image, January 11, 1926

51 Prominence of March 21, 1928, six exposures

52 Prominences of May 4 and 5, 1928, six exposures

53 Prominences of August 19, 20, 1927. Exposures at limb and disk with curve of magnetic variations on May 12, 1927 and August 20, 1927

54 Prominences. Whole sun taken with calcium K line, December 9, 1929

55 Prominence series. Twelve exposures, June 18, 1929

56 Classification of solar prominences. Three views each of five types of prominences

57 Prominences of August 6, 1931. Comparison Hα and K. Three exposures

58 Comparison of direct, Ks, and Hα images of the sun, October 10 and 14, 1926. Six exposures

59 Comparison of direct photographs of whole sun at maximum and minimum spot activity. June 22, 1931 (min.), no spots; November 30, 1929 (max.), many spots

60 Direct photograph of whole sun showing the largest group ever photographed, January 24, 1926
LIST OF SLIDES AND PHOTOGRAPHS

B 61 Large spot group photographed with the hydrogen Hα line, August 14, 1929
62 Large spot group photographed with the hydrogen Hα line, May 12, 1931
63 Curve of sun-spot activity showing the frequency of sun-spots from 1750-1930
64 Curve of a single sun-spot cycle with four calcium spectropheliograms showing typical appearance of sun at different phases of the cycle

SERIES C. SOLAR SPECTRA

C 5 Comparison of titanium oxide fluting in sun-spot and electric furnace λ 7100
6 Iron triplet λ 6302.7 in spectrum of spot near sun's limb, with nicol and compound half-wave plate, showing plane polarization across lines of force
7 Iron triplet λ 6302.7 in spectrum of spot near center of sun, with nicol and compound quarter-wave plate, showing circular polarization along lines of force
8 Iron triplet λ 6173 in spectrum of sun-spot, March 9, 1916, showing right- and left-handed circular polarization by transmission of red and violet components of the line on same strip of quarter-wave mica, thus demonstrating the presence of two overlapping fields of opposite sign. Slit placed as shown on photograph of spot
9 Iron triplet λ 6173 in spectra of sun-spots, a and b, plane polarized light of spot near sun's limb, taken with nicol and (a, single; b, compound) half-wave plate; c and d, circularly polarized light of spot near center of sun, taken with nicol and (c, single; d, compound) quarter-wave plate; c shows reversal of sign of charge of adjacent spots
10 Iron triplet λ 6302.7, showing different strengths of field in two sun-spots
11 Iron triplet λ 6173 in spectrum of sun-spot near limb, showing plane polarization compared with laboratory spectra of iron lines. Taken with nicol and half-wave plate
12 Iron triplet λ 6173 in spectrum of S. preceding spot of the great group of August 8, 1917, showing reversal of circularly polarized light. Taken with nicol and (a, single; b, compound) quarter-wave plate
13 Spectrum of sun-spot showing the lines λλ 6145.2 and 6145.5 weakened in the spot spectrum. Taken with nicol and compound quarter-wave plate
14 Spectrum of the “flash” (lower chromosphere) showing magnesium lines, green carbon fluting, etc.
C 15 Spectra of opposite points on the sun's limb, latitude 0° to 90°, showing displacements of lines due to solar rotation
16-26 Sun spot spectrum map. Five strips on each photograph. Scale of 8x10 prints is 3.7 mm per A

C 16 Region \(\lambda \lambda 3900-4150 \)
17 " 4150-4400
18 " 4400-4650
19 " 4650-4900
20 " 4900-5150
21 " 5150-5400

C 22 Region \(\lambda \lambda 5400-5650 \)
23 " 5650-5900
24 " 5900-6150
25 " 6150-6400
26 " 6350-6600

27 Spectrum of the “flash” at second and third contacts, and spectrum of the corona, taken at Middletown, Connecticut, January 24, 1925
28 Spectrum of the sun \(\lambda \lambda 3900-6900 \) taken with 13-foot spectograph
29-38 Sun-Fe arc spectrum map. Scale, Nos. 29 to 36, 2 mm per A; Nos. 37-38, 1 mm per A

C 29 Region \(\lambda \lambda 3000-3300 \)
30 " 3300-3600
31 " 3600-3900
32 " 3900-4200
33 " 4200-4500

C 34 Region \(\lambda \lambda 4500-4800 \)
35 " 4800-5100
36 " 5100-5400
37 " 5400-6000
38 " 6000-6600

