Citron Binds to PSD-95 at Glutamatergic Synapses on Inhibitory Neurons in the Hippocampus

Wandong Zhang, Luis Vazquez, Michelle Apperson, and Mary B. Kennedy
Division of Biology, California Institute of Technology, Pasadena, California 91125

Glutamate is the principal excitatory transmitter in the vertebrate brain. Our laboratory is interested in understanding the organization of signaling complexes at glutamatergic synapses. We have identified several proteins associated with the postsynaptic density (PSD), a filamentous cytoskeletal structure attached to the postsynaptic membrane of excitatory glutamatergic synapses in the CNS. One of these is the scaffold protein PSD-95 (Cho et al., 1992; Hunt et al., 1996; Kennedy, 1997), which is believed to attach NMDA-type glutamate receptors to internal signaling molecules at the synapse (Kornau et al., 1995; Niethammer et al., 1996). Other proteins of the PSD-95 family, including PSD-93/Chapsyn, SAP-102 (synapse-associated protein), and hDLG/SAP97, are present at distinct but overlapping sets of synapses in the CNS (Cho et al., 1992; Kistner et al., 1993; Muller et al., 1995; Brennan et al., 1996; Hunt et al., 1996; Laube et al., 1996; Muller et al., 1996). These proteins belong to the membrane-associated guanylate kinase (MAGUK) family, which includes other intercellular junctional proteins, such as ZO-1 in tight junctions anddlg-A in Drosophila sepnate junctions (Woods and Bryant, 1991; Willott et al., 1993). MAGUKs all contain three NH2-terminal PDZ (PSD-95/Discs large/ZO-1) domains, an SH3 domain, and a COOH-terminal guanylate kinase domain that is enzymatically inactive but may serve as a protein interaction motif (Kim et al., 1997). The first and second PDZ domains of PSD-95 may participate in the clustering of NMDA-receptors at vertebrate glutamatergic synapses and of K+ channels at cerebellar pinceau junctions and Drosophila neuromuscular junctions via interaction with a short COOH-terminal sequence, the ts/TXV (terminal S/TXV) motif (Kim et al., 1995; Kornau et al., 1995; Niethammer et al., 1996; Tejedor et al., 1997). These findings have led to the hypothesis that PSD-95 and its relatives act as molecular scaffolds at the synapse. Indeed, PDZ domain-containing proteins appear to perform a variety of scaffolding functions. Genetic confirmation of this idea comes from work on the InaD mutant of Drosophila melanogaster. The protein encoded by InaD contains five PDZ domains and anchors the light-activated TRP ion channel in a complex with its effector proteins phospholipase Cβ (Chevesich et al., 1997; Tsunoda et al., 1997) and protein kinase C (Tsunoda et al., 1997).

A variety of proteins that interact with protein-binding domains in PSD-95 have been identified. These include GAKAP (guanylate kinase domain-associated protein) (Kim et al., 1997) and neurologin (Irie et al., 1997) and CRIP1 (Niethammer et al., 1998), which interact with the third PDZ domain. SynGAP, a Ras GTPase activating protein, is nearly as abundant in the PSD fraction as PSD-95 itself (Chen et al., 1998) and can associate with all three of the PDZ domains in PSD-95 (Kim et al., 1998). SynGAP can be phosphorylated by Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) in the PSD fraction and its GAP activity is reduced after phosphorylation (Chen et al., 1998). Thus, SynGAP and CaM kinase II constitute a signal transduction complex associated with the NMDA receptor.

Here, we describe an additional signaling molecule that interacts with PSD-95 at synapses. Citron was first identified in a yeast two-hybrid screen for proteins that interact with the activated form of Rho GTPase (Madaule et al., 1995) and is a brain specific...
Table 1. Amino acid sequences of four tryptic peptides

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Amino acid sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peptide 1</td>
<td>VITDLLEQNLITEDNENLNXQ</td>
</tr>
<tr>
<td>Mouse citron 523–542</td>
<td>VITDLLEQNLITEDNENLNXQ</td>
</tr>
<tr>
<td>Peptide 2</td>
<td>FYLETGAKLEAQRN</td>
</tr>
<tr>
<td>Mouse citron 399–414</td>
<td>FYLETGAKLEAQRN</td>
</tr>
<tr>
<td>Peptide 3</td>
<td>LTQGLXALDRADLKLTER</td>
</tr>
<tr>
<td>Mouse citron 755–774</td>
<td>LTQGLXALDRADLKLTER</td>
</tr>
<tr>
<td>Peptide 4</td>
<td>LTQGLXALDRADLKK</td>
</tr>
<tr>
<td>Mouse citron 755–771</td>
<td>LTQGLXALDRADLKK</td>
</tr>
</tbody>
</table>

Amino acid sequences of four tryptic peptides purified from a digest of PSD-up180 from rat PSD fraction (Moon et al., 1994; Apperson et al., 1996) are identical to mouse citron (Madaule et al., 1993). Ambiguities in the original peptide sequences are denoted by X. Each original peptide sequence is aligned with the corresponding numbered sequence from mouse citron.

