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Noise in optical synthesis images. II. Sensitivity of an 'nC2
interferometer with bispectrum imaging
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We study the imaging sensitivity of a ground-based optical array of n apertures in which the beams are combined
pairwise, as in radio-interferometric arrays, onto n(n - 1)/2 detectors, the so-called nC2 interferometer. Ground-
based operation forces the use of the fringe power and the bispectrum phasor as the primary observables rather than
the simpler and superior observable, the Michelson fringe phasor. At high photon rates we find that bispectral
imaging suffers no loss of sensitivity compared with an ideal array (space based) that directly uses the Michelson
fringe phasor. In the opposite limit, when the number of photons per spatial coherence area per coherence time
drops below unity, the sensitivity of the array drops rapidly relative to an ideal array. In this regime the sensitivity
is independent of n, and hence it may be efficient to have many smaller arrays, each operating separately and
simultaneously.

1. INTRODUCTION

The quest for high angular resolution has always been one of
the main driving forces in modern astronomy. This is of
great importance especially at optical wavelengths since
most of the astronomical sources shine in the visible window.
Unfortunately, the atmosphere corrupts the light rays com-
ing from cosmic sources, leading to a severe loss in the angu-
lar resolution of ground-based observations. In the past few
years, new techniques, especially interferometric tech-
niques, have successfully constructed diffraction-limited
images of cosmic sources. In view of the many optical inter-
ferometers that are either being built or planned we believed
it worthwhile to investigate systematically their theoretical
performance, particularly in regard to their noise character-
istics.

In the first paper of this series1 we investigated the sensi-
tivity of an ideal Michelson interferometer, which, in the
optical domain, is essentially limited by the photoelectron
shot noise. A space-based interferometer is a good approxi-
mation of an ideal Michelson interferometer. In this paper
and another paper2 we study the theoretical performances of
ground-based interferometers.

The principal difference between a space-based and a
ground-based interferometer is that the primary observable
of the former is the fringe phasor, while the fringe power and
the bispectrum phasor are the observables of the latter.
While the Michelson fringe phasor is associated with two
apertures, the bispectrum or the triple product is the phasor
associated with a triplet of apertures. For example, consid-
er three apertures located at al, a2, and a3. The Michelson

fringe phasor Zjk is a measure of the cross correlation of the
electric field at aj and ak. The bispectrum phasor associated
with the three apertures discussed above is b123 Z12z23z31.
According to the van Cittert-Zernike theorem3 the Michel-
son fringe phasor Zjk is also a measure of the Fourier compo-
nent of the source structure at the spatial-frequency vector
(aj - ak)/X, where X is the mean wavelength of observations.
This Fourier relation permits us to determine the brightness
distribution of the object, provided that a sufficient number
of Fourier components are measured. The van Cittert-
Zernike relation is the basis of all interferometric imaging.

Atmospheric turbulence corrupts both the phase and the
amplitude of the Michelson fringe phasor. Fortunately, the
situation is not totally hopeless. The fringe power after the
process of calibration provides a good estimate of the fringe
amplitude. The phase of the bispectrum can be shown to be
immune to aperture-dependent phase errors. In the par-
lance of radio astronomy, the phase of the bispectrum is the
so-called closure phase, which is the sum of the three Mi-
chelson fringe phases and thus contains some information on
the spatial structure of the source at the three spatial fre-
quencies. Although there is no direct relation between the
bispectrum phasors and the object distribution, astrono-
mers have developed many nonlinear algorithms4 for con-
structing images from fringe powers and bispectrum pha-
sors. We refer to this class of algorithms as bispectral-
imaging algorithms.

Consider a ground-based optical interferometer consist-
ing of n primary apertures. There are many ways of com-
bining the n primary beams. In Ref. 1 we introduced a
useful notation for succinctly describing the beam-combina-
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tion geometry. An interferometer in which r beams are
combined on one detector is denoted by nCr. This notation
has the principal advantage that the number of detectors
needed is equal to Cr = n!/r!(n - r)!. In that paper we
showed that the sensitivity of an ideal interferometer was
essentially independent of the beam-combination geometry.
However, the sensitivity of ground-based interferometers,
whose primary observables are the bispectrum phasors and
the fringe powers, is expected to be dependent on the beam-
combination geometry. Understanding this issue is the
main goal of this paper. Here we analyze the sensitivity of
an nC2 interferometer.

The organization of this paper is as follows. In Section 2
we list the assumptions made and the notation used in our
calculations. In Section 3 we evaluate the complete covari-
ance matrix of the two principal observables: the fringe
power (from which the fringe amplitude is derived) and the
bispectrum phasor (from which the closure phase is de-
rived). We then do a reasonably rigorous calculation of the
signal-to-noise ratio (SNR) in the synthesized image and
evaluate the SNR of a point source in Section 4. In Section
5 we compare the sensitivity of images obtained from the
bispectrum data and those obtained with the self-calibration
method (a popular technique at radio wavelengths that also
overcomes atmospheric phase errors). We conclude with
Section 6.

2. ASSUMPTIONS, NOTATION, AND
METHODOLOGY

A conventional radio interferometer such as the Very Large
Array 5 is a prime example of an nC2 interferometer since the
correlators combine signals from pairs of antennas. At opti-
cal wavelengths, owing to the lack of low-noise phase-coher-
ent amplifiers, this would require that the primary beam be
split n - 1 ways. Each of these n(n - 1) secondary beams
can then be correlated pairwise in order to yield n(n - 1)/2
fringe phasors zjk. In turn these fringe phasors can be com-
bined in order to yield n(n - 1)(n - 2)/6 bispectrum phasors
bjkl- With the use of standard imaging algorithms devel-
oped for radio astronomy interferometers,4 the bispectrum
phases in conjunction with the fringe powers can be used to
obtain a true image.

We assume that the observations are made with an ideal
photon-counting detector with negligible dark current.
This condition is met by all modern detectors based on the
photoelectric effect. We also assume that there is no signifi-
cant background radiation.

We further assume that the integration time and the aper-
ture sizes are sufficiently small that there is no significant
decorrelation introduced. This is, of course, not strictly
true since a real interferometer utilizes finite apertures, a
finite bandwidth, and a finite integration time, all of which
result in some decorrelation. These aspects are considered
in some detail in Ref. 6. In that paper we restrict our
attention to the limitations imposed by the photoelectron
statistics. These two effects, the decorrelation by the atmo-
sphere and the photoelectron noise, are separable to the first
order, and hence the results presented here still have appli-
cability, at least as far as one's understanding of the relative
merits of different beam-combination geometries is con-
cerned.

