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Abstract: A ring resonator based on Bragg reflection is studied in detail. 
Closed form expressions for the field and dispersion curves for radial Bragg 
gratings and photonic crystals based resonators are derived and compared to 
FDTD simulations. For strong confinement, the required gratings exhibit a 
chirped period and a varying index profile. Small bending radii and low 
radiation losses are shown to be possible due to the Bragg confinement. The 
sensitivity of the resonator characteristics to fabrication errors is analyzed 
quantitatively. A mixed confinement configuration utilizing both Bragg 
reflection and total internal reflection is also suggested and analyzed.  
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OCIS codes: (230.5750) Resonators;  (130.2790) Guided waves. 

References and links 
 
1. A. Yariv, “Critical Coupling and Its Control in Optical Waveguide-Ring Resonator Systems,” IEEE 

Photonics Technol. Lett. 14, 483-485 (2002). 
2. B. E. Little, “Ultracompact Si-SiO2 microring resonator optical dropping filter,” Opt. Lett. 23, 1570-1572 

(1998). 
3. C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley-

Interscience Publications, New-York 1999). 
4. R. W. Boyd and J. E. Heebner, "Sensitive Disk Resonator Photonic Biosensor," Appl. Opt. 40, 5742-5747 

(2001). 
5. J. Scheuer and A. Yariv, “Two-dimensional optical ring resonators based on radial Bragg resonance,” Opt. 

Lett. 28, 1528-1530 (2003). 
6. P. Yeh and A. Yariv, “Bragg Reflection Waveguides,” Opt. Commun. 19, 427-430 (1976). 
7. K. Sakoda, Optical Properties of Photonic Crystals (Springer, New-York 1999). 
8. J. Scheuer and A. Yariv, “Annular Bragg-defect-mode Resonators,” J. Opt. Soc. Am. B. 20 2285-2291 

(2003). 
9. S. Kim, H. Ryu, H. Park, G. Kim, Y. Choi, Y. Lee and J. Kim, “Two-dimensional photonic crystal 

hexagonal waveguide ring laser,” Appl. Phys. Lett. 81, 2499-2501 (2002). 
10. A. Yariv, “Coupled-wave formalism for optical waveguiding by transverse Bragg reflection,” Opt. Lett. 27, 

936-938 (2002). 
11. M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE 

J. Quantum Electron. QE-11, 75-83 (1975). 
12. L. Djaloshinski and M. Orenstein, “Disk and Ring Microcavity Lasers and Their Concentric Coupling,” 

IEEE J. Quantum Electron. 35, 737-744, 1999. 
 
 

1. Introduction 

The past few years have witnessed a substantial increase in research dealing with utilization of 
integrated annular micro-resonators. Various applications for optical communication [1-3] and 
sensing [4], which are based on micro-ring and micro-disk resonators, have been suggested 
and demonstrated. 
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For many applications, annular micro-resonators exhibiting compact dimensions, low loss 
(high Q factor) and large free spectral range (FSR) are desired. For conventional ring and disk 
resonators, these parameters are limited because of the employment of total internal reflection 
(TIR) for radial confinement. Moreover, an improvement in one of these parameters is 
generally at the expense of the other. The FSR, for instance, can be increased by decreasing 
the resonator radius and core index, which also results in higher loss per revolution, i.e., lower 
Q-factor. In addition, the employment of TIR also limits the maximal transverse (radial) 
wavenumber or, equivalently, the minimal azimuthal number and group velocity. 

Recently, we proposed to radial Bragg reflectors to confine the modal field within an 
annular defect [5]. The resonator structure is illustrated in Fig. 1. A circumferentially guiding 
defect is located within a periodic medium which could consist, for example, of a Photonic 
Crystal (PC) or Bragg layers. This resonator may be considered as a wrapped around line 
defect waveguide [6-8]. 

