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The microwave heating of a ceramic composite is modelled and analysed. The composite
consists of many small ceramic particles embedded in a ceramic cement. The composite is
assumed to be well insulated, and each particle is assumed to be in imperfect thermal
contact with the surrounding cement. Based on these two assumptions an asymptotic
theory exploiting the small Biot number and small non-dimensional contact conductance
is developed. Our asymptotic theory yields a set of nonlinear partial differential equations
which govern the temperature in the composite. These are reduced to a set of coupled
nonlinear ordinary differential equations in which the surface area of each particle enters
as a parameter. Recent experiments with such composites have shown that the steady-
state temperature of the composite is strongly dependent upon the radii of the embedded
particles. Our model captures this effect. In fact, our analysis shows that the assumption
of imperfect thermal contact between the particles and the ceramic cement is essential for
this trend to be established.

1. Introduction

In recent years, microwave processing of ceramic materials has become an area of intense
activity (Sutton, 1992). Investigators in the field hope to efficiently produce high-quality
materials and products. However, they are faced with numerous difficulties. Some materials
of commercial interest, such as alumina, essentially do not absorb microwaves at room
temperature, while still others, such as silicon carbide, absorb microwaves readily at any
temperature. Some investigators have attempted to enhance the microwave absorption of
low-loss materials by embedding many small lossy particles in a low-loss ceramic cement
or matrix (Leiseret al., 1997). With this approach, desirable properties of the low-loss
cement, such as formability and strength, may be combined with the strong microwave
absorption of the lossy material, to manufacture products with a range of useful features.
In order to realize this goal, it is necessary to understand the microwave heating of such
composites. In this paper, we construct a model of the microwave heating of a class of
ceramic composites; this model is then applied to the lossy/low-loss experimental scenario.

We begin by formulating a model of the microwave heating of an arbitrary number of
ceramic particles embedded in a ceramic matrix. The model is inherently nonlinear and
an exact solution is beyond our reach. We note, however, that experimental situations of
current interest (Leiseret al., 1997) suggest several simplifications. That is, noting current
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experimental results suggests a parameter range of interest which allows us to simplify
our system. In particular, we develop an asymptotic theory based on the assumption of a
small Biot number and a small contact conductance. That is, we assume that the entire
sample is well insulated, and that heat transfer from the particles to the matrix is slower
than heat transfer across an individual particle. The reduced theory thus obtained consists
of a system of nonlinear coupled first-order ordinary differential equations. This reduced
system constitutes a leading-order model for the microwave heating of this class of ceramic
composites. The analysis of such a system is considerably easier than the analysis of the
original model. We carry out such an analysis for a case of experimental interest and show
that qualitative agreement with experiment is a feature of this model. In particular, we
specialize to the case where the embedded particles possesses identical material properties,
disparate electrical properties, and study variations in the steady-state temperature of the
system with varying particle radii. Recent experiments (Leiser et al., 1997) have shown
that varying the radii of the embedded particles while holding the total mass of the
embedded particles fixed causes significant variations in the steady-state temperature of
the system. We discuss these experimental results in light of the results of our analysis
and offer a possible explanation for the observed behaviour. Finally, we indicate how our
model may be used to help design ceramic products with tailor-made microwave heating
characteristics.

2. Formulation of the model

We consider the microwave heating of a ceramic composite comprising M small particles
embedded in a ceramic cement. It is assumed that the particles are uniformly distributed
throughout the body, that no two of the particles are in direct contact, and that no two of
the particles is exposed to the external environment. That is, each particle is completely
surrounded by the matrix. We denote the ceramic region by Ω ′, and its outer boundary by
∂ ′

c, while each particle’s region is denoted by Ω ′
i , and its outer boundary by ∂ ′

i . Further, we
assume that the electric field is known throughout the sample. This last assumption allows
us to focus on the thermal aspect of the problem.