We use the following notation:

n is the number of primary apertures.
nb is the number of nonzero spatial frequencies offered by

an n-aperture interferometer, equal to n(n - 1)/2.
nt is the number of triangles or bispectrum phasors, equal

to n(n- 1)(n-2)/6.
Zjk is the complex fringe phasor on the baseline connecting

apertures j and k.
bjkl is the bispectrum phasor defined by the apertures j, k,

and 1, equal to ZjkZklZlj-

We will use two notations for indicating baselines and
triple products: an aperture-based notation and a baseline-
based notation. In the first scheme Zjk is the fringe phasor
on the baseline defined by apertures j and k. In the second
scheme a single index is used, ranging from 1 to nb. A
corresponding scheme is used for the bispectrum phasors.
The disadvantage of these schemes is that the notation for
the bispectrum phasor is formally the same for both schemes
and can lead to confusion unless clarified. In addition, in
the baseline-based scheme, the indexing is quite arbitrary in
the sense that a baseline index j does not uniquely specify a
particular baseline (see Fig. 1 for an example of this indexing
scheme). In recognition of this problem we clarify both the
kind of notation used and the indexing scheme, when neces-
sary.

We will use lowercase letters for observables derived from
a single frame of data and the corresponding uppercase let-
ters for the mean values of those observables. For example,
z; is the fringe phasor from baseline j obtained from one
frame of data, whereas Zj is the ensemble average or the
mean of z; averaged across many frames.

We use the symbol V to denote the variance of a real
observable (say x), V(x) = (x2) - (x)2, and the pseudovar-

E

F / ~~ c

A ( B
Fig. 1. Baseline-based indexing scheme for the bispectrum phasor
for a six-element array. The baseline connecting apertures A and B
is assigned the index 1, that connecting B and C the index 2, etc.
Not all the baselines are shown.
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iance of a complex observable such as the fringe phasor V(z)
- (zz*)-(z)(z*). Thecovarianceofapairofrealobserva-
bles x and y is specified by C(x, y) = (xy) - (x)(y). For
pairs of complex observables z1 and Z2, there are two kinds of
covariance:

(1) Pairs of unconjugated quantities, C(z, Z2) = (Z)(Z 2).
(2) Pairs of conjugated quantities, C(z1, Z2*) = (Z1Z2*) -

(Z1)(Z2*)-

We evaluate both types of covariance and note that what is
usually needed is the sum of these two quantities, which we
refer to as the pseudocovariance.

Unlike an ideal Michelson interferometer for which we
have the van Cittert-Zernike relation, there is no equivalent
linear relation between the bispectrum phasor and the im-
age. The bispectral-imaging algorithms are iterative, and
hence a simple error analysis is, in general, not possible.
Fortunately, for the simple but important case of a point
source, there is a simple relationship between the observa-
bles and the image. This permits us to estimate the vari-
ance in the synthesized image, given the covariance matrix
of the bispectrum phasor. Such a procedure was followed in
Ref. 1, and we follow a similar strategy here.

bispectrum phasors). Likewise, we are forced to use the
fringe power as an estimator of the fringe amplitude. (The
modulus of the fringe phasor Zjkl can also be used as an
estimator of the fringe amplitude. However, the noise prop-
erties of the fringe power are easily calculable, and there is
no extra gain in the SNR by using the modulus of the fringe
phasor instead of the fringe power.) We now estimate the
covariance properties of both these observables.

A. Variance and Covariance of Fringe Power
The fringe power

pi = ZiZ1 * (3.4)

is uncorrupted by the atmospheric phase perturbations and
hence is a good observable. In reality, significant and sys-
tematic decorrelation by the atmosphere does take place,
but this is expected to be removed by the process of calibra-
tion. Further discussion of this issue appears in Ref. 6.

The mean value of P is
/P-1 P-1\

Pj= exp(-iwjp)kj(p) E exp(iwjp')kj(p') ). (3.5a)

Since (kj(p)kj(p')) = (kj(p))(kj(p')) + pp'(kj(p)), we ob-
tain

3. C2 INTERFEROMETERS

As stated in Section 1, each of the n primary beams is divid-
ed into n - 1 secondary beams. The n(n - 1) secondary
beams are combined pairwise, yielding nb = n(n - 1)/2
fringes. The intensity pattern on any of the nb detectors is
of the form

Ij(x) = 2Io[1 + ,j cos(2ir - d + ,j + i) (3.1)

where yj exp ij is the complex visibility function (or the
complex spatial-coherence function), Bj is the baseline con-
necting a pair of apertures, X is the mean wavelength of the
light, d is the distance between the aperture and detector
planes, x is the coordinate in the aperture plane, and Oj is the
phase imposed by the irregularities in the atmosphere; here j
is the index of the baseline and can range from 1 to nb. Let
kj(p) be the number of photoelectrons per integration inter-
val at pixel p of detector of baseline j. We assume that the
detector is a linear array of P pixels. The corresponding
mean photoelectric count distribution is given by

(kj(p)) = 2(K)[1 + cos(pwj + j + 0j)]. (3.2)

Here 2(K) is proportional to the mean incident intensity
and j is proportional to the spatial frequency (and absorbs
X, pixel spacing, etc.). The estimator for the complex visi-
bility function is the fringe phasor defined in the usual way:

P-1
zj = ' kj(p)exp(-iwjp).

p=O

P-1
Pj = Z1Zj* + E (kjp))

p=O

= Y/2(N)2 + 2(N). (3.5b)

Here yj is the normalized fringe visibility. From Eq. (3.5b)
it is clear thatpj is biased; i.e.,Pj w 0 even when yj = 0. This
happens since the information of the classical fringe power is
contained only in the cross correlations of different photo-
electron events. This bias can be eliminated7 by its subtrac-
tion,

P-1

q = p - E kj(p),
p=O

the mean of which is

Qj (qj) = j2 (N) 2

(3.6)

(3.7)

The derivation of the variance of the fringe power qj is
straightforward but somewhat cumbersome owing to the
bias correction. This can be shown to be (see Appendix A)

V(q) = 4(N) 2 (1 + 2 (N))

The SNR of qj, i.e., the ratio of Qj to [V(qj)]11 2, is

'Y2(N)
Qj= 2(1 + Y/2(N))/2-

(3.3)

The mean number of photoelectrons per detector is 2(K)P,
and thus the average number of photoelectrons from each
secondary beam is (N) = (K)P.

Imaging requires both amplitude and phase information.
As clarified in Section 1, atmospheric irregularities corrupt
the Michelson phase, forcing us to use closure phases (i.e.,

(3.8a)

(3.8b)

The asymptotic behavior of Q is quite interesting: For the
high photoelectron rate (yj2(N) >> 1), &q (/ 2 ) (N).
For the low photoelectron rate (yj 2 (N) <<1), eQj -yj2(N)/2.
The transition from the low photoelectron rate to the high
photoelectron rate occurs at yj2 (N) 1.

We next evaluate the covariance of pairs of fringe powers.
Consider the covariance between q and qk*(j F4 k):

Kulkarni et al.
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C(qj, qk*) = (qjqk*) - (qj)(qk*)

= E3>E ([kj(p)kj(p') - 6PP,(kj(p))I[kk(r)kk(r')
pp' rr'

- br,(kk(r))])exp[-iwj(p - p')]exp[-iok(r' - r)]

QjQk

= 0. (3.9)

The lack of statistical correlation between any two different
fringe phasors is obviously a result of the physical indepen-
dence of the detectors.