SERIES D. STELLAR SPECTRA

D 2 Spectrum of the Wolf-Rayet star B.D.+30°3639 having an atmosphere of hydrogen, showing the hydrogen series from H\(\beta \) to H\(\epsilon \), made with the focal plane spectrograph
3 Spectrum of \(\alpha \) Tauri \(\lambda 4320 \) to \(\lambda 4430 \), iron comparison, made with the Cassegrain spectrograph
4 Types of stellar spectra. Nine types from B to N
5 Absolute magnitude effect: 61 Cygni and \(\beta \) Ursae Minoris
6 Spectra of stars of high and low radial velocity: Lal. 1966, velocity -325 km/sec., and a second star, -10 km/sec.
7 Spectrum of a spectroscopic binary, showing shifts of lines toward V and R on two exposures
9 Spectrum of the star cluster Messier 13, Hercules
10 Spectrum of the central part of the nebula in Andromeda
11 Spectrum of the spiral nebula N.G.C.4595
12 Spectrum of the nebula in Orion
13 Spectra of Wolf-Rayet stars B.D.-21°4864 and +35°4013. These are extreme types of these stars
LIST OF SLIDES AND PHOTOGRAPHS

D 14 Spectrum of the star Boss 5650, showing peculiar character of Hβ and Hγ
15 Spectrum of the Cepheid variable star TU Cassiopeiae at maximum, October 7, 1917, and at minimum, September 30, 1917
16 Spectrum of the Cepheid variable star RT Aurigae at maximum and minimum
17 Spectra of the N-type stars 19 Piscium, B.D. +25°205, +57°702 and +38°1539. Blue region
18 Spectra of Omicron Ceti (Mira), October 5 and November 23, 1917, January 23, 1918, and January 18, 1919
19 Spectra of Omicron Ceti (Mira), large scale, November 1, 1917
20 Spectrum of λ Cygni, showing enhanced lines
Spectrum of λ Aurigae, showing normal lines
21 Seven stars having unusual spectra, B.D. +23°123, o Ceti, R Aquarii, B.D. -1°4673, T Tauri, NovaAquilae, Nova Ophiuchi
22 Spectrum of Omicron Ceti, taken 9, 53, 87, 130, 144, 174 and 188 days after maximum
23 Typical spectra of giant stars of types F to M
24 Typical spectra of dwarf stars of types F to M
25 Spectrum of the companion to Sirius, λλ 4400-4900
26 Prismatic coude spectra
Region λλ 4308-4481, 1.1 A per mm, α Lyrae, α Cygni, α Persei, sun, α Boötis, α Tauri, α Orionis
Region λλ 4737-4960, 1.7 A per mm, α Persei, α Boötis, α Tauri, α Orionis
Region λλ 5880-6575, 5 A per mm, α Lyrae, α Tauri, α Orionis
27 Widened prismatic coude spectra of stars of different spectral types
Region λλ 4300-4600, 1.4 A per mm, α Canis Majoris, α Cygni, α Canis Minoris, α Persei, Sun, α Boötis, α Tauri, α Orionis
28 Spectra of M-, N-, and S-type stars
Region λλ 4000-5000, R Boötis, R Cassiopeiae, R Geminorum, R Andromedae, 19 Piscium, TT Cygni
29 Ultra-violet spectra of α Lyrae, α Cygni, γ Cygni, and α Boötis. Region λλ 3600-4150
30 Widened low-dispersion spectra with direct photographs of distant extra-galactic nebulae showing large red shift
N.G.C. 385, 3,000 miles per second
N.G.C. 4884, 4,200 miles per second
Ursa Major Nebula, 7,300 miles per second
Leo Nebula, 12,000 miles per second
31 Coude spectrum of 61 Cygni. Regions λλ 4380-4960 and 5160-6600
D 32 Spectra of \textit{Mizar} showing single and double lines
33 Enlarged spectra of four early-type stars showing different forms of emission of Ha: \textit{c Persei}, H.D. 50138, H.D. 142983, P \textit{Cygni}
34 Display of stellar spectra taken with increasing dispersion from 835 A per mm to 0.7 A per mm

SERIES E. LABORATORY SPECTRA

E 1 Photographs of spectrum of titanium: \textit{a, b, and c}, given by carbon resistance furnace, temperatures approximately 2000°, 2400° and 2600° C., respectively; \textit{d}, given by the arc (lines in furnace not given by arc for the most part due to impurities)
2 Photographs of spectrum of iron and vanadium: \textit{a}, without magnetic field; \textit{b}, with magnetic field, light vibrations perpendicular to lines of force; \textit{c}, with magnetic field, light vibrations parallel to lines of force
3 Three sets of triplets in the spark spectrum of iron
4 Zeeman effect for chromium (31,700 gauss) λ 4613 to λ 4626
5 Stark effect for chromium and hydrogen line Hy. Three groups. Regions $\lambda\lambda$ 4098-4111-4129, $\lambda\lambda$ 5006-5028-5056, $\lambda\lambda$ 5275-5297-5329