With these assumptions in mind, we first formulate the equation governing temperature
evolution in the cement, that is, in the region Ω ′. The temperature in this region, Tc, satisfies

ρccc
∂Tc

∂t ′
= κc∇′2Tc + |Ec|2

2
ζc(Tc) in Ω ′, (1)

where ρc denotes density, cc specific heat, κc thermal conductivity, |Ec|2 electric field
intensity, ζc the effective electrical conductivity, and ∇′2 is the Laplace operator. Similarly,
labelling the temperature in the i th particle by Ti the temperature in region Ω ′

i satisfies

ρi ci
∂Ti

∂t ′
= κi∇′2Ti + |Ei |2

2
ζi (Ti ) in Ω ′

i . (2)

Here, of course, the parameters and variables have the same meaning as above but refer to
the material occupying the i th region.
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Next, we formulate the boundary conditions for our problem. Thermal energy is
assumed to be convected and radiated at the surface of the sample, hence we assume that

κc
∂Tc

∂n′ + h(Tc − TA) + sε(T 4
c − T 4

A) = 0 on ∂ ′
c. (3)

Here, n′ denotes the outward unit normal to the surface, h is a convective heat-transfer
coefficient, s is the Stefan–Boltzmann constant, ε is the emissivity, and TA is the ambient
temperature of the surrounding environment. Each particle is assumed to be in imperfect
thermal contact with the surrounding matrix. Hence on each particle boundary we impose:

κi
∂Ti

∂n′
i

= κc
∂Tc

∂n′
c

on ∂ ′
i , (4)

κi
∂Ti

∂n′
i

= −ki (Ti − Tc) on ∂ ′
i , (5)

where ki denotes the contact conductance of each boundary region, and the normals are
again outward unit normals. Finally, we assume that initially the entire sample is at the
ambient temperature and impose

Tc(�x ′, 0) = Ti (�x ′, 0) = TA. (6)

Next, we choose dimensionless temperature and length scales, scale the electric field
with a reference field amplitude, and rewrite the conductivities as their values at the
ambient temperature, multiplied by a dimensionless function of the scaled temperature.
Further, we scale time with respect to the diffusive time of the cement. This yields the new
variables:

θ = Tc − TA

TA
, φi = Ti − TA

TA
, ec = Ec

E0
, ei = Ei

E0
,

ζc = σc f (θ), ζi = σi gi (φi ), t = κct ′

ρccc L2
, �x = �x ′

L
.

We have assumed that the sample geometry is characterized by a single length scale,
L . When these dimensionless variables are introduced into our governing equations, we
obtain:

∂θ

∂t
= ∇2θ + pB f (θ) |ec|2 in Ω, (7)

µiγi
∂φi

∂t
= ∇2φi + pBγi

δi
gi (φi ) |ei |2 in Ωi , (8)

∂θ

∂n
+ BL(θ) = 0 on ∂c, (9)

L(θ) = θ + R[(θ + 1)4 − 1], (10)
∂φi

∂n
= γi

∂θ

∂n
on ∂i , (11)

∂φi

∂n
+ Bi (φi − θ) = 0 on ∂i , (12)

θ(�x, 0) = φi (�x, 0) = 0. (13)
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Here, the unprimed symbols denoting regions or boundaries refer to scaled versions
of these regions; similarly, unprimed normals are dimensionless outward pointing unit
normals. Further, the parameters in the above equations are defined as

µi = ρi ci

ρccc
, γi = κc

κi
, p = E2

0σc L

2hTA
, δi = σc

σi
,

B = hL

κc
, R = sεT 3

A

h
, Bi = ki L

κi
.

3. An asymptotic theory

We note that equations (7) to (13) are nonlinear and that an exact solution is beyond our
reach. In this section, we develop an asymptotic theory which allows us to reduce our
set of M + 1 nonlinear partial differential equations to a set of M + 1 nonlinear ordinary
differential equations. As we shall see, the analysis of the reduced system is more tractable.
First, let us consider the non-dimensional parameters which arose when we scaled our
governing equations. The parameter µi may be interpreted as a relative heat capacity
as it is simply a ratio of the heat capacity of the i th particle to the heat capacity of the
cement. Similarly, γi is a relative thermal conductivity, appearing as a ratio of the thermal
conductivity in the cement to the thermal conductivity in the ceramic. The parameter p is a
non-dimensional power. In particular it is a ratio of a reference microwave power absorbed
by the cement to a reference power lost at the surface due to convection. The parameter δi

is the ratio of room temperature electrical conductivities in the cement and the i th material,
hence it is simply a relative electrical conductivity. The parameter B, which is known as the
Biot number, measures the relative strengths of convection and conduction. The parameter
R is simply the radiative equivalent of the Biot number. Finally, the parameter Bi is similar
to the Biot number, but measures the relative strengths of conduction across a particle
surface to conduction within the particle.