B. Pseudovariance and Covariance of the Bispectrum
The bispectrum, or the triple product bjkl, is defined to be
the product of three fringe phasors on baselines that form a
triangle. For example, for Fig. 1 the triangle formed by
baselines 1, 2, and 3 defines the bispectrum phasor:

b123 = Z1Z2Z3. (3.10)

Throughout this section, unless otherwise stated, we use the
baseline-based indexing scheme (Section 2).

When the baselines j, k, and 1 close, i.e., when they form a
true triangle, then the atmospheric terms cancel and the
phase of bjkl is given by 1tjki = Ob + ,bk + qb1, a sum of pure
source structure phases. Because of its immunity to the
atmospheric corruption, the bispectrum can be added across
integrations in order to yield a mean bispectrum phasor:

Bjkl = (bjkl)

P-1
= tE kj(p)exp(-iCjp) > kk(q)

p= q=O

P-1

X exp(-ickq) k,(r)expf-wjr))
r=0

= > exp(-iwcjp-i'Wq-iwlr)(k(p)kk(q)kl(r)). (3.11)
pqr

SB 1 23

As clarified in Section 2, the averaging procedure ( ) is
assumed to include only the statistics of the photoelectron
process and not any decorrelation introduced by the atmo-
sphere. (Even in the absence of atmosphere-introduced
phase and intensity fluctuations, there will be additional
intensity fluctuations owing to the thermal nature of the
astronomical signal. This effect is completely negligible for
astronomical sources because of the low signal strengths.)

Since the detectors are separate, the photoelectric-detec-
tion noise does not correlate. Thus

(kj(p)kk(q)k 1 (r)) = (kj(p))(kh(q))(k 1(r)). (3.12)

We therefore find that

Bjkl = ZjZkZI

= YjYkyl(N)3 exp(-i jkl). (3.13)

Note that B123, unlike the fringe power, is not biased. The
absence of bias here is in contrast with the situation when all
the n beams interfere on the same detector.8 In the latter
case the bias arises since a given photoelectron cannot be
ascribed uniquely to one of the nb fringe patterns. In an nC2

interferometer the fringe patterns are separately detected,
and thus the fringe phasors are statistically independent,
which explains the absence of the bias. This discussion also
highlights one of the virtues of an nC2 interferometer, viz.,
the simplicity in modeling the observables and their noise
distribution. This is an important advantage since it per-
mits one to estimate ab initio the SNR in the synthesized
image, and thus the interpretation of faint features in the
synthesized image is quite straightforward.

We note that, in contrast to that for an nC 2 interferometer,
the estimation of the noise distribution in a nCn interferome-
ter is exceedingly difficult. First, the expression for the
variance of the bispectrum phasor9"10 is quite involved. The
noise distribution in the image is naturally even more com-
plicated, and further discussion of this issue is found in Ref.
2.

Specifically, we will consider one particular bispectrum
b123. The pseudovariance of b123 is easily estimated:

V(bl 23 ) (bl 23b 23*) - (b123)(b 123 *)

= (Z1Z2Z3Z1*Z2*Z3*) - (Z1Z2Z3)(Z1*Z2*Z3*). (3.14)

The detectors' being separate permits us to rewrite Eq.
(3.14) as

V(b 1 23 ) = (Z 1 Z1 * ) (Z2Z2* ) (Z3Z3 * -Y122 2
2

3
2 (N) 6 . (3.15)

Substituting Eq. (3.5) into Eq. (3.15), we find that

V(bl2) = 2(N)5(_Y2722 + 72273 + 73 212)

+ 4(N)4 (y1
2 + 72' + 732) + 8(N)3 . (3.16)

The SNR, 5 BI23 B1231/[V(b123)]1
12 of the bispectrum is

Y17273 (N)
3 2 2 (3.17)

[2(N)2(, 2 2 + 72273 + Y3 2%Y2) + 4(N)(Y1
2 + 22 + 73 2) + 8]1/2 (

We now investigate the covariance between pairs of bi-
spectrum phasors. For specificity we consider one of the
phasors to be b123:

C(b12 3, bjkl*) = (bl23bjkl*) - (b23)(bjk*)- (3.18)

We remind the reader that the baselines jkl must form a
triangle and cannot be any three arbitrary baselines.

The triangle defined by the indx jkl can fall into any one of
only three categories (see Fig. 1):

(1) Triangle jkl does not share a common aperture with
triangle 123, e.g., triangle 789.

(2) Triangle jkl shares a common primary aperture with
triangle 123, e.g., triangle 467.
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(3) Triangle jkl shares a common baseline, e.g., triangle
145.

Bispectrum phasors of triangles of the first kind follow
independent statistics since they do not share any common
fringe phasor at all. Thus the covariance of such bispectrum
phasors with b 23 is zero. Essentially the same arguments
apply to triangles that share a common primary aperture.

Thus one need consider only triangles with one side in
common with triangle 123, e.g., triangle 145, for which we
find that

C(b12 3 , b 45 *) = (ZlZl* ) (Z2)(Z3)(Z4 (Z5)

- (Z)(Z2)(z3)(Z1*)(Z4*)(Z5*)

= [(Z1Z1*) - (Z1)(Z1*)](Z2)(Z3)(Z4*)(Z5*)

= 2y 2-y3-y4-y5 (N)5 exp(i' 1 23 - 145 ). (3.19)

We also need to estimate the covariance of unconjugated
pairs of bispectrum phasors with one common side, e.g., 123
and 145:

C(b123, b14 5 ) = (z 2 Z3 z 1 4 z5) - (Z1Z2 Z3 )(z 1z 4 z 5 )

= ((ZIZI) - (Z1) (z1))(z2) (Z3) (z4) (Z5)

= K( k(p)exp(-i2c1p)/
2 7 3 7 4 75

P

X exp(i4'2 3 + 4 145)

= 0. (3.20)

The sum of both these types of covariance C(b123, b145) +
C(b123 , b 45*) is of some interest [see the discussion following
Eq. (4.2)]; we call this quantity pseudocovariance. A related
quantity is the normalized covariance element 11123,145, which
is defined as the ratio of the pseudocovariance to the geo-
metric mean of the individual pseudovariances:

C(b123 , b 45) + C(b123, b 45*)
1123,145 [V(b12 3 )V(b 14 5)1/ 2 (3.21)

Note that 11123,145 is insensitive to the relative orientation of
the common baseline between the two triangles. Here we
considered the case when the common side had the same
orientation in both triangles. For those pairs of triangles for
which the common side is oriented oppositely, Eq. (3.19) will
yield zero, but Eq. (3.20) will not. The sum [Eq. (3.21)] is
thus unaffected.

