CORRESPONDENCE

Reply

XIANGLEI HUANG
Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan

YUK LING YUNG
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California

(Manuscript received 25 June 2011, in final form 3 August 2011)

ABSTRACT

In response to a comment on their previous note about the Voigt line profile, here the authors clarify relevant statements and numeric algorithms in the original note.

In Huang and Yung (2004, hereafter HY04) we described a mistake commonly found in several textbooks regarding the Voigt line profile. Five years after the original note was published, Schreier (2009; see also the associated corrigendum; these are hereafter jointly referred to as S09) had several comments on it.1 Below we clarify a couple of issues regarding these comments.

1) We agree with the comments about the half-widths in S09. In all atmospheric radiation textbooks (or chapters about atmospheric radiation in atmospheric science textbooks) that we have noticed, the common notations are \(\alpha_L \) for the half-width of Lorentz broadening and \(\alpha_D \) for the e-folding half-width of the Doppler broadening. Most textbooks (e.g., Goody and Yung 1989; Liou 2002; López-Puertas and Taylor 2001) simply refer them as the Lorentz width and Doppler width, respectively. The terms “Lorentz width” and “Doppler width” are also commonly used in other fields of optics to refer the half-width and e-folding half-width, respectively. Examples of recently published textbooks include one book in laser spectroscopy (Demitroder 2008) and two books about quantum optics (Grynberg et al. 2010; Demitroder 2010). Thus, even though the half-width and e-folding half-width are two different concepts, it is a convention to denote them with similar symbols (i.e., \(\alpha_L \) and \(\alpha_D \)). HY04 assumed that this convention had been widely used and had been well aware of by the community and therefore did not explicitly clarify that \(\alpha_D \) is the e-folding half-width.

2) About “ambiguous specifications of the Voigt profile”: if there were no context, we would agree with what was stated in the abstract of S09, “there is no unique corresponding Voigt profile,” since the word “corresponding” can be interpreted in different ways as S09 elaborated. However, in HY04, we first presented Fig. 3.2 in Radiative Transfer in the Atmosphere and Ocean by Thomas and Stamnes (1999) as Fig. 1 in HY04 and it defined the context. The caption of this figure clearly stated that “\(\Delta \nu \) is the Doppler width \(\alpha_D \) for both Doppler broadening and Voigt broadening and is the Lorentz width \(\alpha_L \) for Lorentz broadening. \(\alpha = \alpha_L/\alpha_D = 1 \) was used for the Voigt profile.” These descriptions clearly defined \(\alpha_L = \alpha_D = \Delta \nu \) for the Lorentz and Doppler profiles as well as the corresponding Voigt profile being the convolution of such two profiles. These descriptions left no ambiguity. The corresponding Voigt profile within this context, is what we plotted in Fig. 2 of HY04, which is also identical to the green dashed line.

1 The e-mail address provided in HY04 for correspondence was discontinued shortly after Dr. Huang graduated in 2004. As a result, both authors were not notified for the submission of S09; hence no response was made then.

Corresponding author address: Prof. Xanglei Huang, 2455 Hayward St., University of Michigan, Ann Arbor, MI 48109-2413. E-mail: xanglei@umich.edu

DOI: 10.1175/JAS-D-11-0186.1

© 2012 American Meteorological Society
(labeled as Voigt: $\alpha_L = \alpha_D = 1$) in Fig. 2 of S09. HY04 was aware of the possible ambiguity of the wording and its potential to cause confusion. This was why HY04 acknowledged in the very first paragraph that a similar figure with different figure caption [i.e., Fig. 3.11 in Andrews (2000)] was correctly plotted.

3) S09 commented about the numerical integration that HY04 was aware of the possible ambiguity of the wording and its potential to cause confusion. This was why HY04 acknowledged in the very first paragraph that a similar figure with different figure caption [i.e., Fig. 3.11 in Andrews (2000)] was correctly plotted.

4) Humlicek (1982) is an efficient algorithm to compute the Voigt profile and is still widely cited and used in remote sensing applications and radiative transfer modeling. HY04 used it together with the aforementioned brutal-force numerical integration to cross-validate the results. There are other efficient and accurate algorithms as described in S09. However, Humlicek (1982) is accurate enough for the purpose of HY04 and it is not the objective of HY04 to examine different algorithms on computing the Voigt profile.

5) As for comments for visualization, we believe that the graphical presentations in HY04 were adequate and clear enough. Alternative visualization is merely an individual preference.

REFERENCES