Next, in order to develop an asymptotic theory, we need to order our parameters. Since
we would like our model to be general enough to include materials which are not too
disparate thermally or electrically, we take the parameters µi , γi and δi to be O(1). Further,
the power p, and the radiative Biot number R, are also assumed to be O(1). The first
assumption implies that power absorbed is the same order of magnitude as power lost,
the second allows the effects of radiation and convection to be weighted equally in our
model. Next, we assume that the Biot number B is a small parameter. This is equivalent
to assuming that the composite is well insulated, which is true in typical experimental
situations (Sutton, 1992; Leiser et al., 1997; Kriegsmann, 1992; Pelesko & Kriegsmann,
1997). Finally, we assume that the parameters Bi , are small and are the same order as
the Biot number. We rescale by setting Bi = βi B, where the βi are O(1). Here, we are
assuming that it is easier to transport heat through a particle than it is to transport heat
through the particle’s surface.

With these assumptions, we attempt a regular perturbation expansion, by assuming
power-series solutions in the form

θ ∼ θ0 + Bθ1 + · · · , φi ∼ φi0 + Bφi1 + · · · .
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Inserting these into our governing equations (7) to (13), expanding the nonlinear terms in
Taylor series, and equating to zero the coefficients of the powers of B, we obtain an infinite
set of equations which sequentially should determine the θn and φin . A quick glance at our
governing equations, however, shows that this approach is flawed. In particular it is easy to
see that the leading-order solutions will be identically zero, while the O(B) solutions will
blow up linearly with time. To rectify this situation, we rescale the time variable with the
Biot number, τ = Bt , and employ the technique of asymptotic matching. Here, since the
leading-order solutions are identically zero, the matching is trivial. That is, the long time
behaviour of the leading-order solution on the t time scale gives the initial conditions for
the leading-order solution on the τ time scale, but here the initial conditions do not change,
that is, this boundary layer in time is empty. So, we may proceed to analyse our rescaled
equations, these are

B
∂θ

∂τ
= ∇2θ + pB f (θ) |ec|2 in Ω, (14)

Bµiγi
∂φi

∂τ
= ∇2φi + pBγi

δi
gi (φi ) |ei |2 in Ωi , (15)

∂θ

∂n
+ BL(θ) = 0 on ∂c, (16)

L(θ) = θ + R[(θ + 1)4 − 1], (17)
∂φi

∂n
= γi

∂θ

∂n
on ∂i , (18)

∂φi

∂n
+ Bβi (φi − θ) = 0 on ∂i , (19)

θ(�x, 0) = φi (�x, 0) = 0. (20)

Technically, we should relabel our dependent variables, as they are now functions of τ ; to
avoid confusing notation, we shall simply remember that this is true and leave the variable
names unchanged. Now, we again attempt an expansion in the form

θ ∼ θ0 + Bθ1 + · · · , φi ∼ φi0 + Bφi1 + · · · .
Inserting these into our rescaled equations (14) to (20), expanding nonlinear terms in a
Taylor series, and equating to zero coefficients of powers of B, we obtain

∇2θ0 = 0 in Ω, (21)

∇2φi0 = 0 in Ωi , (22)
∂θ0

∂n
= 0 on ∂c, (23)

∂φi0

∂n
= γi

∂θ0

∂n
on ∂i , (24)

∂φi0

∂n
= 0 on ∂i , (25)

θ0(�x, 0) = φi0(�x, 0) = 0, (26)

and
∂θ0

∂τ
= ∇2θ1 + p f (θ0) |ec|2 in Ω, (27)
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µiγi
∂0φi

∂τ
= ∇2φi1 + pγi

δi
gi (φi0) |ei |2 in Ωi , (28)

∂θ1

∂n
+ L(θ0) = 0 on ∂c, (29)

∂φi1

∂n
= γi

∂θ1

∂n
on ∂i , (30)

∂φi1

∂n
+ βi (φi0 − θ0) = 0 on ∂i , (31)

θ1(�x, 0) = φi1(�x, 0) = 0, (32)

where we have only given the first two sets of equations; these are sufficient to determine
the leading-order behaviour.