A splice variant of citron kinase, a Rho effector expressed in several tissues other than brain (Madaule et al., 1998). We show that in cultured hippocampal GABAergic neurons citron is expressed at high levels and is concentrated at postsynaptic sites in association with PSD-95; however, it is not expressed at high levels in hippocampal glutamatergic neurons. In contrast, the a-subunit of CaM kinase II is expressed only in glutamatergic neurons (Jones et al., 1994; Sik et al., 1998). In cultured hippocampal neurons, SynGAP is expressed at high levels in glutamatergic neurons and is undetectable in most, but not all, inhibitory neurons.

PSD-95 appears to act as a scaffolding molecule and can associate with several proteins that possess a TS/TXV motif at their carboxyl end, including the NMDA receptor. At glutamatergic synapses, it forms functional complexes of signaling molecules anchored to NMDA receptors (Kornau et al., 1997). Our results support the idea that the signaling complexes formed by PSD-95 at glutamatergic synapses are determined in part by the complement of PDZ-interacting proteins expressed in the postsynaptic neuron. Interestingly, citron and CaM kinase II are strictly segregated between glutamatergic and GABAergic neurons in the hippocampus but not in other brain regions. Therefore, the composition of postsynaptic signal transduction complexes at glutamatergic synapses can differ among neurons of otherwise similar cell types that are situated in different brain regions.

A complementary study, “Citron, a Rho-Target, Interacts with PSD-95/SAP-90 at Glutamatergic Synapses in the Thalamus, by Furuyashiki et al. appears in this issue on pages 109–118.

MATERIALS AND METHODS

Purification of citron from the PSD fraction. Purification from the PSD fraction of a protein band containing a mixture of densin-180 and citron was performed as described by Apperson et al. (1996). Briefly, the PSD fraction was prepared as described previously (Cho et al., 1992) and extracted with 1% N-octyl glucoside at 4°C for 30 min. The insoluble pellet was treated with a mixture of endoglycosidase F and N-glycosidase F to shift the mobility of copurifying NR2B. The protein band termed previously PSD-up180 (Moon et al., 1994) was cut from the gels. Proteins contained in the band were electroeluted, transferred to nitrocellulose, and trypsinized. The tryptic peptides were fractionated on C4 and C18 HPLC columns. Seven pure peptide peaks were collected and sequenced by gas phase sequencing. Three of the peptide sequences are contained in densin-180 (Apperson et al., 1996). The other four (Table 1) match the sequence of mouse citron (Madaule et al., 1995).

Molecular cloning of rat citron. Two oligonucleotides, 5‘-TGGG

ATCCGGAGGCCGACAGAGGGCCCAAGA-3’ and 5‘-TGGGATCCC

TCCTCGAGCTGGATATAC-3’, were designed to encode two of the HPLC tryptic peptides identical to mouse citron (peptide 2 and peptide 1) (Table 1). A PCR fragment encoding part of rat citron was amplified by reverse transcription-PCR of rat forebrain poly(A) RNA with the two primers. The fragment was used to screen a Phage cDNA library of rat brain (Clontech, Palo Alto, CA). Four overlapping clones that together encode the entire length of rat citron were isolated and sequenced, and the combined sequences were deposited in the GenBank database (accession number AF 039218).

Antibodies. A peptide, QGLQELADLRDKLE Kurtner, was synthesized by the California Institute of Technology Microchemistry Laboratory based on one of the citron peptides purified by HPLC (peptide 3) (Table 1). The peptide was conjugated to keyhole limpet hemocyanin and was used as antigen to immunize rabbits (Cocalico Biologicals, Inc). Antibodies termed CT261 and CT262 obtained from these rabbits were used for Western blots at 1:1000 dilution.

A cDNA fragment encoding the C-terminal 144 residues of citron was cloned into the vector pGEX5X3 (Pharmacia, Piscataway, NJ). The resulting glutathione S-transferase (GST) fusion protein was expressed in *Escherichia coli* DH5α. The fusion protein was affinity purified on glutathione–agarose beads, fractionated by SDS-PAGE, electroeluted from gels, and sequenced as described previously (Moon et al., 1994), and used to immunize mice to produce polyclonal ascites fluid (ascites 3A) as described previously (Ou et al., 1993) and to immunize rabbits to obtain polyclonal antiserum CT295 (Cocalico). A second cDNA fragment encoding residues 326–918, which comprise approximately two-thirds of the coiled-coil domain of citron, was inserted into pGEX5X3. The GST fusion protein encoded by this construct was expressed in *E. coli* DH5α, concentrated, and affinity purified on glutathione–agarose beads as described above. The fusion protein was then used to immunize mice to produce polyclonal ascites fluid (ascites 1B).

Rabbit polyclonal antisera against nonphosphorylated CaM kinase II was raised and purified as described by Patton et al. (1993). The purified antiserum recognizes both the α and β subunits of CaM kinase II (Patton et al., 1993). Because 75–85% of the kinase is nonphosphorylated in rat brain (Molloy and Kennedy, 1991), the qualitative staining pattern is the same as the pattern for total CaM kinase II. Mouse monoclonal antibody 6G9 against the α subunit of CaM kinase II was obtained as described previously (Erondu and Kennedy, 1985). Rabbit polyclonal antisera against glutamic acid decarboxylase (GAD)-67 was purchased from Chemicon (Temecula, CA). Antibodies were visualized with fluorescein-conjugated goat anti-rabbit IgG (ICN Biochemicals, Costa Mesa, CA) or Cy3 conjugated goat anti-mouse IgG (Chemicon).