So far the discussion has been quite general. Consider for
simplicity the case when all the visibilities are equal (j = 
independent of j), and all the closure phases are zero. Then

B Bjkl = (N

Ub V(b) V(bl23) = (N)3 (6 y4 (N)2 + 12y2(N) + 8),

B (Y2 (N)) 3 /2

B V(b) (6'y4(N) 2 + 12'y2(N) + 8)1/2'

Ab 123,145 =3,4(N)2 + 6,Y2 (3.22)

Note that B and Pb are functions purely of y2(N). Thus

the transition from one asymptotic limit to another depends
on this combination of (N) and -y:

High Photoelectron Rate
At high photoelectron rates (-y2(N) >> 1) the pseudovariance
is -64(N) 5 , and the SNR of the bispectrum phasors is
y((N)/6)"2 . In contrast the SNR of the fringe amplitude as
measured by an ideal Michelson interferometerl ' is
'y (2N), which is a factor of 4V better. This difference is
readily understood as arising from the multiplication of
three estimators with identical noise distributions.

In this limit the normalized covariance b approaches 1/3,
independent of y. This is quite easy to understand since
that is precisely the amount of information shared by the
two bispectrum phasors with one common baseline.

Low Photoelectron Rates
The low photoelectron rate regime (y 2(N) << 1) could be due
either to low photoelectron rate (N) << 1) or to a very low
normalized fringe visibility (y << 1). In this regime the SNR
of the bispectrum 9b123 y3(N)3 /2/8. This cubic depen-
dence on (N) is quite readily understood and can be argued
from physical considerations. First, we estimate the pseu-
dovariance of the bispectrum phasor. At low photoelectron
rates, the probability of obtaining a photoelectron on a given
detector in one integration time or frame is (N); note that is
independent of y. Only those integration intervals during
which at least one photoelectron is detected in each of the
three detectors, 1, 2, and 3, are useful for measuring the
bispectrum b 23. The joint probability of such an occur-
rence is thus (N)3 . With m frames we expect to obtain an
estimate of the closure phasor in only m(N) 3 frames. Thus
the pseudovariance of the bispectrum phasor is m(N) 3 and
the pseudovariance per frame is (N)3. The amplitude of the
fringe phasor is yV(N_), regardless of the photoelectron
rate. Hence the bispectrum amplitude is y3(N)3. The
SNR per frame or integration interval is thus proportional to
y3(N)3 /2, in accordance with our asymptotic formula.
The above physical reasoning also gives insight into why

the bispectrum phasor becomes increasingly noisy as (N)
becomes small, viz., primarily because the fraction of useful
frames (N) 3 becomes small. Also note that the SNR de-
pends cubically on -y at low-light levels whereas at high-light
levels the SNR is linearly related to 'y. This makes it impor-
tant to avoid any kind of instrumental decorrelation and also
shows that the SNR of the bispectrum decreases dramatical-
ly when the source starts getting resolved.

In this regime the normalized correlation coefficient for a
pair of bispectrum phasors that share a common phasor is
-(1/4)y(N) 2 . The quadratic dependence of Ub on (N) can
also be physically reasoned out. Above we showed that the
pseudovariance of the bispectrum per integration interval is
(N)3 . We now estimate the covariance between b123 and
b145. In order that there be some covariance or cross talk
between these bispectrum phasors, both b123 and b145 need to
be detected within the same integration interval, i.e., at least
one photoelectron in each of the five detectors, 1-5, must be
detected within one integration time. The fringe phasor
amplitude in each of the five baselines is y(N). The cross
talk is thus expected to be y5(N)5; however, the shared
baseline is perfectly correlated (i.e., y = 1), and thus the
cross talk amplitude is y4(N) 5. Normalizing this by the
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pseudovariance of the bispectrum phasor (N)3 , we find that
Ab - ,Y(N)2

The steep dependence of Ab on (N) or y means that the
bispectrum phasors become essentially decorrelated either
for faint sources or when the source gets resolved. Thus
analysis such as mapmaking should use all the bispectrum
phasors, but one should keep in mind the covariance proper-
ties of the bispectrum phasors.

In conclusion, the bispectrum phasor becomes rapidly
noisy once the quantity -y2(N) falls below unity. This is not
surprising since the bispectrum is a sixth-order estimator (in
electric field), unlike the Michelson fringe phasor, which is a
second-order estimator. However, since integrations across
a large number of frames can be performed, this noisiness
can be partially compensated for.

4. SIGNAL-TO-NOISE RATIO IN THE
SYNTHESIZED IMAGE

In this section we estimate the pseudovariance and therefore
the SNR in the synthesized image. The SNR's of the obser-
vables Bjkl and Qj are important from a practical viewpoint.
However, as emphasized in Section 1, what ultimately mat-
ters is the SNR in the map. Here we estimate the SNR in a
map of the simplest source, a point source.

From the discussions in Subsections 3.A and 3.B, it is clear
that mapmaking is limited mainly by the SNR of the bispec-
trum phasor and not by the SNR of the fringe power. This
is certainly true at the low light levels. At high light levels
the SNR in the bispectrum phasor is linearly related to that
of the fringe power. Thus in either limit it is sufficient to
consider the SNR of the bispectrum.

For simplicity we consider the specific case of a point
source at the phase center for which Ppkl = 0 and -yj = 1. This
simplification permits us to model the noise in the image
plane effectively.

The usual strategy of bispectral imaging algorithms is to
make a map based on the nb mean fringe powers and the nt
closure phases. Since the techniques are iterative there is,
in general, no closed-form expression for the synthesized
image in terms of the observables. Fortunately, for the
simple case of a point source at the phase center, we have a

closed-form expression for the only unknown quantity, viz.,
the flux density of the source. We now estimate the SNR of
this quantity and argue that it is a fair measure of the SNR
(but is subject to the warnings and caveats discussed below)
in the synthesized image.

Consider the vector sum of all the bispectrum phasors
n,

F= (f) = 1 Bs
s=1

Equation (3.21) has been used for simplifying the above
equation. The quantity Ab(S, t) is the normalized pseudoco-
variance coefficient of the bispectrum phasors b and bt*,
and b(S) = [V(b,)]1/2 is the standard deviation of the bispec-
trum phasor bs (Subsection 3.B). The SNR of the measured
flux density is S/os and is three times the SNR of Re(f):

S = 3Re(F)
ToS IV[Re(f)]}l/2

= 3 F. (4.3)

The covariance matrix, consisting of nt X nt elements, can
be divided into three groups:

(1) Diagonal elements are nt elements that are the pseu-
dovariances of the closure phasors and are specified by Eq.
(3.16).

(2) Nondiagonal elements measure the covariance be-
tween a pair of triangles with one common side. The value
of these elements is specified by Eq. (3.19). For any given
triangle, there are 3(n - 3) triangles that have one side in
common with the given triangle. Thus the total number of
covariance elements of the second kind is 3(n - 3)nt.

(3) Nondiagonal elements that measure the covariance
between a pair of triangles with no common sides. From the
discussion in Subsection 3.B, the value of these elements is
zero.