 

 
Fig. 1. A Bragg reflection based ring resonator. (A) Reflection by annular Bragg gratings; (B) 
Realization using an inhomogeneous hole density photonic crystal  

 
Our structure is inherently different from the hexagonal waveguide ring resonator based 

on PC confinement of Ref. [9]. While our structure is radially symmetric, the structure in [9] 
exploited the specific symmetry of the triangular lattice to enable low loss 60° abrupt turns in 
order to form a closed resonator.  

In order to design the annular resonator and analyze its optical properties, we take 
advantage of the known solution of the straight waveguide [10] and employ a conformal 
transformation to derive the required index profile for the annular defect resonator.  

2. Resonator design 

We consider the case of harmonic time behavior and of slab geometry so there are no 
variations in the z direction (∂/∂z=0). The modal electric field polarized in the z direction (TE) 
satisfies the Helmholtz equation which, in cylindrical coordinates, is given by: 
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where ρ and θ are the radial and azimuthal coordinates respectively and k0 is the wavenumber 
in vacuum. In order to transform the annular waveguide to a straight one, we utilize the 
following conformal transformation [11]: 

( ) RVRUR =⋅= θρ ;exp     (2) 

where R is an arbitrary parameter. The transformation (2) maps a circle in the real plane with 
radius R0 to a straight line at U0=R·ln(R0/R). Thus, the structure in Fig. 1A is transformed into 
a series of straight lines. The wave equation in the (U, V) plane is obtained by transforming 
(1): 
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where neq(U)=n(U)exp(U/R) is the profile of the refractive index in the (U, V) plane. It is 
important to notice that the transformed wave equation (3) is identical to the wave equation in 
Cartesian coordinates. The corresponding index profile in the (U, V) plane is, however, 
distorted – increasing exponentially as a function of U. The inverse transformation of (2) is 
given by: 

( ) ( ) ( ) ρρρθρ RnnRVRRU eq ⋅=⋅=⋅= ,,ln    (4) 

The transformation (2) maps the annular waveguide of Fig.1 into a straight waveguide in 
the (U, V) plane. Since the requirements for a confined straight Bragg waveguide and 
specifically, neq(U) in the (U, V) plane are known [6, 7, 10], the refractive index profile n(ρ) in 
the real plane can be simply found by the inverse transformation (4). 

Figure 2 depicts how a Bragg waveguide in the (U, V) plane is transformed to the (ρ, θ) 
plane. It should be noted that the gratings in the (ρ, θ) plane are spatially “chirped” i.e., their 
period changes as a function of the radius ρ. In addition, the index of the gratings and their 
index contrast become smaller for larger ρ. This effect is caused by the 1/ρ factor multiplying 
the inverse-transformed index as shown in Eq. (4). Similarly, a line defect PC waveguide [7] 
can be transformed to an annular defect PC resonator. 

 
Fig. 2. Refractive index profile in (I) the (U, V) plane and (II) in the (ρ, θ) plane. R=479µm. 

 
In order to design a Bragg resonator one has to select an appropriate line defect 

waveguide and a transformation radius R. This later parameter merely determines to which 
radius U=0 transforms to. Therefore, using different R for transforming the same line defect 
waveguide in the (U, V) plane result in different resonator designs in the (ρ, θ) plane. It is 
important to understand that the equivalent neq does not have to be larger than 1 but the real 
index profile, in the (ρ, θ) plane, must satisfy this requirement (see e.g., Fig 2).  
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3. Modal field properties 

Since the modal fields of the Bragg and line defect waveguides are either known or easily 
calculated in the (U, V) plane, the field solution can be readily transformed to the (ρ, θ) plane. 
The guided modal solution for the transformed problem in the (U, V) plane is given by: 

( ) ( ) ( )ViUEVUE βexp, ⋅=      (5) 

where the propagation coefficient β can be either negative or positive, indicating a clockwise 
or counterclockwise propagating wave. The electric field is given by a superposition of sine 
and cosine functions in the defect and by Bloch waves in the gratings [6]: 
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where UL and UR are the left and right boundaries of the defect, ( ) 22
defect0 β−= nkq and 

