CaltechAUTHORS
  A Caltech Library Service

Ammonia plasma passivation of GaAs in downstream microwave and radio-frequency parallel plate plasma reactors

Aydil, Eray S. and Giapis, Konstantinos P. and Gottscho, Richard A. and Donnelly, Vincent M. and Yoon, Euijoon (1993) Ammonia plasma passivation of GaAs in downstream microwave and radio-frequency parallel plate plasma reactors. Journal of Vacuum Science and Technology B, 11 (2). pp. 195-205. ISSN 1071-1023. http://resolver.caltech.edu/CaltechAUTHORS:AYDjvstb93

[img]
Preview
PDF
See Usage Policy.

1358Kb

Use this Persistent URL to link to this item: http://resolver.caltech.edu/CaltechAUTHORS:AYDjvstb93

Abstract

The poor electronic properties of the GaAs surface and GaAs–insulator interfaces, generally resulting from large density of surface/interface states, have limited GaAs device technology. Room-temperature ammonia plasma (dry) passivation of GaAs surfaces, which reduces the surface state density, is investigated as an alternative to wet passivation techniques. Plasma passivation is more compatible with clustered-dry processing which provides better control of the processing environment, and thus, improves interface integrity. Passivation was monitored in real-time and in situ using photoluminescence (PL). In addition, the passivated surfaces are inspected using x-ray photoelectron spectroscopy. Passivation with two different plasma excitation methods, downstream microwave (2.45 GHz) and rf (13.56 MHz) parallel plate, are compared, and effects of operating parameters such as pressure, flow rate, and power are examined. In both methods plasma-generated H atoms reduce the surface state density by removing excess As and As2O3 during the first few seconds of the plasma exposure. This step is followed by formation of Ga2O3 which takes place on a longer time scale (5–10 min). While the final passivation result appears to be similar for both methods, surface damage by ion bombardment competes with passivation in the parallel plate method, reduces the PL yield and adversely affects the long term stability of the passivated surface. Although it is common to heat the sample during passivation, we show that NH3 plasma passivation is possible at room temperature without heating. Low-temperature processing is important since passivation can be done at the end of device processing when it is undesirable to expose the device to elevated temperatures. The absence of ion bombardment damage combined with efficient generation of H atoms in the downstream microwave treatment, make this scheme a preferred dry passivation process, which could be easily and inexpensively clustered with existing GaAs processes.


Item Type:Article
Additional Information:© 1993 American Vacuum Society (Received 22 July 1992; accepted 9 January 1993) The authors would like to thank H. Luftman for SIMS measurements, R. Opila and R. Masaitis for Auger analysis of the samples, and J. A. Gregus and K. Guinn for technical assistance.
Subject Keywords:PASSIVATION; GALLIUM ARSENIDES; AMMONIA; PLASMA; SURFACE STATES
Record Number:CaltechAUTHORS:AYDjvstb93
Persistent URL:http://resolver.caltech.edu/CaltechAUTHORS:AYDjvstb93
Alternative URL:http://dx.doi.org/10.1116/1.586703
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:2960
Collection:CaltechAUTHORS
Deposited By: Archive Administrator
Deposited On:08 May 2006
Last Modified:26 Dec 2012 08:51

Repository Staff Only: item control page