SERIES G. NEBULAE AND STAR CLUSTERS

PHOTOGRAPHS TAKEN WITH THE 60-INCH REFLECTOR

G 1 M42 N.G.C. 1976 \textit{Orion}, Great Nebula (central portion), exposure 45 min., September 16, 1909
*2 31 224 \textit{Andromeda}, Great Nebula (central portion), exposure 2 hrs., October 13, 1909
*3 20 6514 \textit{Sagittarius}, Trifid Nebula, exposure 2 hrs. 26 min., June 4 and 5, 1910
*4 51 5194 \textit{Canes Venatici}, Spiral Nebula, exposure 10 hrs. 45 min., April 7 and 8, 1910
*5 33 598 \textit{Triangulum}, Spiral Nebula, exposure 8 hrs. 30 min., August 5, 6, 7, 1910
6 6960 \textit{Cygnus}, Slender Network Nebula (north part), exposure 6 hrs. 30 min., July 4 and 5, 1910
7 6992 \textit{Cygnus}, Larger Network Nebula, exposure 10 hrs. 15 min., July 2, 3, 4, 1910
*8 1432 \textit{Pleiades}, Diffuse Nebula around \textit{Merope}, exposure 5 hrs., October 9, 1909
*9 101 5457 \textit{Ursa Major}, Spiral Nebula, exposure 7 hrs. 30 min., March 10 and 11, 1910
<table>
<thead>
<tr>
<th>No.</th>
<th>Reference</th>
<th>Name</th>
<th>Description</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>*10 M81</td>
<td>N.G.C. 3031</td>
<td>Ursa Major, Spiral Nebula</td>
<td>Exposure 4 hrs. 15 min., February 5, 1910</td>
<td></td>
</tr>
<tr>
<td>*11</td>
<td>4565</td>
<td>Coma Berenices, Spiral Nebula on edge, H V 24</td>
<td>Exposure 5 hrs., March 6 and 7, 1910</td>
<td></td>
</tr>
<tr>
<td>*12</td>
<td>1952</td>
<td>Taurus, Crab Nebula</td>
<td>Exposure 3 hrs., October 13, 1909</td>
<td></td>
</tr>
<tr>
<td>*13</td>
<td>3587</td>
<td>Ursa Major, Owl Nebula</td>
<td>Exposure 4 hrs., February 9, 1910</td>
<td></td>
</tr>
<tr>
<td>*14</td>
<td>6205</td>
<td>Hercules, Star Cluster</td>
<td>Exposure 11 hrs., June 6, 7, 8, 1910</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>5055</td>
<td>Canes Venatici, Spiral Nebula</td>
<td>Exposure 5 hrs., March 9, 1910</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>4826</td>
<td>Coma Berenices, Spiral Nebula</td>
<td>Exposure 7 hrs. 56 min., May 5, 6, 7, 8, 1910</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>5272</td>
<td>Canes Venatici, Star Cluster</td>
<td>Exposure 4 hrs., April 9, 1910</td>
<td></td>
</tr>
<tr>
<td>*18</td>
<td>6720</td>
<td>Lyra, Ring Nebula</td>
<td>Exposure 45 min., July 1, 1910</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>6853</td>
<td>Vulpecula, Dumb-bell Nebula</td>
<td>Exposure 5 hrs., July 6 and 7, 1910</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>3034</td>
<td>Ursa Major, Irregular Nebula</td>
<td>Exposure 4 1/2 hrs., February 6, 1910</td>
<td></td>
</tr>
<tr>
<td>*21</td>
<td>2841</td>
<td>Ursa Major, Spiral Nebula</td>
<td>Exposure 2 hrs., February 19, 1912</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>5383</td>
<td>Canes Venatici, Spiral Nebula</td>
<td>Exposure 6 hrs., May 5 and 6, 1913</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>4449</td>
<td>Canes Venatici, Irregular Nebula</td>
<td>Exposure 5 hrs., April 7, 1913</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>102</td>
<td>Boötes, Split Spindle Nebula</td>
<td>Exposure 2 3/4 hrs., June 14, 1912</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>3115</td>
<td>Sextans, Spindle Nebula</td>
<td>Exposure 1 7/8 hrs., December 25, 1911</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>5746</td>
<td>Virgo, Spiral Nebula on edge</td>
<td>Exposure 6 hrs., March 20, 21, 22, 1914</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>6555</td>
<td>Hercules, Spiral Nebula</td>
<td>Exposure 6 hrs., May 28 and 29, 1916</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>4567-8</td>
<td>Virgo, Twin Spiral Nebula</td>
<td>Exposure 6 hrs., March 22, May 19, 1914</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>278</td>
<td>Cassiopeia, Spiral Nebula</td>
<td>Exposure 4 hrs., November 8, 1912</td>
<td></td>
</tr>
</tbody>
</table>
MOUNT WILSON OBSERVATORY