Immunoblots. Immunoblots of subcellular fractions (see Fig. 2) were performed as described previously (Cho et al., 1992), with anti-citrine serum (CT261) diluted 1:1000. Immunobots of 100 μg of rat forebrain homogenate (see Fig. 7) were performed with ascites 1B at a dilution of 1:500 as described previously (Cho et al., 1992). Bound antibodies were visualized by incubation of the anti-mouse IgG coupling agent coupled to alkaline phosphatase. To preadsorb the antiserum with its antigen, ascites 1B was mixed with the GST fusion protein at a molar ratio of 1:3 overnight at 4°C. Preabsorption with antigen eliminated the staining of citron on immunoblots of brain tissue and in fixed brain sections (see Fig. 7).

Yeast two-hybrid tests. Four different portions of the cDNA encoding citron were amplified by PCR: C-terminal residues 1476–1619, 1476–1612, 1589–1619, and 1589–1612. The four cDNA fragments were cloned into the pAS2-1 vector (bait vector; Clontech) to generate pAS2-1/1, pAS2-1/2, pAS2-1/3 and pAS2-1/4, respectively, encoding fusion proteins with each of the four sequences and the GAL4 DNA binding domain. PSD-95 cDNA was cloned into the pACT2 vector (prey vector) to generate a fusion protein with the GAL4 DNA activation domain. The ability of the C terminus of citron to bind to PSD-95 was tested directly by yeast two-hybrid assay in Y187 cells cotransformed with pAS2-1/1 and pACT2/PD-95. To identify the portion of the C-terminal tail of citron that is necessary for interaction with PSD-95, pAS2-1/2, pAS2-1/3, and pAS2-1/4 were cotransformed with pACT2/PD-95 into Y187. Interaction between proteins encoded by bait and prey vectors was assessed by the formation of blue colonies after incubation with X-gal on SD/-A medium (containing the desired nutrients and supplements). To identify the region of PSD-95 that interacts with the citron C terminus, a fragment library of PSD-95 in the pGAD GH vector (a prey vector), kindly provided by Hans-Christian Kornau and Peter Seeburg (Max Planck Institute for Medical Research, Heidelberg, Germany), was clustered by gas phase sequencing. Three of the peptide sequences are contained in densin-180 (Apperson et al., 1996). The other four (Table 1) match the sequence of mouse citron (Madaule et al., 1995).
A-Sepharose into SDS-PAGE sample buffer, fractionated by SDS-PAGE, times with IP buffer. Precipitated proteins were eluted from Protein A-Sepharose complex was washed once with 1% Triton X-100 and three Proteins related to citron. A family of proteins that are effectors for the Rho/Rac/Cdc42 GTPases have domain structures (see Results). MRCK, Myotonic dystrophy kinase-related kinase; GEF, GEF, GEF, Rho-1 guanine nucleotide exchange factor; PH, pleckstrin homology domain; CMG, citron/MRCK/Gek domain; tSXV, terminal S/TXV motif predicted to bind PDZ domains. The structures of cDNAs reveal two apparent alternative splice sites where two 15 residue sequences can be inserted (indicated by V). B, Proteins related to citron. A domain structure of citron. Figure 1. Sequences related to citron. A. Domain structure of citron. Ring-H2, Ring-H2 finger domain; CMG, citron/MRCK/Gek domain; tSXV, terminal S/TXV motif predicted to bind PDZ domains. The structures of cDNAs reveal two apparent alternative splice sites where two 15 residue sequences can be inserted (indicated by V). B. Proteins related to citron. A family of proteins that are effectors for the Rho/Rac/Cdc42 GTPases have domain structures similar to citron (see Results). MRCK, Myotonic dystrophy kinase-related kinase; GEF, GEF, Rho-1 guanine nucleotide exchange factor; PH, pleckstrin homology domain; CMG, citron/MRCK/Gek domain. Sequences range from 26 to 43% identical to citron. Black boxes indicate four or more identities to citron. Open boxes indicate other identities. screened with pAS2–1/1 as bait. Positively interacting cDNA clones were isolated and sequenced as described previously (Kornau et al., 1995). Coimmunoprecipitation. PSD fraction (150 μg) extracted once with Triton X-100 (Cho et al., 1992) was solubilized by a 10 min incubation at room temperature in 2% SDS in immunoprecipitation (IP) buffer [137 mM NaCl, 2.7 mM KCl, 4.3 mM NaHPO₄, 1.4 mM KH₂PO₄, 5 mM EDTA, 5 mM EGTA, 1 mM NaVO₃, 10 mM NaPPi, 50 mM NaF, 0.1 mM phenylmethylsulfonyl fluoride, and 1X protease inhibitor cocktail (Boehringer Mannheim, Indianapolis, IN)]. After solubilization, the mixture was diluted with 5 vol ice-cold 2% Triton X-100 in IP buffer as described previously (Lau et al., 1996). The mixture was incubated with 8 μl of anti-citron serum (CT261) diluted 1:500. Preadsorption of the antibodies with antigen entirely blocked staining. For double-labeling experiments, mouse monoclonal anti-citron-PSD-95 (6G6) (Cho et al., 1992) was diluted 1:1000, rabbit anti-NR2B antisera (Xandria) (Kornau et al., 1995) was diluted 1:200, and mouse monoclonal anti-CaM kinase II antibody (6G9) (Erondu and Kennedy, 1985) was used at 20 μg/ml. Mouse anti-SynGAP ascites antibodies (anti-GAP) (Chen et al., 1998) were diluted 1:500. We used an antibody against GAD as a marker for GABAergic neurons. For double-labeling experiments with this antibody, cells were fixed in 4% paraformaldehyde and labeled as described previously (Craig et al., 1994). Rabbit polyclonal anti-GAD antibody (Chemicon) was diluted 1:1000, and mouse anti-citron antibody (ascites 1B) was diluted 1:300. Antibodies were labeled with fluorescein-conjugated goat anti-rabbit IgG (Cappel, West Chester, PA) or Cy3 conjugated goat anti-mouse IgG (Chemicon) diluted 1:100. Coverslips were mounted on glass slides and viewed in a Zeiss (Oberkochen, Germany) LSM310 fluorescence laser-scanning confocal microscope with a 63X oil immersion objective at zoom setting 1 or 2. Immunocytochemistry of tissue sections. Sprague Dawley rats (6- to 8-week-old) were perfused transcardially under Nembutal anesthesia with PBS (0.9% NaCl and 0.02 mM NaPO₄, pH 7.4) for a few seconds and then with 500 ml of 4% paraformaldehyde in 0.1 M NaPO₄, pH 7.4. The head was cooled on ice for 20 min, and then the brain was removed and sectioned into 50 μm coronal or sagittal sections in cold PBS on a vibratome. Free floating sections were processed essentially as described by De Camilli et al. (1983). They were permeabilized with 3% Triton X-100, treated with 0.1% glycine in PBS, and then preincubated with preblock buffer (5% normal goat serum, 0.45 mM NaCl, and 20 mM NaPO₄, pH 7.4). Sections were incubated overnight at 4°C in ascites 1B (1:100), anti-GAD-67 (1:1000), or anti-CaM kinase II antisemur (1:200) in pre-
Sections were then washed three times for 15 min each in preblock buffer and incubated for 1 hr at room temperature in fluorescein-conjugated goat anti-rabbit or Cy3-conjugated goat anti-mouse IgG diluted 1:100 in preblock buffer. The sections were washed once in preblock buffer, rinsed twice in PBS, post-fixed in 2% paraformaldehyde for 10 min, and mounted on slides in 80% glycerol, 0.4% p-phenylenediamine, and 0.1 M NaCO3, pH 9.25. The sections were viewed in a Zeiss LSM 310 laser-scanning confocal microscope with 10×, 20×, 40× (1.3 NA), or 63× (1.4 NA) objectives.