EK(U) is a periodic function of U with the same period as the gratings.  
For small perturbation, a closed form solutions for the modal field profile and dispersion 

relations can be written explicitly [5]: 
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( ) ...3,2,1;2
0,

2
0 =−= lblk eq πεβ     (8) 

where ( ) ( )[ ] 22min2max
1 2 λκ eqeq nnb −= , Ucent is the coordinate of the center of the defect, εeq,0 is the 

equivalent dielectric constant in the core, W is the defect width, b is the perturbation period 
and l indicates the Bragg order. max

eqn  and min
eqn  are the maximal and minimal refractive indices 

in the (U, V) plane (see e.g., Fig. 2). Unlike the equivalent waveguide, the modal field in the 
circular resonator ( ) ( ) ( )θβρθρ RiEE exp, ⋅=  must satisfy the cyclic boundary condition 

( ) ( )πθρθρ 2,, += EE  and, therefore, the azimuthal propagation coefficient (the phase shift per 
revolution) must be an integer: 

( ) ( ) ...3,2,1
2min2

0 ==⋅⋅−⋅= mmRblnkR eq πβ    (9) 

Equation (9) determines the resonance wavelengths of the structure. It is important to note that 
unlike conventional (i.e., TIR based) ring resonators, the dispersion relation and, therefore, the 
resonance wavelengths of the TM polarization are identical to those of the TE polarization.  
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where rdefect and ndefect are respectively the radius and refractive index of the resonator 
structure at the defect. For a given m, the field Em(ρ, θ) corresponds to a mode of the resonator 
formed by the annular defect. The FSR of this resonator is given by: 
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where c is the speed of light in vacuum and v is the optical frequency. The FSR increases if 
the second term in the numerator is made as small as possible, i.e., if l=1 and b is as large as 
possible. If b is large enough that ( ) 1min2 −>> bneq λ  then the FSR is given by: 

DefectDefect2 πρn

c
FSR ≈      (12) 

It follows from (12) that the FSR increases for lower-index defect material. Unlike 
conventional resonators, where smaller radii require higher core index, the employment of 
Bragg reflectors enables high confinement of the mode in a low-index defect, regardless of the 
resonator radius. Therefore, a Bragg reflection based resonator is expected to have a larger 
FSR than that of a conventional resonator of the same radius. 

Another important advantage of this structure is that its loss per revolution is determined 
by the Bragg structure and not by the bending radius (as in conventional ring resonators).  By 
adding more Bragg layers to the large ρ (external) side of the defect the loss can be made 
arbitrarily small. In addition, because of the strong Bragg confinement, the defect can be 
located at any arbitrary radius. 

Figure 3 depicts an FDTD simulation of a wave propagating in a line defect waveguide 
based on square PC (Fig. 3I) and in the corresponding annular resonator (Fig. 3II). For the line 
defect waveguide are lattice constant a=0.372µm, rods diameter D=0.6a, and λ=1.56µm. The 
rods and surroundings refractive indices are nc=3.5 and ns=1.5 respectively and the 
transformation radius is R=3.55µm. The effective index of modal field propagated in the line 
defect waveguide at λ=1.56µm is approximately neff=0.84 (see Fig. 3I). In order to construct a 
corresponding annular resonator whit that resonance wavelength, the transformation radius 
must satisfy the followings: 

...3,2,1,22 eff0 == mmnRk ππ     (13) 

where m is the azimuthal wavenumber of the modal field. For different m, a different R is 
needed and accordingly – a different resonator structure. The modal field shown in Fig. 3II 
has an azimuthal wavenumber of m=12 which corresponds to a transformation radius of 
R=3.55µm. 

In order to verify the validity and accuracy of the analysis, we employed (2) to transform 
the modal field profile of the line defect waveguide (Fig. 3I) to the (ρ, θ) plane and compared 
it with the profile of the annular resonator (Fig. 3II). Figure 4 depicts the comparison between 
the transformed solution (green) and the resonator modal field calculated by the FDTD 
simulation (blue). The match is practically perfect – indicating that the analysis method is 
indeed accurate. 