G 30 N.G.C. 2403 Camelopardus, Spiral Nebula, exposure 3½ hrs.,
 November 8, 1912

31 4594 Virgo, Spiral Nebula on edge, exposure 2¾ hrs.,
 May 3, 1916

32 M 94 4736 Canes Venatici, Spiral Nebula, exposure 3½ hrs.,
 February 20, 1912

33 7009 Aquarius, Planetary Nebula, exposure 3½ hrs.,
 July 13, 1912

34 1501 Camelopardus, Planetary Nebula, exposure 2 hrs.,
 January 7, 1913

35 7662 Andromeda, Planetary Nebula, exposure 1½ hrs.,
 October 17, 1911

36 2392 Gemini, Planetary Nebula, exposure 2 hrs., De-
 cember 19, 1915

37 2022 Orion, Planetary Nebula, exposure 1 hr., February
 4, 1913

38 2371-2 Gemini, Planetary Nebula, exposure 3¾ hrs.,
 March 6, 7, 1916

39 7008 Cepheus, Planetary Nebula, exposure 3 hrs., July
 22, 1914

40 2681 Ursa Major, Planetary Nebula, exposure 3½ hrs.,
 January 7, 1913

41 7217 Pegasus, Annular Nebula, exposure 5½ hrs., Sep-
 tember 2, 1913

42 2976 Ursa Major, Elliptical Nebula, exposure 3 hrs.,
 December 10, 1912

*43 13 6205 Hercules, Star Cluster, four exposures, 6, 15, 37½
 and 94 minutes, increasing one magnitude on
 each exposure

44 3242 Hydra, Planetary Nebula, comparison of yellow
 and blue images

45 51 5194 Canes Venatici, Spiral Nebula, comparison of yel-
 low and blue images

46 94 4736 Canes Venatici, comparison of yellow and blue
 images

47 99 4254 Virgo, Spiral Nebula, comparison of yellow and
 blue images

48 6960 Cygnus, Network Nebula (south part), exposure
 12 hrs., July 12, 13, 14, 1915
<table>
<thead>
<tr>
<th>#</th>
<th>Slide No.</th>
<th>Object</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>M 77 N.G.C. 1068</td>
<td>Cetus, Spiral Nebula</td>
<td>two exposures, December 22 and 25, 1911</td>
</tr>
<tr>
<td>50</td>
<td>5857-8</td>
<td>Bootes, Double Spiral Nebula</td>
<td>H II 751-752, exposure 6 hrs., May 30, 31, June 1, 1916</td>
</tr>
<tr>
<td>51</td>
<td>7317-20</td>
<td>Pegasus, Close Group of Spiral Nebulae</td>
<td>exposure 7 hrs. 45 min., August 26, 27, 1916</td>
</tr>
<tr>
<td>52</td>
<td>7331</td>
<td>Pegasus, H I 53, Spiral Nebula</td>
<td>exposure 6 hrs. 15 min., August 28, 1916</td>
</tr>
<tr>
<td>53</td>
<td>7814</td>
<td>Pegasus, H II 240, Spiral Nebula on edge</td>
<td>exposure 4 hrs., September 27, 1916</td>
</tr>
<tr>
<td>54</td>
<td>74</td>
<td>Pisces, Spiral Nebula</td>
<td>exposure 5 hrs., October 26, 1916</td>
</tr>
<tr>
<td>*55</td>
<td>891</td>
<td>Andromeda, H V 19, Spiral Nebula on edge</td>
<td>exposure 7 hrs. 15 min., November 23, 24, 1916</td>
</tr>
<tr>
<td>56</td>
<td>7782</td>
<td>Pisces, Field of small Spiral Nebulae</td>
<td>exposure 4 hrs. 14 min., September 17, 1917</td>
</tr>
<tr>
<td>57</td>
<td>22</td>
<td>Sagittarius, Globular Cluster</td>
<td>exposure 3½ hrs., August 6, 1918</td>
</tr>
<tr>
<td>58</td>
<td>8</td>
<td>Sagittarius, Irregular Nebula</td>
<td>exposure 3 hrs., June 27, 1919</td>
</tr>
<tr>
<td>59</td>
<td>17</td>
<td>Sagittarius (Omega), Irregular Nebula</td>
<td>exposure 3 hrs., July 29, 1919</td>
</tr>
<tr>
<td>60</td>
<td>17</td>
<td>Sagittarius (Omega), Irregular Nebula, central or bright portion</td>
<td>exposure 3 hrs., July 29, 1919</td>
</tr>
<tr>
<td>61</td>
<td>101</td>
<td>Ursa Major, Spiral Nebula</td>
<td>same as G9, with arrows indicating internal motion in 1000 years</td>
</tr>
<tr>
<td>62</td>
<td>81</td>
<td>Ursa Major, Spiral Nebula</td>
<td>same as G10, with arrows indicating internal motion in 1300 years</td>
</tr>
<tr>
<td>63</td>
<td>33</td>
<td>Triangulum, Spiral Nebula</td>
<td>same as G5, with arrows indicating internal motion in 2500 years</td>
</tr>
<tr>
<td>64</td>
<td>51</td>
<td>Canes Venatici, Spiral Nebula</td>
<td>same as G4, with arrows indicating internal motion in 1100 years</td>
</tr>
<tr>
<td>65</td>
<td>5457</td>
<td>Canes Venatici, Spiral Nebula</td>
<td>same as G9, with arrows indicating internal motion in 1000 years</td>
</tr>
<tr>
<td>66</td>
<td>2403</td>
<td>Camelopardus, Spiral Nebula</td>
<td>same as G30 with arrows indicating internal motion in 1500 years</td>
</tr>
<tr>
<td>67</td>
<td>2175</td>
<td>Orion, Irregular Nebula</td>
<td>exposure 4 hrs. 10 min., January 7, 1921</td>
</tr>
<tr>
<td>68</td>
<td>7635</td>
<td>Cassiopeia, Irregular Nebula</td>
<td>exposure 3 hrs., October 15, 1920</td>
</tr>
</tbody>
</table>
16 MOUNT WILSON OBSERVATORY