Miscellaneous methods. Protein was measured by the method of Peterson (1983). Forebrain homogenates, synaptosomes, and PSD fractions extracted with different detergents were prepared as described by Cho et al. (1992).

RESULTS

Identification of citron in PSD fraction

To gain insight into the molecular organization of the glutamatergic postsynaptic signaling machinery, we have sequenced and cloned proteins that are abundant in isolated PSDs (Kennedy, 1993, 1997). Proteins in a band of ~180 kDa were purified from the PSD fraction by SDS-PAGE (Apperson et al., 1996; Moon et al., 1994). Seven peptides from the trypsinized protein band were purified by HPLC and sequenced by gas phase Edman degradation. Three of the seven peptides were present in densin-180, a postulated synaptic adhesion molecule (Apperson et al., 1996). A BLAST search of the GenBank database revealed that the remaining four peptide sequences (Table 1) are present in a protein named citron previously identified in mouse by the yeast two-hybrid method as a GTP–Rho binding partner and proposed to be a Rho/Rac effector (Madaule et al., 1995).

Citron interacts with the GTP-bound forms of Rho and Rac1, but not with Cdc42 (Madaule et al., 1995). It contains a long N-terminal region that is predicted to form a coiled-coil and includes the Rho-binding motif. This domain is followed by a ring finger motif, a PH domain, a proline-rich region, and a tS/TXV motif (Madaule et al., 1995) (Fig. 1). We isolated the cDNA encoding rat citron and found that the encoded protein is ~98% identical to mouse citron. Analysis of several overlapping cDNA clones and comparison with the mouse sequence suggests the presence of alternatively spliced variants containing inserts 1 and 2 (Fig. 1). The rat sequences are deposited in the GenBank database (accession number AF 039218).

The BLAST search revealed a human DNA (clone 127H14) in the expressed sequence tag (EST) database, which is 95% similar to mouse citron, as well as several proteins containing domains with sequence similarity to citron. Some of these comprise an apparent family of protein serine/threonine kinases with an arrangement of downstream domains very similar to that of citron,
including coiled-coil regions, a ring finger domain, and a PH domain (Fig. 1B). Myotonic dystrophy kinase-related kinase (MRCK) and MRCK-β are related to the myotonic dystrophy kinase (Leung et al., 1998). Genghis Khan (Gek) is a Drosophila protein kinase that is believed to be a Cdc42 effector (Luo et al., 1997). A predicted protein serine/threonine kinase encoded in the Caenorhabditis elegans genome (GenBank accession number U97001) also appears to be a member of this family, as does Rho-associated kinase (ROK-α) (Leung et al., 1995), Rho-kinase (Matsui et al., 1996), and p160ROCK (Ishizaki et al., 1996), all of which are effectors for the Cdc42/Rac/Rho family.