Figure 5 shows the dispersion curve of the annular defect resonator presented in Fig. 5II. 
The vertical and horizontal axes indicate respectively the wavelength and the azimithal 
wavenumber m. The circles indicate the resonance wavelengths and the solid line represent a 
quadratic interpolation with the polynomial coefficients shown in the figure. The resonator 
FSR around 1.55µm is approximately 28nm and it increases for shorter wavelengths. The 
dispersion curve was calculated by an FDTD simulation of the structure shown in Fig. 3II 
with a short pulse (10fs) excitation. 
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Fig. 3.  Field propagation (absolute value) in I) (1.1MB) a line defect waveguide and in II) 
(1.5MB) the corresponding annular PC resonator. 

 
 

 
Fig. 4. Comparison between the transformed modal field profile of a line defect PC waveguide 
(green) and the modal field profile of the corresponding annular PC resonator (blue). 
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Fig. 5. Resonance wavelengths (circles) and a quadratic fit (solid line) of the resonator shown 
in Fig. 3II. 

4. Sensitivity to fabrication errors 

Ideally, the structure shown in Fig. 3II should exhibit low bending losses and large FSR. 
However, actual devices might incorporate small deviation from the optimal positions and 
radii of the holes due to fabrication errors. It is, therefore, important to examine the sensitivity 
of the resonators in terms of FSR, resonance wavelengths and losses (Q-factor) to such errors.  

Figure 6 depicts the dispersion curves of the annular defect resonator presented in Fig. 
3II, subjected to random errors in the holes positions. Each curve corresponds to accuracy 
tolerance on the holes position, ranging from maximal shift of 50nm (green) to 200nm 
(purple). The curves where calculated by an FDTD simulation of the randomly perturbed 
structure using with a short pulse (10fs) excitation.  

 
Fig. 6. Resonance wavelengths when random shifts in the holes positions are introduced: 
optimal structure (blue) and maximal error of 50nm (green) 100nm (blue) and 200nm (purple). 

The effect of fabrication errors on the over all structure is more dominant for the lower 
radii regime – where the holes are small. For small deviations from the optimal holes 
positions (<100nm), the influence of fabrication errors, both on the resonance wavelength and 
Q-factor, is almost negligible. For larger errors (200nm), there is a shift of approximately 
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25nm in the resonance wavelengths. In addition, randomly formed local defects trap part of 
the field and introduce additional low-Q resonances and over-all losses to the primary modes. 

Figure 7 shows the sensitivity of the dispersion curve to errors in the holes radii. As for 
the holes position errors, the influence of errors in the holes radii is more dominant in the 
lower radii regime. The holes radii were subjected to random errors with maximal error of 
50nm. As can be seen in Fig. 7, the deviation of the resonance wavelength is almost 
negligible. However, for this type of perturbation additional low-Q resonances due to local 
defects appear even for 50nm perturbations. 

 
Fig. 7. Resonance wavelengths when random errors in the holes radii are introduced: optimal 
structure (blue) and maximal error of 50nm (green). 

5. Mixed confinement methods 

The index profile depicted in the upper part of Fig. 2 was chosen because it can be solved 
analytically. However, as can be seen in the lower part of Fig. 2, the required index in the (ρ, 
θ) plane might approach large values at small radii. This could be problematic because 
practically, refractive indices cannot be arbitrarily large. This problem, however, could be 
quite easily solved without sacrificing the advantages of the structure, by confining the mode 
on the smaller ρ (internal) side of the defect utilizing total internal reflection. A Similar 
approach was suggested and studied in regular (straight) Bragg waveguides [6]. It should be 
clear, that the confinement method of the mode on the internal side of the resonator has no 
effect on the resonator bending losses. Moreover, the internal side confinement is needed only 
for realizing a single transverse mode and for localizing the intensity in a specific radius. 