We begin our analysis by noting that equations (21) to (26) immediately imply that
θ0 = θ0(τ ) and φi0 = φi0(τ ), that is, our leading-order solutions are functions of time only.
Next, we derive a system of ordinary differential equations which determine the evolution
of θ0 and φi0. We integrate equation (27) over the volume Ω to obtain

Vc
dθ0

dτ
=

∫
Ω

∇2θ1 + p f (θ0) ||ec||2 , (33)

where

||ec||2 =
∫

Ω

|ec|2 (34)

and Vc denotes the volume of the cement. Now, we use the divergence theorem to rewrite
the integral as a surface integral and apply the boundary conditions (29) to (31) to obtain

∫
Ω

∇2θ1 = −Sc L(θ0) +
∑

i

βi Si

γi
(φi0 − θ0), (35)

where here, Sc is the surface area of the cement, Si is the surface area of the i th particle,
and the summation is over all M particles. Inserting equation (35) into equation (33) yields

Vc
dθ0

dτ
= p f (θ0) ||ec||2 − Sc L(θ0) +

∑
i

βi Si

γi
(φi0 − θ0). (36)

Next, integrating equation (28) over Ωi , using the divergence theorem in the same manner
as above, and using the boundary conditions (29) to (31), we obtain

µiγi Vi
dφi0

dτ
= pγi

δi
gi (φi0) ||ei ||2 − βi Si (φi0 − θ0), (37)

where here Vi denotes the volume of the i th particle. Equations (36) and (37) together
with the appropriate initial conditions constitute a set of M + 1 nonlinear coupled ordinary
differential equations for the leading-order behaviour of the temperature in the cement and
in each particle.
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4. Analysis

In this section, we apply our simplified model, embodied in equations (36) and (37), to
an experimental situation of current interest. In particular, we specialize to the case of
a single species of embedded particles. That is, we shall assume that the M embedded
particles are identical with regards to size, material properties etc. Further, we assume
that the electric field is known and piecewise constant throughout the sample. The field
is assumed to have the constant amplitude Ec in the cement and Ei in the particles. Note
that this implies that field intensities may be assumed scaled to one. This assumption is
valid provided the sample size is smaller than an electromagnetic wavelength. At typical
microwave frequencies, a wavelength is on order of ten centimeters. So, our results are
valid for samples characterized by a length scale on order of one to two centimeters. We
further note, that for dilute mixtures, changing the particle radius will not effect the field in
the particles and that the effect on the field in the cement will be negligible for the thermal
problem. To clarify, we are assuming perfect electrical contact and focusing our attention
on the effects of imperfect thermal contact.

With these two assumptions, our set of M + 1 equations may be reduced to two
equations. First, equation (36) simplifies to

Vc
dθ0

dτ
= pVc f (θ0) − Sc L(θ0) + βSp

γ
(φ0 − θ0), (38)

where Sp denotes the total surface area of all the embedded particles, subscripts on β and γ

have been dropped to indicate that they refer to the properties of any given particle, and φi0
has been replaced by φ0 to indicate that we need only track the temperature of one particle.
To obtain an equation for φ0 we may select any one of the M equations, (37). Selecting
any one of these and multiplying by M for convenience yields

µγ Vp
dφ0

dτ
= pVpγ

δ
g(φ0) − βSp(φ0 − θ0), (39)

where here, Vp denotes the total volume of all the embedded particles and again subscripts
have been dropped to indicate that the material properties are identical for all particles.

Now, thus far we have reduced our system of governing equations by specializing to
the experimentally interesting situation where a single species of particles is present. We
further specialize to the situation where the cement may be considered low-loss, while
the embedded particles are assumed lossy. For example, the cement may be alumina,
while the embedded particles may be silicon carbide (Leiser et al., 1997). Examination
of conductivity data for such materials (Westphal, 1963) dictates the form of the heretofore
unspecified functions, f (θ0) and g(φ0). In particular, the conductivity of the particles may
be assumed to be a weak function of temperature, and hence we may choose g(φ0) = 1.
In contrast, the conductivity of the cement must be assumed to be a strong function of
temperature, typically exponential, and we choose f (θ0) = exp(aθ0).