G 68 N.G.C. 281 Cassiopeia, Irregular Nebula with meteor trail, exposure 3 hrs. 30 min., August 11, 1921
69 I.C. 5146 Cygnus, Irregular Nebula, exposure 5 hrs.
70 M 16 N.G.C. 6611 Scutum Sobieski, Irregular Nebula, exposure 3 hrs. 25 min., August 25, 26, 1919
71 Perseus, Planetary Nebula about Nova Persei, exposure 5 hrs. 30 min., November 15, 1917
72-76 Auriga, five photographs of a star field showing stars to magnitudes 9, 12, 15, 18 and 20, respectively
77 Types of normal and barred spiral nebulae
78 Types of non-galactic nebulae

PHOTOGRAPHS TAKEN WITH THE TESSAR LENS OF 10 INCHES FOCUS
79 Orion, Constellation of Orion and surrounding region, exposure 10 hrs., December 21, 22, 1919
80 Sagittarius, Star clouds in the Milky Way, exposure 3 hrs. 45 min., July 21, 1922

PHOTOGRAPHS TAKEN WITH THE 60-INCH REFLECTOR
81 4884 Ursa Major, Cluster of distant nebulae with arrow pointing to N.G.C. 4884 (Baade 24), December 24, 1930
82 Leo, Cluster of distant nebulae

PHOTOGRAPHS TAKEN WITH A 5-INCH ROSS LENS
90 Mosaic photographic chart of the summer Milky Way (northern portion), 1931
91 Mosaic photographic chart of the summer Milky Way (southern portion), 1931

PHOTOGRAPHS TAKEN WITH THE 60-INCH AND THE 100-INCH HOOKER REFLECTORS
92 Comparison of star clouds in Milky Way (G80) with Andromeda Nebula (G122)