Residues 1200–1500 in citron are also homologous to se-

Figure 5. Immunofluorescent labeling of citron, GAD, NR2B, and PSD-95 in cultures of dissociated hippocampal neurons. Cultures were grown and labeled with antibodies against the indicated proteins as described in Materials and Methods. A, B, A neuron double stained for GAD (A) and citron (B). Citron stains dendrites and somas (arrow) but not axons (double arrowhead) of >90% of neurons that are stained with anti-GAD antibody. GAD/citron-positive neurons comprise 7–10% of neurons in the cultures. C, D, A neuron double stained for NR2B (C) and citron (D). Punctate labeling by antibody against citron along dendrites in this neuron (arrows) colocalizes with labeling by antibody against NR2B. E, F, A neuron double stained for PSD-95 (E) and citron (F). Punctate labeling by antibody against citron along dendrites of this neuron (arrows) colocalizes with labeling by antibody against PSD-95. Some anti-PSD-95-labeled puncta do not contain citron (arrowhead). Many of these appear to arise from a neighboring citron-negative neuron. Scale bars, 10 μm.
quences in two of the protein kinases involved in signal transduction in the Rho/Rac pathway. The similarity is highest (26–43% identical) in residues 1389–1442 (Fig. 1C) and may define a novel protein domain, which we term a CMG domain (citron/MRCK/Gek). In addition, the Rho-1 GDP–GTP exchange protein 2 (Rho1GEF), a predicted C. elegans protein (GenBank accession number U41994), and the NCK-interacting kinase (NIK) contain a CMG domain. The ROK-α-related kinases lack the novel CMG domain.

Enrichment of citron in the PSD
We raised antibodies against rat citron and prepared immunoblots of the subcellular fractions indicated in Figure 2. Citron is ~12-, 13-, and 7-fold enriched in the one Triton, two Triton, and

![Image of immunofluorescent labeling of citron, the α subunit of CaM kinase II, and p135 SynGAP in cultures of dissociated hippocampal neurons. A, B. A field of three neurons double stained for αCaM kinase II (A) and citron (B). Two neurons (arrowheads) stain positively for αCaM kinase II, and one (arrow) stains positively for citron. The two proteins are present in distinct sets of neurons. The population of neurons that stain for citron represents ~7–10% of the total. C, D. A field of neurons double stained for SynGAP (C) and citron (D). One neuron (arrows) is labeled by both antisera. Several dendrites in the field (arrowheads) are labeled only by antibody against SynGAP. Less than 20% of the citron-positive neurons also contain SynGAP. Essentially all of the citron-negative neurons are labeled by SynGAP. E, F. A field of dendrites double stained for SynGAP (E) and citron (F). Dendrites that contain only SynGAP are labeled with arrowheads. Dendrites that contain only citron are labeled with arrows. Scale bars, 10 μm.](image-url)
Materials and Methods. The fractionated by SDS-PAGE and blotted to nitrocellulose as described in 2 antigen (against citron (1)) as described in Materials and Methods. The sections were photographed at identical microscope settings. The sections were photographed at identical microscope settings. Scale bars, 25 μm.

Figure 7. Specificity of antibodies against citron used for immunocytochemistry. A, Aliquots of homogenate of rat forebrain (100 μg) were fractionated by SDS-PAGE and blotted to nitrocellulose as described in Materials and Methods. The lanes were probed with either ascites 1B against citron (I) or the same amount of ascites 1B preabsorbed with antigen (2) as described in Materials and Methods. B, C, Hippocampal pyramidal layer in area CA1 labeled with anti-citron antisera (B) and a neighboring section labeled with anti-citron antiserum preadsorbed with antigen (C) as described in Materials and Methods (40× lens objective). The sections were photographed at identical microscope settings. D, E, Thalamic neurons labeled with anti-citron antisera (D) and a neighboring section labeled with anti-citron antiserum preadsorbed with antigen (E) as described in Materials and Methods (40× lens objective). The sections were photographed at identical microscope settings. Scale bars, 25 μm.

sarcosyl-extracted PSD fractions, respectively, compared with synaptosomal fractions (Fig. 2), suggesting that citron associates specifically with proteins in the PSD fraction.

Association of citron with PSD-95
Both mouse and rat citron contain the COOH-terminal sequence QSSV, which fits the TS/TXV motif that binds to certain PDZ domains in PSD-95 (Kornau et al., 1995; Niethammer et al., 1996). Therefore, we used the yeast two-hybrid system to test whether citron binds directly to PSD-95. The results (Fig. 3) show that citron interacts with PSD-95, and this interaction is dependent on the presence of the terminal QSSV. We screened a fragment library of PSD-95 cDNA to determine which domains of PSD-95 interact with citron and found that it can interact with both PDZ2 and PDZ3 of PSD-95 but appears to prefer PDZ3. Nine of 12 interacting clones encode the full PDZ3 domain; the other three encode PDZ2. Niethammer et al. (1998) reported that the C-terminal sequence QTSV in CRIPT is critical for preferential binding to PDZ2 and PDZ3 over PDZ1 of PSD-95. Mutation to QT DV switched the binding specificity to PDZ1 and PDZ2. Additional mutation to ET DV, which is identical to the C-terminal sequence of NR2B, enhanced the specificity for PDZ1 and PDZ2. The C-terminal sequence QSSV of citron, which is similar to that of CRIPT, is consistent with its favorable binding to PDZ2 and PDZ3.