Throughout the remainder of this section we will study

Vc
dθ0

dτ
= pVc f (θ0) − Sc L(θ0) + βSp

γ
(φ0 − θ0), (40)

µγ Vp
dφ0

dτ
= pVpγ

δ
− βSp(φ0 − θ0). (41)
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We begin our analysis by seeking steady-state solutions. Such solutions must satisfy

pVc f (θ∗
0 ) − Sc L(θ∗

0 ) + βSp

γ
(φ∗

0 − θ∗
0 ) = 0,

pVpγ

δ
− βSp(φ

∗
0 − θ∗

0 ) = 0.

We may solve the first of these equations for φ∗
0 and eliminate in favour of θ∗

0 in the second
to obtain

p = Sc L(θ∗
0 )

Vc f (θ∗
0 ) + Vp/δ

. (42)

This is reminiscent of a typical power-response curve for a homogenous material
(Kriegsmann, 1992). In general, we cannot explicitly solve (42) for θ∗

0 as a function of
p. However, this analysis can be done graphically as shown in Fig. 1, where p is plotted
as a function of θ∗

0 and the axes are reversed. Note that this power response curve has only
two branches, in contrast to the typical S-shaped power-response curves usually observed.
Recall that we have assumed that the electric field is a constant, in (Kriegsmann, 1992)
it was shown that for homogeneous materials, including temperature variations of the
electric field restores the upper branch of the S-shaped curve. In addition, in (Pelesko
& Kriegsmann, 1997) it was shown that a similar phenomenon occurs in the heating of
ceramic laminates composed of two electrically disparate materials. We do not do this
here; rather we simply conjecture that our upper branch will be restored if the full electric
field is computed as a function of temperature.

We also observe here that θ∗
0 does not depend upon β, that is, the steady-state cement

temperature is independent of the imperfect thermal contact between the particles and
the cement. This follows from the fact that the cement is essentially insulated from its
surroundings (see equation (16)) and the particles (see equations (18), (19)) in the small
Biot number limit. Higher-order corrections to the cement temperature will depend upon
β.

We may study the stability of our steady-state solutions by linearizing our governing
equations near each critical point. We carry this out by first inserting the ansatz

θ0 = θ∗
0 + Aeλτ , φ0 = φ∗

0 + Beλτ

into our governing equations and expanding nonlinear terms in a Taylor series. We find
that λ satisfies

λ2 +
(

βSp

µγ Vp
+ βSp

γ Vc
+ p′(θ∗

0 )

(
f (θ∗

0 ) + Vp

δVc

))
λ + βSp

µγ Vp

(
f (θ∗

0 ) + Vp

δVc

)
p′(θ∗

0 ) = 0,

(43)
where the prime on p denotes differentiation with respect to θ∗

0 . Now, by noting that p′ is
positive on the lower branch and negative on the upper branch, we immediately see that
the lower branch is stable, while the upper branch is unstable.

Next, having found and determined the stability of steady-state solutions, we would
like to see if the results of this analysis agree with experiment. In particular, we would like
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FIG. 1. A typical power-response curve.

to determine whether or not the steady-state temperature of the sample varies with varying
particle radii for a fixed total mass of embedded particles. However, we are immediately
faced with a dilemma. The steady-state temperature of the particles is in general different
than that of the cement! That is, while the steady-state temperature of the cement, that is,
of the θ∗

0 are given by (42), the steady-state temperature of each particle is given by

φ∗
0 = θ∗

0 + pVPγ

δβSp
. (44)

This leads us to inquire as to what temperature is actually measured experimentally.
Since the diameter of a typical thermocouple inserted into the sample is much larger
than a particle diameter, it seems reasonable to assume that the experimentally measured
temperature is some weighted average of particle and cement temperatures. If we multiply
equation (40) by γ and add it to equation (41), we obtain

d

dτ
(Vcθ0 + µVpφ0) = pVc f (θ0) + pVp

δ
− Sc L(θ0). (45)

The right-hand side is simply the net power into the sample and this suggests that we define

ψ = Vcθ0 + µVpφ0

Vc + µVp
(46)

as the mean sample temperature. We note that this is a heat capacity weighted volume
average.
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i

FIG. 2. Variation in power response with particle radii.