PHOTOGRAPHS TAKEN WITH THE 100-INCH HOOKER REFLECTOR
*101 M 42 N.G.C. 1976 Orion, Great Nebula, exposure 3 hrs., November 19, 1920. The central portion has been reduced in intensity in order to bring out the detail of the brighter portions
<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G *102</td>
<td>I.C. 434 * Orion, Nebula south of Zeta Orionis, containing Dark Bay (Barnard 33), exposure 3 hrs., November 13, 1920</td>
</tr>
<tr>
<td>103</td>
<td>N.G.C. 2024 * Orion, Nebula following Zeta Orionis, exposure 5 hrs. 35 min., December 8, 1920</td>
</tr>
<tr>
<td>104</td>
<td>1977 Orion, Nebula north of the Great Nebula, exposure 5 hrs. 40 min., January 7, 1921</td>
</tr>
<tr>
<td>105</td>
<td>M 87 4486 Virgo, Globular Nebula, exposure 2 hrs., February 26, 1920</td>
</tr>
<tr>
<td>106</td>
<td>4647-9 Virgo, Spiral Nebula and Globular Nebula, exposure 1 hr. 15 min., January 26, 1920</td>
</tr>
<tr>
<td>107</td>
<td>2261 Monoceros, Hubble's Variable Nebula, two exposures, September 18, 1920, and November 1, 1921</td>
</tr>
<tr>
<td>108</td>
<td>6729 Corona Australis, Variable Nebula, four exposures, June 10, 1920; August 15, 1920; October 11, 1920; and August 8, 1921</td>
</tr>
<tr>
<td>*109</td>
<td>6960 Cygnus, Filamentary Nebula, exposure 7 hrs., August 3, 1921</td>
</tr>
<tr>
<td>*110</td>
<td>57 6720 Lyra, Ring Nebula, exposure 1 hr., August 5, 1921</td>
</tr>
<tr>
<td>111</td>
<td>57 6720 Lyra, Ring Nebula, comparison of images with 60-inch and 100-inch reflectors</td>
</tr>
<tr>
<td>*112</td>
<td>27 6853 Vulpecula, Dumb-bell Nebula, exposure 2 hrs. 40 min., July 6, 1921</td>
</tr>
<tr>
<td>113</td>
<td>20 6514 Sagittarius, Trifid Nebula, exposure 2 hrs. 30 min., June 30, 1921</td>
</tr>
<tr>
<td>114</td>
<td>Ophiuchus, Dark Nebula (S-shaped), Barnard 72, July 4, 1921</td>
</tr>
<tr>
<td>115</td>
<td>Sagittarius, Dark Nebula, Barnard 86, exposure 2 hrs. 30 min., July 19, 1925</td>
</tr>
<tr>
<td>116</td>
<td>Sagittarius, Dark Nebula, Barnard 92, June 6, 1921</td>
</tr>
<tr>
<td>117</td>
<td>Aquila, Dark Nebula, Barnard 133, July 3, 1921</td>
</tr>
<tr>
<td>118</td>
<td>6822 Sagittarius, Distant Star Cloud, exposure 3 hrs. 30 min., July 10, 1923</td>
</tr>
<tr>
<td>119 M 33</td>
<td>598 Triangulum, Spiral Nebula, selected region south of nucleus, resolving nebulous patches into star images, exposure 30 min., November 26, 1925</td>
</tr>
</tbody>
</table>
G 120 M 33 N.G.C. 598 Triangulum, Spiral Nebula, inner region, enlarged, exposure 1 hr. 30 min., July 26, 1925

121 33 598 Triangulum, Spiral Nebula, two photographs showing variable stars

122 31 224 Andromeda, Spiral Nebula, south preceding region, resolving nebulosity into star images, exposure 2 hrs., August 24, 1925

123 31 224 Andromeda, Spiral Nebula, selected portion enlarged, exposure 2 hrs., August 24, 1925

124 I.C. 405 Auriga, Diffuse Nebulosity energized by bright star, exposure 2 hrs. 45 min., December 20, 1922

125 Cygnus, “Pelican” Nebula preceding the North America Nebula, exposure 4 hrs. 45 min., July 20, 1925

126 N.G.C. 7000 Cygnus, North America Nebula, southern portion, exposure 5 hrs., July 26, 1922

127 7000 Cygnus, North America Nebula, northern portion, exposure 4 hrs., August 22, 1922

128 6946 Cepheus, Spiral Nebula, exposure 4 hrs., June 19, 20, 1922

129 Aquarius, Nebulosity around R Aquarii, photograph and drawing, exposure 8 hrs., September 19, 20, 1922

130 2903-5 Leo, Spiral Nebula, exposure 4 hrs., January 31, 1924

131 94 4736 Canes Venatici, Spiral Nebula, exposure 3 hrs., May 12, 1926

132 51 5194-5 Canes Venatici, Spiral Nebula, exposure 3 hrs., May 15, 1926

133 4214 Canes Venatici, Nebulous Cloud, direct photograph and slitless spectrogram

134 31 224 Andromeda, Great Spiral Nebula, central portion, exposure 9 hrs., September 16, 17, 1920

135 6992 Cygnus, Filamentary Nebula, exposure 6 hrs. 30 min., August 15, 1928

136 Aquila, Expanding nebulous ring about Nova Aquilae, No. 3, 1918; three exposures, July 20, 1922; September 3, 1926; and August 14, 1931
LIST OF SLIDES AND PHOTOGRAPHS