To test whether citron associates with PSD-95 in brain tissue, citron was immunoprecipitated from a rat brain PSD fraction (Fig. 4). Citron is present in this fraction at <20% of the level of PSD-95 as estimated from Coomassie blue-stained gels. As a positive control, NR2B, which is present in the PSD fraction at approximately the same level as citron, was also immunoprecipitated as described previously (Lau et al., 1996). We did not detect any citron remaining in the supernatant after immunoprecipitation, indicating that precipitation of citron was nearly complete; however, only ~0.3% of the total PSD-95 was immunoprecipitated (Fig. 4, right, estimated from density of bands on immunoblots). Because detergent must be used to partially disrupt the tight associations among proteins in the PSD-fraction before incubation with antibodies, this experiment does not give quantitative information about the amount of PSD-95 associated with citron in the PSD-fraction or in vivo. Three control experiments, however, support the conclusion that PSD-95 forms a specific complex with citron. First, approximately the same amount of PSD-95 coimmunoprecipitated with citron as with NR2B. Second, the α subunit of CaM kinase II, an abundant protein in the PSD fraction, was not detected in the immunoprecipitates (data not shown). Third, PSD-95 was not immunoprecipitated by preimmune serum from the rabbit producing the anti-citron antibody.

Citron is expressed at glutamatergic postsynaptic sites in GABAergic neurons in hippocampal cultures
Anti-citron antibodies visualized by fluorescent labeling were used to study the distribution of citron in dissociated hippocampal neurons grown for 3–5 weeks in culture (Fig. 5). We found that citron is expressed most highly in a subpopulation of neurons representing ~7–10% of the total. We identified the neuronal population expressing high levels of citron as GABAergic neurons by showing that they stain strongly for GAD, a GABAergic marker (Fig. 5A). Citron is expressed at much lower levels within the large population of putative glutamatergic neurons in the cultures and does not appear concentrated in dendrites or synapses of those neurons. Citron is not expressed in glial cells.

In neurons in which citron is highly expressed, dots along dendrites are brightly labeled by the anti-citron antibody. The punctate staining for citron coincides with punctate staining for NR2B (Fig. 5B), suggesting that the puncta are glutamatergic synapses. The punctate staining for citron also colocalizes with that of PSD-95 (Fig. 5C), a marker for glutamatergic postsynaptic sites (Hunt et al., 1996). The staining patterns are consistent with
Figure 8. Immunocytochemical colocalization of citron, GAD, and CaM kinase II in hippocampal inhibitory interneurons. Coronal sections were cut from a rat brain fixed by perfusion as described in Materials and Methods.

A, B. Colocalization of citron and GAD. Area CA1 of the rat hippocampus at approximately bregma −3.3 (Paxinos and Watson, 1998) was double labeled with anti-citron (A) and anti-GAD (B) as described in Materials and Methods (10× lens objective). Arrows, Neurons labeled with both antisera; white arrowhead, neuron labeled with anti-citron and not anti-GAD; black arrowhead, neuron labeled with anti-GAD and not anti-citron. sm, Stratum moleculare; sr, stratum radiatum; sp, stratum pyramidale; so, stratum oriens.

C, D. Colocalization of citron and GAD. Area CA1 of the hippocampus in sections at approximately bregma −3 to −3.5 (Paxinos and Watson, 1998) was double-labeled with antibodies against citron (C) and GAD (D) as described in Materials and Methods (40× lens objective). Arrows, Neurons labeled with both antibodies.

E, F. Colocalization of citron and CaM kinase II. Area CA1 of the rat hippocampus in sections at approximately bregma −3 to −3.5 (Paxinos and Watson, 1998) was double labeled with anti-citron (E) and anti-CaM kinase II (F) as described in Materials and Methods (40× lens). Arrowheads, Neurons labeled with anti-citron antibodies and devoid of labeling with anti-CaM kinase II antibodies. Scale bars, 25 µm.
Figure 9. Immunocytochemical localization of citron, GAD, and CaM kinase II in thalamus and neocortex. Coronal sections were cut from a rat brain fixed by perfusion as described in Materials and Methods. Sections at approximately bregma −3.0 to −3.5 (Paxinos and Watson, 1998) were double stained with antibodies against the pairs of proteins listed below. A, B, The rat thalamus double labeled with anti-citron (A) and anti-GAD (B) as described in Materials and Methods (20× lens objective). Arrowheads, Neurons labeled only with anti-citron antibodies and axons labeled only with anti-GAD antibodies. Very few GAD-positive neurons were seen in the central nuclei of the thalamus. C, D, Thalamus double labeled with anti-citron (C) and anti-CaM kinase II (D) as described in Materials and Methods (20× lens objective). Arrows, Several neurons labeled with both antibodies. E, F, Sensory neocortex double labeled with anti-citron (E) and anti-GAD (F) as described in Materials and Methods (63× lens objective). Arrows, A cell labeled with anti-citron and anti-GAD antibodies; arrowheads, a cell and dendrites labeled with anti-citron antibodies but not anti-GAD antibodies. G, H, Sensory neocortex double labeled with anti-citron (G) and anti-CaM kinase II (H) as described in Materials and Methods (40× lens objective). Arrows, Neurons labeled with both antibodies; arrowheads, neurons labeled with anti-citron antibodies and unlabeled with anti-CaM kinase II antibodies. Scale bars, 25 μm.
a physical association between citron and PSD-95 in these neurons.