Denoting the steady-state value of the mean sample temperature by ψ∗, it is found from
(46) and (48) to be equal to

ψ∗ = θ∗
0 +

(
µVp

Vc + µVp

)(
pVpγ

δβSp

)
. (47)

Now, we may make some qualitative comparisons with experiment. As mentioned earlier,
it has been observed that the steady-state temperature of the sample, ψ∗ decreases
with decreasing particle radii (Leiser et al., 1997). It is important to note that in these
experiments the total mass of the embedded particles is held constant. This implies that
in our reduced system only the parameter Sp varies with particle radii. Assuming that the
particles are spheres, then we have explicitly Sp = 3Vp/a, where a is the radius of a
particle. The expression for ψ∗ now becomes

ψ∗ = θ∗
0 +

(
µVp

Vc + µVp

)(
pγ

3δβ

)
a (48)

which shows that the steady-state mean temperature increases linearly with particle radius
for a fixed volume of particles. This is shown in Fig. 2. Notice that the height of the lower
branch decreases with decreasing particle radii. That is, stable steady-state temperatures
decrease with decreasing particle radii, in agreement with experimental observations.
Finally, in Fig. 3, we plot numerical solutions for ψ as a function of time for various
values of a. We note that the approach to the steady state is monotonic, and that the curve
obtained qualitatively resembles experimental results (Leiser et al., 1997).
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FIG. 3. Variation of mean temperature with particle radii.

5. Discussion

We began by constructing a model of the microwave heating of a ceramic composite
consisting of many ceramic particles embedded within a ceramic cement. We noted that
this model is nonlinear and that in general analytical solutions are not available. Next,
we employed asymptotic methods to derive a reduced or simplified model. Two key
assumptions were made. First, we assumed that the Biot number was small. That this is
the regime of interest is clear; in most experiments the samples are well insulated. We also
assumed that the non-dimensional contact conductance, Bi , was a small parameter. That
this should be true is not as obvious. Further, there are very few measured values of contact
conductance available. We note, however, that this assumption is strongly suggested
by experimental evidence combined with a mathematical observation. As discussed
previously, steady-state temperatures are observed to vary strongly with particle radii, even
as the total mass of the embedded particles is held constant. Discounting the electric field,
which should not vary significantly under these circumstances, the only parameter varied in
these experiments is the total surface area of the embedded particles, Sp. So, in any correct
model, the leading-order approximation to the steady-state temperature should vary with
Sp. In the limit of perfect thermal contact, these variations disappear from the solution.
This suggests that Bi is not large. Further, if Bi is taken to be O(1), then to leading-order,
the temperature is constant throughout the sample and again variations with Sp disappear
from the leading-order solution. That suggests that Bi is indeed a small parameter.

Next, we applied our simplified model to the experimental situation which suggested
the parameter range of interest, and which suggested further simplifications. In particular,
we considered the case of lossy particles embedded in a low-loss cement. This assumption
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specified the form of the electrical conductivity functions and allowed us to analyse the
steady states of the system. We noted that there was a need to define a mean temperature
and we hypothesized that this was the temperature measured in the experiment. We saw
that observed experimental results could be explained as a geometric effect; variations in
the total surface area of the embedded particles correspond to the observed behaviour for
varying particle radii. We also noted that a multi-valued power-response curve for the mean
steady-state temperature exists. As in the case of homogeneous materials, it is interesting to
consider this curve in the context of thermal runaway. In homogeneous materials, sudden
uncontrolled heating of the material occurs once the power is turned past some critical
value. On any of our power-response curves, this would correspond to turning the power
past the ‘nose’ of the curve. Here, the same phenomenon occurs. However, we see that
by varying particle properties, the location of this ‘nose’ may be varied. In particular, by
simply increasing Sp, that is, by using smaller particles, the ‘nose’ moves up and to the
right. This allows stable heating of the composite at higher temperatures.

Finally, we note that we have barely scratched the surface in analysing our simplified
model of the microwave heating of ceramic composites. Here, we have studied solutions
of our model equations in the context of currently known experimental results. If in these
simple cases, the quantitative validity of this model could be confirmed, that is, if extensive
enough experimental data become available so that such an analysis could be carried out,
we would suggest that this model might be useful in designing composites with tailor-made
microwave heating properties.
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