INDEX OF PHOTOGRAPHS OF MESSIER NEBULAE

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G 12</td>
<td>31</td>
<td>G 2, 122, 123, 134</td>
<td>81</td>
<td>G 10, 62</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td>33</td>
<td>5, 63, 119, 120, 121</td>
<td>82</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>58</td>
<td>42</td>
<td>1, 101</td>
<td>87</td>
<td>105</td>
</tr>
<tr>
<td>13</td>
<td>14, 43</td>
<td>51</td>
<td>4, 45, 64, 132</td>
<td>94</td>
<td>32, 46, 131</td>
</tr>
<tr>
<td>16</td>
<td>70</td>
<td>57</td>
<td>18</td>
<td>97</td>
<td>13</td>
</tr>
<tr>
<td>17</td>
<td>59, 60</td>
<td>63</td>
<td>15</td>
<td>99</td>
<td>47</td>
</tr>
<tr>
<td>20</td>
<td>3, 113</td>
<td>64</td>
<td>16</td>
<td>101</td>
<td>9, 61</td>
</tr>
<tr>
<td>22</td>
<td>57</td>
<td>74</td>
<td>54</td>
<td>102</td>
<td>24</td>
</tr>
<tr>
<td>27</td>
<td>19, 112</td>
<td>77</td>
<td>49</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INDEX OF PHOTOGRAPHS OF N.G.C. NEBULAE

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>221</td>
<td>G 78</td>
<td>3031</td>
<td>G 10, 62</td>
<td>5866</td>
<td>G 24</td>
</tr>
<tr>
<td>224</td>
<td>2, 92, 122, 123</td>
<td>3034</td>
<td>20, 78</td>
<td>6205</td>
<td>14, 43</td>
</tr>
<tr>
<td>278</td>
<td>29</td>
<td>3242</td>
<td>25, 78</td>
<td>6514</td>
<td>3, 113</td>
</tr>
<tr>
<td>281</td>
<td>68</td>
<td>3379</td>
<td>44</td>
<td>6523</td>
<td>58</td>
</tr>
<tr>
<td>598</td>
<td>5, 63, 119, 120</td>
<td>3587</td>
<td>13</td>
<td>6555</td>
<td>27</td>
</tr>
<tr>
<td>628</td>
<td>54</td>
<td>4214</td>
<td>133</td>
<td>6611</td>
<td>70</td>
</tr>
<tr>
<td>891</td>
<td>55</td>
<td>4254</td>
<td>47</td>
<td>6618</td>
<td>59, 60</td>
</tr>
<tr>
<td>1068</td>
<td>49</td>
<td>4254</td>
<td>72</td>
<td>6656</td>
<td>57</td>
</tr>
<tr>
<td>1432</td>
<td>8</td>
<td>4254</td>
<td>105</td>
<td>6720</td>
<td>18, 110, 111</td>
</tr>
<tr>
<td>1501</td>
<td>34</td>
<td>4254</td>
<td>105</td>
<td>6729</td>
<td>108</td>
</tr>
<tr>
<td>1952</td>
<td>12</td>
<td>4254</td>
<td>105</td>
<td>6822</td>
<td>118</td>
</tr>
<tr>
<td>1976</td>
<td>1, 101</td>
<td>4254</td>
<td>105</td>
<td>6853</td>
<td>19, 112</td>
</tr>
<tr>
<td>1977</td>
<td>104</td>
<td>4254</td>
<td>105</td>
<td>6946</td>
<td>128</td>
</tr>
<tr>
<td>2022</td>
<td>37</td>
<td>4254</td>
<td>105</td>
<td>6960</td>
<td>6, 48, 109</td>
</tr>
<tr>
<td>2024</td>
<td>103</td>
<td>4254</td>
<td>105</td>
<td>6992</td>
<td>7, 135</td>
</tr>
<tr>
<td>2175</td>
<td>66</td>
<td>4254</td>
<td>105</td>
<td>7000</td>
<td>126, 127</td>
</tr>
<tr>
<td>2261</td>
<td>107</td>
<td>4254</td>
<td>105</td>
<td>7008</td>
<td>39</td>
</tr>
<tr>
<td>2371-2</td>
<td>38</td>
<td>4254</td>
<td>105</td>
<td>7009</td>
<td>33</td>
</tr>
<tr>
<td>2392</td>
<td>36</td>
<td>4254</td>
<td>105</td>
<td>7121</td>
<td>41</td>
</tr>
<tr>
<td>2403</td>
<td>30, 65</td>
<td>4254</td>
<td>105</td>
<td>7317-20</td>
<td>51</td>
</tr>
<tr>
<td>2681</td>
<td>40</td>
<td>4254</td>
<td>105</td>
<td>7331</td>
<td>52</td>
</tr>
<tr>
<td>2841</td>
<td>21, 77</td>
<td>5746</td>
<td>22</td>
<td>7479</td>
<td>77</td>
</tr>
<tr>
<td>2859</td>
<td>77</td>
<td>5850</td>
<td>26</td>
<td>7635</td>
<td>67</td>
</tr>
<tr>
<td>2903-5</td>
<td>130</td>
<td>5857-8</td>
<td>50</td>
<td>7782</td>
<td>56</td>
</tr>
<tr>
<td>2976</td>
<td>42</td>
<td>5857-8</td>
<td>50</td>
<td>7814</td>
<td>53</td>
</tr>
</tbody>
</table>
SERIES H. MOON AND PLANETS