The total variance in F is thus the sum of all the elements in
the covariance matrix and is

0

z
Cl)

LU
N ,

0z
(4.1)

Here the index s = 1 refers to the triangle 123, etc. We argue
that [Re(F)]'1 3 is a good, if not an optimal, estimator of the
flux density of the point source. Noting that Re(F) = 1/2(F
+ F*) we find that the pseudovariance of Re(f) is

1 n, n,

V[Re(f)] ) ) C(BS, B,) + C(BS, B,*)
s-1 t=1

+ C(B,*, Bt) + C(B8*, Bt*)

- E ~ ~Re[s,(s, t)kb(S)ob(t)- (4.2)
s t

0
0

2.0 4.0 6.0 8.0 10.0

<N>
Fig. 2. Ratio of the image SNR for the bispectrum case to that for
the ideal case as a function of the photon number (N) per subbeam
per frame for various values of the number n of apertures. The
dashed line represents the ideal case.
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Fig. 3. Image SNR for the bispectrum case as a function of the
number n of apertures for a fixed source intensity (M) = 0.1. (M)
is the number of photoelectrons per primary aperture per integra.
tion time. The dashed curve represents the ideal case.
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Fig. 5. Same as Fig. 3 but with (M) = 10.0.

V[Re(f)] = 2 nto
1

b + 3 (n - 3
)ntsbb 2.

2 2

EFFECT OF BEAM SPLITTING

<M> = 1.0

In Eq. (4.4a) we assume that Ub 
2 and 11b are independent of

the triangle indices s and t. This is certainly true for a point
source. In the general case, ab

2 and Jub are to be interpreted
as average values:

(4.4b)
[Ob + 3(n 3)bobl

Substituting expressions for ob and jib from Eqs. (3.22) into
Eq. (4.4) and using Eq. (4.3) yield the following result for the
SNR of the source flux density:

S 3<HtY3 (N) 3 12

Os [3(n - 2)y 4 (N) 2 + 6 2(N) + 4]1/2

Equation (4.5a) can be rewritten as

S =y((L)/2)

OS 11 + [(6 7
2(N) + 4)/3(n -2)4N)2]11/2

(4.5a)

(4.5b)

in terms of (L) = n(n - 1)(N), the mean number of photo-
electrons intercepted by the entire n-aperture array in one
integration interval. Because of the presence of the second
term in the denominator of Eq. (4.5b), the SNR is always
smaller than -y((L)/2)112 , which is the SNR obtained under
the ideal conditions of the nC2 Michelson interferometer.1

I l l l | Since the SNR depends on -y and (N) only through the
2 4 6 8 10 product y2 (N), we will assume for the purposes of graphical

n illustration that y is unity. In Fig. 2 we have plotted the

Same as Fig. 3 but with (M) = 1.0. normalized SNR in the image as a function of (N) for vari-

(4.4a)

0

CO'.

0z

Fig. 4

- -
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ous values of n, the number of apertures. The SNR has been
normalized relative to the ideal value ((L)/2) 1 2 , which is
designated by a dashed line at unit height. Clearly as the
number of apertures increases, the SNR approaches the
ideal case faster as a function of (N), in accordance with
Eqs. (4.5).

The inferiority of the bispectrum phasor as an estimator
of the fringe visibility as compared with the Michelson pha-
sor is clearly seen in Figs. 3-5, in which we plot the SNR's for
the bispectrum imaging and the ideal imaging as a function
of the number n of apertures for a given source strength.
The three figures refer to source strengths (given here in
terms of the average number (M) of photoelectrons arriving
at each aperture during an integration interval) equal to 0.1,
1.0, and 10.0. For comparison the ideal case is plotted as a
dashed curve on each figure. Clearly as the number of
apertures increases, the SNR of bispectrum imaging, low to
begin with, falls rapidly further below the ideal case owing to
the deleterious effects of beam splitting in the former. This
is of course most dramatic at the lowest signal strengths (Fig.
3). The situation is improved by a factor of 2 when no beam
splitting is done as in an nC, array,2 but the vast inferiority of
the bispectrum as the visibility estimator is still quite evi-
dent at low signal strengths.

We now consider the SNR in the usual asymptotic limits.
From the preceding expression, it is clear that the two limits
correspond to whether y2 (N)(n - 2)1/2 is much greater than
or much smaller than 1.

A. High Photoelectron Limit
For the high photoelectron limit [y 2 (N)(n - 2)1/2 >> 1]

OF=[n(n 1) 1/2 (4.6)

In terms of (M), which is the mean number of photoelec-
trons per integration time per primary aperture, the number
of photoelectrons captured by the entire array is (L) =
n(M). Since each main beam is divided into n - 1 second-
ary beams, we note that (N) = (M)/(n - 1). Thus Eq. (4.6)
simplifies to

'F = y(n/18)1/2 (M)l/ 2 = y((L)/18)1/2, (4.7)

and using Eq. (4.3) we get

-= y((L)/2)/2. (4.8)

The SNR shown in Eq. (4.8) is identical to that obtained for
an ideal Michelson interferometer.1 Thus we conclude that
a ground-based interferometer using the admittedly inferior
estimator, the bispectrum phasor, is as good as the ideal
Michelson interferometer using directly the fringe phasor,
the best estimator, provided that y2 (N)(n - 2)1/3 >>1. For
n = 6, for example, by having -y2 (N) exceed 1/2 one can
ensure that one is within 50% of the ideal limit given by Eq.
(4.8).

B. Low Photoelectron Limit
In the low photoelectron limit [-y2 (N)(n - 2)1/2 << 1] Mub 0,
ab- 8(N) 3 , and

F n(n - 1)(n -2) 1/2 y3(N)3/2

L 24 1/2 ()
3 2

n(n -2) 11/2 3M 32
[(n - 1)(n - 1)241 - M3 2 (4.9)

For reasonably large n,

(4.10)S = @78,y(M)3/2
OS

independent of n. Thus there is a hard limit to the intensity
(since (M) is a direct measure of the point-source intensity)
of sources that can be imaged with a ground-based nC2 inter-
ferometer, and this limit is solely a function of the product of
the spatial-coherence area and the temporal-coherence scale
set by the atmosphere.

It is easy to understand Eq. (4.10) in terms of the SNR of
each of the nt uncorrelated bispectrum phasors 1YB. The
SNR in the image must be proportional to SB';t;
y 3(nt(N)3)1/2 -3(M) 3/2 , in agreement with Eq. (4.10).

So far we have presented an analysis of the SNR for a
point-source model and drawn some conclusions. However,
the principal use of bispectral imaging is in obtaining images
of extended, noncircular sources. For point sources or bina-
ry stars, one can apply much simpler algorithms (which are
usually more sensitive as well) rather than use bispectral
imaging. Given this, one may question the value of analyses
such as the one presented here. In defense of this simplicity
we note that the estimation of point-source sensitivity is
quite standard in radio astronomy. However, as discussed
by one referee, at optical wavelengths the sky is quite dark,
and point-source detection is usually not of much interest
(however, see below).