Figure 8 depicts the equivalent and real index profiles of a resonator which is based on 
the mixed confinement-methods approach. The refractive index on the internal side of the 
resonator is 1.0. The electric field in the left side of the defect (inner radii) can be expressed in 
terms of a Bessel function of the first kind [12]: 

( ) ( )( )RURknJWUUE Lm exp00 ⋅=−<    (14) 

where nL is the real refractive index on the internal side of the defect, U0 is the coordinate of 
the right hand side of the waveguide (see Fig. 8I), W is the defect width and m is the Bessel 
order given by m=βR. 
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Fig. 8. Refractive index profile in (I) the (U, V) plane and (II) in the (ρ, θ) plane for a mixed 
confinement-methods structure. R=479µm. 

For small perturbation, the modal field profile in the (U, V) plane is: 
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The characteristic equation determining the defect width W is found by requiring the 
continuity of the field and its derivative at the defect boundaries: 
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where λ is the wavelength and the prime indicates a derivative.  
Although the mixed confinement-methods approach eliminates the need for very high 

refractive index materials it also introduces some limitations on the modal field properties. 
The employment of TIR instead of Bragg reflection limits, to some extent, the minimal 
azimuthal wavenumber of the resonator modal field which is practically confined in the 
defect. The reason for that limitation is that modes with lower m impinge on the interface with 
smaller angles relatively to the perpendicular. Since TIR occurs only for incident angles 
which are larger than the critical angle, these fields would not be totally reflected from the 
inner interface and, therefore, would not be confined in the defect. Nevertheless, these waves 
would not radiate because they would still be confined by the external Bragg reflector.  

Figure 9 depicts the steady-state solution of the modal field in a resonator which employs 
mixed confinement-methods. The parameters of the external PC Bragg reflector are identical 
to those of the resonator shown in Fig. 3II. The inner radius of the defect is 3.3µm. The device 
was designed to have a resonance wavelength at 1.55µm and the corresponding azimuthal 
wavenumber is m=16. 

Figure 10 depicts a radial cross-section of the modal field profile of the resonator shown 
in Fig. 9, highlighting the three different parts of field. 

U0 

(C) 2003 OSA 20 October 2003 / Vol. 11,  No. 21 / OPTICS EXPRESS  2744
#3169 - $15.00 US Received October 08, 2003; Revised October 13, 2003



 
Fig. 9.  FDTD simulation of an annular PC resonator employing mixed confinement-methods. 

 
 

 
Fig. 10. Modal field profile of the resonator shown in Fig. 9. 

6. Summary and conclusions 

We presented an analysis a new type of annular micro-resonator which is based on Bragg 
reflection confinement in the radial axis. Because of the unique properties of the index profile, 
the micro-resonator presented here can be designed to have a very large free spectral range 
and low loss. By employing a conformal transformation we were able to derive the optimal 
refractive index profile and a closed form expression for the modal field based on the known 
theory of line defect waveguide. We verified our analysis by comparing a transformed modal 
solution of a line defect waveguide to the corresponding resonator modal field profile as 
calculated by FDTD simulations. To realize high radial reflection, the gratings period must be 
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“chirped” – becoming longer for larger radii. In addition, the gratings’ index and index 
contrast become larger for smaller ρ. The corresponding modal field profile exhibits similar 
chirped oscillations in the Bragg reflectors regime. We studied the sensitivity of the device 
performances to fabrication errors using the FDTD method. While small errors in the holes 
positions do not introduce substantial performances deviation from the optimal case, errors in 
the holes radii generate additional low-Q resonances because of the formation of local defects. 

In order to eliminate the need for high refractive index at small radii we suggested a 
mixed confinement-methods approach, employing Bragg reflection for external confinement 
and TIR for internal confinement. This approach retains most of the properties of the dual 
sided Bragg resonator but its ability to confine modal fields with small azimuthal wavenumber 
in the defect is limited. 
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