Localization of citron in hippocampal cultures compared with that of other synaptic signaling molecules

In contrast to citron, we found that the α subunit of CaM kinase II, a prominent component of PSDs in the forebrain, is expressed only in putative glutamatergic neurons and is not detectable in GABAergic neurons in the cultures (Fig. 6A). The α subunit of CaM kinase II was reported previously to be undetectable in GABAergic neurons in the monkey cerebral cortex (Jones et al., 1994) and in the rat hippocampus (Sik et al., 1998). Furthermore, cDNA encoding αCaM kinase II is undetectable in GABAergic neurons in the monkey basal ganglia, thalamus, and hypothalamus (Benson et al., 1991). Therefore, the absence of αCaM kinase II from GABAergic neurons may be a common feature of forebrain structures. Our results confirm that, in hippocampus, high expression of αCaM kinase II occurs only in glutamatergic neurons, whereas high expression of citron occurs only in GABAergic neurons. Thus, the two signaling molecules are located in distinct populations of synapses.

The synaptic RasGAP protein, SynGAP, is also highly localized at glutamatergic synapses along dendrites (Chen et al., 1998). We double labeled cultured hippocampal neurons for citron and SynGAP and found that SynGAP is concentrated at glutamatergic synapses on excitatory neurons but is present in ~20% of GABAergic neurons (visualized by staining with citron) (Fig. 6C,D) and is undetectable in most GABAergic neurons (Fig. 6C–F). The concentration of both SynGAP and CaM kinase II at glutamatergic synapses on excitatory neurons, colocalizing with NMDA receptors, is consistent with the hypothesis that SynGAP is an important target for phosphorylation by CaM kinase II after activation of NMDA receptors.

In the hippocampus, citron is highly expressed in GABAergic neurons

To check whether the segregation of citron and CaM kinase II into distinct neuronal types is also observed in the intact hippocampus, we double labeled sections of adult rat hippocampus (Figs. 7, 8). As in the cultures, citron staining was observed only in interneurons in hippocampus, identified by costaining with anti-GAD (Fig. 8A–D). The vast majority of GAD-positive neurons stain strongly with anti-citron antibodies. Immunoreactivity can be observed in a punctate pattern along the dendrites of these neurons (Fig. 8C,E), as expected if citron is located at synaptic sites. Similarly, nearly all citron-positive neurons stain with anti-GAD antibodies. In contrast, anti-αCaM kinase II labeled only the glutamatergic pyramidal neurons in hippocampus and did not label GABAergic interneurons that were labeled with citron (Sik et al., 1998) (Fig. 8E,F). Neurons coexpressing citron and GAD are scattered throughout the cell body and neuropil regions in areas CA1 (Fig. 8), CA3, and the dentate gyrus (data not shown) in a pattern described previously for inhibitory interneurons in the hippocampus (Freund and Buzsaki, 1996).

Distribution of citron in brain regions other than hippocampus

In contrast to hippocampal neurons, excitatory neurons in the major nuclei of the thalamus stain strongly with anti-citron antibodies and with antibodies against CaM kinase II but are unstained by anti-GAD antibodies (Fig. 9A–D). Inhibitory neurons in the reticular nucleus of the thalamus also stain strongly with anti-citron antibodies (data not shown). A subset of neurons in the neocortex are labeled with anti-citron antibodies (Fig. 9E–H), but the staining is generally weaker than in the thalamus. Approximately half of these neurons also stain with anti-GAD antibodies, indicating that they are GABAergic. The rest are labeled with antibodies against CaM kinase II, which is expressed only by glutamatergic neurons in the neocortex (Benson et al., 1991; Jones et al., 1994). Large apical dendrites labeled strongly with anti-citron antibodies course radially through layers 2–5 of the sensory cortex (Fig. 9E,G). Many of these appear to arise from the large pyramidal neurons in layers 5 and 6 (data not shown).

As in the neocortex, a subset of neurons in the basal ganglia and nuclei of the amygdala are labeled by anti-citron antibodies. Approximately half of these stain with anti-GAD antibodies and the other half with anti-CaM kinase II antibodies (data not shown). In the cerebellum, only very weak specific staining for citron was observed in the somata of Purkinje neurons and in the glomerular synapses of the granule cell layer (data not shown).

DISCUSSION

The small GTP-binding proteins Rho and Rac participate in regulation of the shape and dynamic movements of the cytoskeleton in a wide variety of cells (Hall, 1998). Here, we present evidence that in hippocampal neurons the putative Rho/Rac effector protein, citron, binds preferentially to the third PDZ domain of PSD-95 and is concentrated at postsynaptic sites at only those glutamatergic synapses made onto GABAergic neurons. The same selectively high concentration of citron observed in cultured GABAergic interneurons from the hippocampus is also evident in intact adult hippocampus. In contrast, citron is present at low levels in glutamatergic neurons in the hippocam-
pus. The relatively high concentration of citron at the excitatory postsynapse in GABAergic neurons suggests that the Rho and Rac GTP-binding proteins may play a special role at these synapses.