Nonetheless, the sensitivity estimate presented here has
one principal virtue: it is the best possible performance.
The reasoning is as follows. The visibility for a point source
is the same on all baselines, long and short. Thus all the
baselines will be either in the high photon limit (y2 (N) >> 1)
or in the low photon limit. In contrast, for a resolved source
-y depends on the baseline length and orientation. Since the
source is resolved we can safely assume that y is less than
unity for all baselines; indeed for most baselines y will be
significantly less than unity. With a variable y it is possible
that some baselines will be in the low photon limit, in which
case the SNR of the bispectrum involving that baseline will
be cxy 3(N) 3 /2 , considerably worse than for a point source of
the same flux density. Thus we expect that the limiting
sensitivity for an extended source will be considerably worse
than that presented here.

The sensitivity estimates presented here may be optimis-
tic (at the faint end) for another reason as well, because
bispectral imaging algorithms are nonlinear by nature and it
is possible that these methods fail at low SNR. As an exam-
ple, Cornwell12 finds that one particular bispectral method
fails when the typical SNR of a bispectrum phasor falls
below -2.5. If this is true of all nonlinear methods then
clearly reconstruction of extended objects will be quite af-
fected. These warnings and caveats stress the need for
numerical simulations for a true understanding of the limi-
tations of bispectral imaging (in the low photon limit), even

Kulkarni et al.



Vol. 8, No. 3/March 1991/J. Opt. Soc. Am. A 507

for simple sources. However, this is a major exercise in
itself, and we will not discuss it in the present paper.

Despite the above pessimistic discussion, there is an im-
portant class of astrophysical problems for which point-
source detection is the major goal. Specifically, consider
optical emission from an active galactic nucleus. Determin-
ing the nonthermal contribution from the nuclear region of
the host galaxy is of great astrophysical interest. At the
high-angular resolution needed for separating the nuclear
emission from the host galaxy, long baselines will have to be
employed. On such baselines the host galaxy contribution is
essentially resolved, 'leaving only the light from the point
source. However, the visibility of the point source is vastly
reduced, being equal to the ratio of the nuclear emission to
the host-galaxy emission. For this reason, we have permit-
ted y to be less than unity even for a point source. (Addi-
tionally, even for a single point source, we expect y < 1 for a
ground-based interferometer. In this case retaining y in our
analysis will give us some idea of the importance of main-
taining a high value of -y.) For both these reasons we will
make the less-restrictive assumption 'j = -y, independent of
J.

5. BISPECTRAL IMAGING AND SELF-
CALIBRATION

It is quite instructive and interesting to compare an nC2
radio and an optical interferometer. Clearly, there are fun-
damental differences: the lack of phase-coherent, low-noise
optical amplifiers, heterodyning (versus beam combination),
the process of fringe detection, etc. Here we will focus on
one aspect: the primary observable and how the atmospher-
ic phase corruption is overcome. Radio arrays usually mea-
sure the Michelson fringe phasor and employ the technique
of self-calibration in order to get rid of the atmospheric
phases, whereas throughout this paper we have assumed
that the bispectrum phasor is the primary observable for an
nC2 optical interferometer. Given that self-calibration is a
mature algorithm (whereas bispectral imaging is not) it is
important to explore to what extent self-calibration can be
used in the context of an nC2 optical array.

The essence of bispectral imaging is the construction of an
image that agrees with the observables (fringe power and
bispectrum phases) in a least-squares sense. A number of
algorithms have been invented for obtaining images from
the bispectral data. In our favorite variant the two primary
observables are merged into one quantity, hereafter the syn-
thetic bispectrum phasor, by taking the triple product of the
fringe amplitudes (qjqkql)'

12 and by combining this triple
product with a unit complex phasor whose phase is the
closure phase. This procedure has the advantage that the
bispectrum amplitude is better determined since the SNR of
the fringe powers is better than that of the bispectrum am-
plitude, especially at low photon rates. A fit between a
model and the data is then obtained by using some kind of
least-squares procedure. The details of one such model-
fitting algorithm can be found in Ref. 12, and applications to
real optical data in Ref. 13.

The basis of self-calibrationl4"15 is that the atmospheric
phase and gain errors, within one coherent integration inter-
val, can be ascribed to an unknown multiplicative factor that

is peculiar to each antenna: Gjei0i, j = 1, . . , n. A least-
squares fit of the current model and the n unknown antenna-
based complex gains to the nb observed complex fringe pha-
sors is done. Constraints on positivity and finiteness are
used for making up the shortfall between the number of
observables and the number of derived quantities. The
entire procedure is iterated until the process converges. Ac-
cording to the simulations performed by Cornwell,12 self-
calibration appears to break down when the SNR of the
fringe phasor falls below -2.5. This is understandable since
the complex gains have to be solved from the data itself, and
this is possible only if the fringes are readily detected. In
Ref. 1 we have shown that the SNR of the fringe phasor is a -
,y((N)/2)1/2. Thus, in our notation, self-calibration is valid
for a 2.5.

Self-calibration is conceptually simpler than bispectral
imaging. In particular, it uses no nt( n3) bispectrum pha-
sors but only nb(@ n2) complex fringe phasors. In addition,
because it employs a priori information (positivity and finite
source size), it is quite a powerful algorithm. Finally, there
is a large body of self-calibration software developed for
radio arrays that has been in use for more than a decade.
However, self-calibration does not operate directly on the
observable, the bispectrum phasor, and also it does not use
all the data since there are -n 3 bispectrum phasors but only
-n 2 fringe phasors. Clearly, it is important to understand
the limitations of both techniques.

First we estimate the sensitivity of the self-calibration
technique. As discussed in Subsection 3.A, the fringe pha-
sors are uncorrelated. With nb fringe phasors and n un-
known antenna gains, the number of degrees of freedom is nb

- n. The effective signal strength (for a point source) is (nb

- n)'y(N), and since the image is the Fourier transform of
the complex visibility the effective variance is (nb - n) (N).
Thus the SNR of the flux density of a point source estimated
from a self-calibration map is

S A = y[(nb -n)(N)]/2
S sc

= a[2(nb - n)]'12 . (5.1)

We find that Eq. (5.1) agrees with Eqs. (4.5), which give
the SNR of the bispectral-imaging technique, to better than
10% as long as a > 1, the regime in which self-calibration
techniques are used. Thus our immediate conclusion is that
for bright sources (a > 1) there is no difference in sensitivity
between bispectral imaging and self-calibration. Hence for
such sources the self-calibration software developed for ra-
dio interferometers can be immediately applied to an optical
nC2 array.

For faint sources (a < 1) it appears that we have no choice
but to use the bispectrum observable. In this regime the
SNR of the bispectrum IVB - Y3(N)3/2/8 = a3/23/2 is small
since a < 1. The SNR can be increased by a factor of xNf by
stacking the bispectrum phasors from Nf frames of data.
Let us consider a typical example: y 0.6 and Nf - 104.
Then we find that, in order to have a detectable bispectrum
8B > 3 after Nf frames of data, we need to have (N) ' 0.6.
Increasing Nf by a factor of 10 results in decreasing (N) by
merely a factor of -2.