H 2 Mars, two views, October 4 and November 3, 1909; 60-inch reflector
*3 Jupiter, four views; March 28, 1920; February 12, 1921; March 15, 1921, showing satellite Ganymede and shadow; and May 29, 1922; 100-inch Hooker reflector
*4 Saturn, twelve exposures, November 17, 1911; 60-inch reflector
*5 Northern portion of the moon at last quarter, showing the region from Copernicus to the limb, September 15, 1919; 100-inch Hooker reflector
*6 Southern portion of the moon at last quarter, showing the region from Ptolemaeus to the limb, September 15, 1919; 100-inch Hooker reflector
*7 Portion of the moon at last quarter from Ptolemaeus to Tycho, September 15, 1919; 100-inch Hooker reflector
*8 Portion of the moon at last quarter, including the Apennines, the Alps and Mare Imbrium, September 15, 1919; 100-inch Hooker reflector
*9 The moon, region of Copernicus, September 15, 1919; 100-inch Hooker reflector
*10 Northern portion of the moon, age 18 days, August 7, 1925; 100-inch Hooker reflector
*11 Southern portion of the moon, age 19 days, August 8, 1925; 100-inch Hooker reflector
*12 East central portion of the moon, age 15 days, October 2, 1925; 100-inch Hooker reflector
13 Southern portion of the moon, age 24 days, July 28, 1921; 100-inch Hooker reflector
14 Southern portion of the moon, age 26 days, July 30, 1921; 100-inch Hooker reflector
15 Venus, fifty views, June and July, 1927; 60- and 100-inch reflectors
16 Pluto, two views, March 22 and 23, 1930; 60-inch reflector
17 Whole moon, age 19 days, October 15, 1927; 60-inch reflector

SERIES I. COMETS

I 2 Comet 1910a, January 30, 1910; Halley’s Comet, January 29 and 30; 6-inch portrait lens
3 Halley’s Comet, May 5 and 6, 1910; 6-inch portrait lens at Honolulu
4 Halley’s Comet, May 8 and 9, 1910; 6-inch portrait lens at Honolulu
5 Halley’s Comet, May 10 and 12, 1910; 6-inch portrait lens at Honolulu
6 Halley’s Comet, May 23 and 28, 1910; 6-inch portrait lens at Honolulu
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Halley's Comet, May 5 and 6, 1910, showing entire tail; 10-inch focus Tessar lens at Honolulu</td>
</tr>
<tr>
<td>8</td>
<td>Halley's Comet, May 8 and 10, 1910; 10-inch focus Tessar lens at Honolulu</td>
</tr>
<tr>
<td>9</td>
<td>Halley's Comet, May 12 and 15, 1910, showing tails 30° and 40° long; 10-inch focus Tessar lens at Honolulu</td>
</tr>
<tr>
<td>10</td>
<td>Head of Halley's Comet, May 5, 1910, exposure 8 min.; 60-inch reflector</td>
</tr>
<tr>
<td>11</td>
<td>Head of Halley's Comet, May 8, 1910, exposure 8 min.; 60-inch reflector</td>
</tr>
<tr>
<td>12</td>
<td>Head of Halley's Comet, May 10, 1910, exposure 8 min.; 60-inch reflector</td>
</tr>
<tr>
<td>13</td>
<td>Head of Halley's Comet, June 2, 1910, exposure 25 min.; 60-inch reflector</td>
</tr>
<tr>
<td>14</td>
<td>Head of Halley's Comet, June 4, 1910, exposure 18 min.; 60-inch reflector</td>
</tr>
<tr>
<td>15</td>
<td>Head of Halley's Comet, June 5, 1910, exposure 9 min.; 60-inch reflector</td>
</tr>
<tr>
<td>16</td>
<td>Spectrum of head of Halley's Comet, April 28, 1910; 60-inch reflector and focal plane spectrograph</td>
</tr>
<tr>
<td>17</td>
<td>Fourteen views of Halley's Comet, April 26 to June 11, 1910</td>
</tr>
</tbody>
</table>