First consider the case for which n = 3 so that the beam
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splitting is minimal. For y = 0.6, (N) = 0.6, we find that a =
0.33, and hence (M) = 1.2. In contrast, the self-calibration
limit of a = 2.5 corresponds to (M) = 69. Thus for a 3C2
interferometer there is a range in source intensity of a factor
of 50 over which we have no choice but to use the bispectrum
phasor as the primary observable.

In the more general case, the transition from self-calibra-
tion to bispectrum takes place when a = y((N)/2)1/ 2 =
-y[(M)/2(n - 1)]11/2 falls below -2; i.e., the transition takes
place when the intensity, (M), falls below 8(n - )-y-2 .
Thus, superficially, our research indicates that the range of
intensity over which the bispectrum phasor will reign su-
preme is even larger than the above-derived factor of 50 for
either arrays with larger elements or when the source starts
getting resolved (which decreases y). However, we hasten
to add that more simulations are needed for pinning down
the true threshold above which self-calibration can success-
fully operate, particularly with complicated source struc-
tures and a large number of apertures (see discussion in
Section 4).

In sum, for bright sources, existing self-calibration algo-
rithms are certainly adequate for analyzing data from nC2
optical interferometers. For faint sources, we have no re-
course but that of using the bispectrum phasor as the prima-
ry observable of phase. In this regime, neither self-calibra-
tion nor bispectral imaging is optimal. Self-calibration is
not optimal because it does not make use of all the -n 3

bispectrum phasors, which in the low a limit are essentially
uncorrelated and hence provide independent estimates of
combinations of the fringe phases. Current bispectrum im-
aging methods are not optimal because they lack a procedure
by which reasonable a priori assumptions can be introduced
into the fitting procedure.

Clearly, a hybrid approach is needed. One possibility is to
solve for the Michelson phases by using all the bispectral
data and then to use self-calibration for making an image
and to iterate, an approach that is already being used at
optical wavelengths.'6"17 Another approach is to fit the ob-
served fringe powers and bispectral phases to a model that is
subject to the usual conditions of positivity and finite size (as
in self-calibration) and to iterate until the model best agrees
with the data. We find the second approach pleasing, but
we do note that it entails more computing since the number
of bispectrum phasors nt - n3 >> nb n2. However, the
problem is within the reach of present supercomputers, and
we urge the development of this algorithm.

6. CONCLUSIONS

We have analyzed the performance of an nC2 optical interfer-
ometer, i.e., an interferometer with n apertures in which
each primary beam is split into n - 1 secondary beams that,
in turn, are combined two at a time on n(n - 1)/2 detectors.
In this way all the n(n - 1)/2 spatial frequencies possible
with n apertures are simultaneously sampled on separate
detectors. An important constraint in optical interferome-
try with weak signals is that beam splitting must be carried
out without the possibility of low-noise, phase-coherent am-
plifiers.' Additionally, as in radio interferometry, aperture-
dependent phase errors, such as those caused by atmospher-
ic phase corruption, force us to use the bispectrum phasor,
which is an inferior estimator compared with the fringe
phasor in an ideal Michelson interferometer.

Owing to the availability of sensitive photoelectric detec-
tors, the primary source of noise in optical interferometry is
expected to be that present in the light signal itself, i.e., shot
noise of the photoelectric-detection process that obeys Pois-
son statistics. In contrast, the principal source of noise in
radio interferometry is an additive Gaussian noise that pri-
marily arises in the receiving apparatus itself (amplifier
noise).

At high enough signal strengths, the fringe phasor and the
bispectrum phasor are expected to be equally good estima-
tors, and thus ideal and ground-based imaging interferome-
ters should have similar sensitivities. We find that this
expectation is indeed true. Specifically we carry out a rigor-
ous calculation of the SNR of the synthesized image of a
point source. We find that the SNR of bispectral imaging
approaches that of the ideal Michelson case when -y2(N) (n -
2)1/2 > 1, where 2(N) is the number of photons per integra-
tion time per detector.

At low photon rates [y2 (N) (n - 2)1/2 < 1, the SNR in the
map is nearly independent of n and depends almost solely on
the intensity of the source with a limiting value of
V7y3(M)' 2 , where (M) is the intensity of the source and is
the number of photons per aperture per integration time.
This is a result of two compensating factors, as we saw in
Section 4, namely, the number of independent bispectrum
phasors that grows as n 3 and the mean value of each bispec-
trum phasor that decreases as n-

3 because of beam splitting.
Since the maximum useful area of the aperture can be the
spatial coherence area and the maximum integration time
the coherence time of the light signal at the apertures, this
limiting expression implies that the limiting sensitivity for
ground-based optical interferometry is (M) < 1. For exam-
ple, assuming that (M) = 0.3 and a y 0.7 (instrumental
decorrelation, etc.), we find that the SNR per frame [Eq.
(4.10)] is 0.03. Thus, to get a 5-a detection we would need 1
X 105 frames, or -1/2h, assuming a frame integration time of
10 msec. This corresponds to a visual magnitude of 13
(with implicit assumptions of net detective and optical effi-
ciency of 10%, coherence volume, namely, the product of the
spatial coherence area and temporal coherence scale, of 0.8
cm2 sec, and a fractional bandwidth of 20%). Insisting that a
bispectrum SNR (per frame) be 2.5 would result in (M) =
25 and a limiting magnitude of -8.5 (where n is assumed to
be 6). These limits are unfortunately somewhat uninterest-
ing in that many of the exciting astrophysical sources, such
as active galectic nuclei, are typically a factor of 102 fainter
than these limits. This discussion highlights the need for
increasing the coherence volume by techniques such as that
of the laser guide star.

It is interesting to note that even an nCn interferometer
(i.e., one for which all the n beams combine onto one detec-
tor) has the same limiting magnitude2 as an nC2, up to a
factor of order unity. The beam-combination geometry
merely changes the intensity at which the transition from an
ideal Michelson performance to the less ideal intensity-lim-
ited performance occurs.

In the high photon limit, we show that the bispectrum
phasors that share a common baseline are correlated with a
correlation coefficient of 1/3 and are essentially uncorrelat-
ed in the low photon limit. Thus any algorithm designed for
producing images from bispectral data must take into ac-
count this covariance between the observables.

Since the transition from an ideal Michelson performance
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to the intensity-limited regime depends on whether y2(N) (n
- 2)1/2 = -y2 (M) (n - 2)1/2 /(n - 1) - zy2(M)n-l/ 2 is more than
or less than unity, it is clear that the smaller the value of n,

the better; i.e., the fewer the beam splitters employed, the
better it is for sensitivity. This is best seen in Fig. 2 in which
we find that there is little gained by going from a 10-element
array to a 20-element array. The situation is probably even
worse in practice since any systematic error (e.g., stray light
due to laser metrology system) will affect a 20-element nC2
array much more than a 10-element array. Thus we argue
that it is more efficient to operate a 20-element array as 4
independent 5-element subarrays.

All along we have been restricting our discussion to the
point-source sensitivity, whereas in practice interferometers
are used for studying a variety of objects. We now argue
that beam splitting is deleterious for extended sources as
well. The argument has two steps: (1) The transition from
the high photon to the low photon regime depends on
l2(M)n1/ 2 being greater than or less than unity, respective-
ly. (2) Once a triplet of baselines is in the low photon regime
then the SNR of that bispectrum phasor is very poor:
9y3(M)31 2n-3/2 instead of y(M 1 2n-1/2 . Consider an extend-
ed source of a given (M). Then those baselines that resolve
the source have - considerably below unity. From step (1) it
should be clear that with y less than unity it is important to
keep n as low as possible in order to keep most baselines in
the high photon limit. Thus the smaller the value of n, the
better it is. Also, as explained in Section 5, it may be that
bispectral-imaging methods break down at low SNR's. This
agains favors minimizing the beam splitting. From the
point of view of image construction, it is necessary to cover as
many spatial frequencies as fast as possible. This in turn
favors simultaneous measurements of many spatial frequen-
cies, i.e., more beam splitting. However, as was argued in
step (2) above, the penalty for being in the low photon limit
is severe, and the resulting loss in SNR is not compensated
for by the additional increase in the number of baselines (the
increase in additional baselines scales as n2, whereas the
penalty for a decreased SNR goes as y2n-1 and for y << 1 it is
easy to see that the trade-off is in favor of small n). A
compromise is to operate the array as many subarrays with
each subarray collecting different sets of spatial frequencies.

In sum, there is a hard limit to the sensitivity of ground-
based interferometers (M) ' 1, independent of n. To im-
prove over this limit, we must increase the coherence vol-
ume. For compact sources as well as extended sources, we
argue that, in the low photon limit, it is better to split the
array into multiple subarrays (each measuring either the
same set or preferably a different set of spatial frequencies).
Use of the subarrays does not improve the limiting sensitiv-
ity but improves the dynamic range. This is best realized
for compact sources for which the increase is by a factor of
rn/n, where m is the total number of apertures and n is the

number of apertures in one nC2 array. For an extended
source the resulting increase in dynamic range is not clear,
since, by minimizing beam splitting, we decrease the imag-
ing speed but increase the SNR of the observables. Simula-
tions of extended objects are necessary for obtaining a defin-
itive understanding of this trade-off.

Any instrumental decorrelation, whether due to finite
bandwidth, aperture size, source motion, or other reasons,
will make the effective photon number smaller by a factor of
y2. The limiting SNR in the map also scales as y3. Thus,

for the highest sensitivity, instrumental decorrelation
should be minimized.

Bispectrum imaging, on account of its insensitivity to the
atmospheric phase corruption, can work with low SNR per
baseline per frame, while the limiting value of the SNR of
the fringe phasor in self-calibration imaging is -2 per base-
line per frame. Thus for bright sources (i.e., the Michelson
regime) one need not measure the bispectrum phasors, and
self-calibration can be used with the observed Michelson
fringe phasors. However, once the SNR of the fringe phasor
(per frame) falls below -2 then the observables that work
are the fringe powers and bispectrum phasors. In this re-
gime a large number of frames of data have to be accumulat-
ed in order to increase the SNR of the bispectrum phasors.
In this limit the bispectrum phasors are uncorrelated, and
hence any algorithm should use all the -n 3 bispectrum pha-
sors. A hybrid algorithm is needed in which, for the first
step, the fringe phases are solved for using all the bispectrum
data and, in the next step, self-calibration is applied in order
to yield an image, etc. Alternatively, following the philoso-
phy of self-calibration, one may attempt iteratively to fit the
model directly to the bispectrum phasors by using con-
straints of positivity and finiteness. We prefer the latter
algorithm and urge its development.

APPENDIX A. SNR OF FRINGE POWER

In this appendix we carry out a rigorous estimate of the
fringe power qj. The derivation of variance of fringe power
in the case of speckle interferometry can be found in the
literature.7"18 However, these results are not really applica-
ble to an nC2 interferometer employing small apertures (i.e.,
only one speckle). Our results essentially agree with that of
Ref. 7.

Dropping the index j to avoid clutter, we note that

V(q) (q2 ) - (q) 2

= I exp[iw(p - q)]k(p)k(q) - E k(r)}
P q r

X {a E exp[-iw(s - t)]k(s)k(t) -

e t

- a exp[i(p - q)]k(p)k(q) -

* k(u)}
I kU r )~

\2

* k kr ) 
r 

= I I I I exp[iw(p - q - s + t)]
p q s t

X (k(p)k(q)k(s)k(t)) - 2 E E exp[iw(p - q)]
p q u

X (k(p)k(q)k(u)) + E E (k(r)k(u))
r u

-(I exp[iw(p - q)]k(p)k(q) - k(r)
p q r

(Al)

where w is the spatial frequency corresponding to the base-
line j. From the general relation in the Poisson statistics for
the count k at a given pixel
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(k(k-1) ... (k-m + 1)) = (k) m , (A2)

the following relations for the averages of second-, third-,
and fourth-order products of k(p) are obtained:

(k(p)k(q)) = (k(p))(k(q)) + pq(k(p)), (A3)

where pq is Kronecker's symbol;

(k(p)k(q)k(r)) = (k(p))(k(q))(k(r)) + bpq(k(p))(k(r))

+ eqr(k(p))(k(q)) + brp(k(q))(k(r)) + bpqr(k(p)), (A4)

where bpqr = l(p = q = r) or 0 (otherwise); and

(k(p)k(q)k(r)k(s)) = (k(p))(k(q))(k(r))(k(s))

+ pq(k(p))(k(r))(k(s)) + pr(k(p))(k(q))(k(s))

+ 6ps(k(p))(k(q))(k(r)) + bqr(k(p))(k(q))(k(s))

+ q(k(p))(k(q))(k(r)) + 5,,(k(p))(k(q))(k(r))

+ pqr(k(p))(k(s)) + pqs(k(p))(k(r)) + 6p,,(k(p))(k(q))

+ tqrs(k(p))(k(q)) + bpqrrs(k(p))(k(r))

+ prqqs(k(p))(k(q)) + bipsqr(k(p))(k(q)) + pqrs(k(p)),

(A5)

where pqrs = l(p = q = r = s) or 0 (otherwise).
By inserting Eqs. (A3)-(A5) into Eq. (Al), we obtain

V(q) = 4(N) 2 + 4(N)IZ(W)12

+ [Z(w)2Z*(2w) + Z*(w)2Z(2w)] + IZ(2w)12, (A6)

where Z() = E PeiwP(k(p)) = yj(N) and Z(2w) = P-
e2iwP(k(p)). This spurious harmonic noise Z(2w) is typical
of a photon-noise-limited power spectrum 8 but is complete-
ly unimportant for an C2 array since different baselines
correspond to different detectors. Note that terms enclosed
in the parentheses correspond to the bispectrum phasor
defined by spatial frequencies and 2w. Since each detec-
tor has only one spatial frequency, , the second harmonic
terms are identically zero. We thus finally obtain

V(q) = 4(N) 2 (l + yJ2(N)). (A7)
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