Citron was discovered in a yeast two-hybrid screen as a binding protein for the activated form of Rho and can bind to both activated Rho and activated Rac (Madaule et al., 1995). Citron is specifically expressed in neurons, whereas citron-K, a splice variant containing a serine/threonine protein kinase, is expressed in non-neuronal tissues (Madaule et al., 1998). In cultured Chinese hamster ovary cells, citron-K has been shown to mediate regulation by Rho of actin-based contractile events during cytokinesis (Madaule et al., 1998). Together, these observations suggest that citron likely plays a role in regulation of the actin cytoskeleton in neurons by the small GTP-binding proteins Rho or Rac. Expression by transgenesis of a constitutively active form of Rac in cerebellar Purkinje neurons of mice results in a reduction in the size of Purkinje dendritic spines and a dramatic increase in their postsynaptic membrane of glutamatergic synapses varies among principal neurons. Furthermore, CaM kinase II is absent from the postsynaptic side of glutamatergic synapses on hippocampal inhibitory neurons. Thus, the composition of signal transduction machinery at the postsynaptic membrane of glutamatergic synapses varies among neurons throughout the brain in ways that cannot be classified simply. Furthermore, findings regarding the mechanisms of signal transduction and plasticity at hippocampal synapses may not always generalize to synapses in other areas of the brain.

Other postsynaptic cytoskeletal proteins are also located in different subpopulations of glutamatergic synapses in cultured hippocampal neurons. For example, GKAP, a protein of unknown function that binds specifically to the guanylate kinase domain of PSD-95, is more highly concentrated at glutamatergic synapses on GABAergic neurons than at those on glutamatergic neurons (Rao et al., 1998). In contrast, α-actinin, which binds to NR1 competitively with calmodulin (Wyszynski et al., 1997), is found at glutamatergic synapses only in glutamatergic neurons (Rao et al., 1998). Thus, the synaptic localization of CaM kinase II, SynGAP, and α-actinin is complementary to that of citron and GKAP in cultured hippocampal neurons. The localization of postsynaptic molecules in the two classes of hippocampal neurons is summarized in Table 2.

Our data begin to provide a mechanistic explanation for the finding that different signal transduction events can be triggered by the entry of Ca^{2+} through NMDA receptors into glutamatergic versus GABAergic neurons in the hippocampus (see also, Sik et al., 1998). It appears that, in hippocampus, forms of synaptic

Table 2. Summary of the differential expression of signal transduction molecules and cytoskeletal proteins at excitatory postsynaptic sites on glutamatergic and GABAergic neurons in the hippocampus

<table>
<thead>
<tr>
<th>Postsynaptic signaling molecules</th>
<th>Glutamatergic neurons</th>
<th>GABAergic neurons</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citron</td>
<td>–</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>NR2B</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>PSD-95</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>GKAP</td>
<td>+</td>
<td>+</td>
<td>Rao et al., 1998</td>
</tr>
<tr>
<td>p135 SynGAP</td>
<td>+</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>CaM kinase II</td>
<td>+</td>
<td>–</td>
<td>Jones et al., 1994; Sik et al., 1998</td>
</tr>
<tr>
<td>Calcinurin (phosphatase 2B)</td>
<td>+</td>
<td>–</td>
<td>Sik et al., 1998</td>
</tr>
<tr>
<td>α-Actinin</td>
<td>+</td>
<td>–</td>
<td>Rao et al., 1998</td>
</tr>
</tbody>
</table>
plasticity, such as long-term potentiation (LTP) and long-term depression (LTD), will have quite different postsynaptic mechanisms in glutamatergic synapses made onto GABAergic interneurons when compared with glutamatergic synapses made onto excitatory neurons. In particular, the absence of expression of the α subunit of CaM kinase II in GABAergic neurons means that most mechanisms of LTP of glutamatergic synapses onto these neurons will be different from the well studied mechanisms in the Schaffer collateral pathway (Bliss and Collingridge, 1993). Indeed, direct NMDA receptor-dependent LTP does not occur at excitatory synapses on most classes of interneurons in the hippocampus in response to the usual induction stimuli (Maccaferri and McBain, 1996; Maccaferri et al., 1998; Sik et al., 1998). Furthermore, a novel form of LTD occurs at glutamatergic synapses on CA1 interneurons after tetanic stimulation (McMahon and Kauer, 1997). The mixing of a variety of synaptic regulatory mechanisms in different ways among neurons in different parts of the brain seems likely to provide rich variety in the mechanisms by which distinct areas of the brain process and encode information at synapses.

REFERENCES

Bliss TVP, Collingridge GL (1993) A synaptic model of memory: long-term potentiation (LTP) and long-term depression (LTD), will have quite different postsynaptic mechanisms in glutamatergic synapses made onto GABAergic interneurons when compared with glutamatergic synapses made onto excitatory neurons. In particular, the absence of expression of the α subunit of CaM kinase II in GABAergic neurons means that most mechanisms of LTP of glutamatergic synapses onto these neurons will be different from the well studied mechanisms in the Schaffer collateral pathway (Bliss and Collingridge, 1993). In fact, direct NMDA receptor-dependent LTP does not occur at excitatory synapses on most classes of interneurons in the hippocampus in response to the usual induction stimuli (Maccaferri and McBain, 1996; Maccaferri et al., 1998; Sik et al., 1998). Furthermore, a novel form of LTD occurs at glutamatergic synapses on CA1 interneurons after tetanic stimulation (McMahon and Kauer, 1997). The mixing of a variety of synaptic regulatory mechanisms in different ways among neurons in different parts of the brain seems likely to provide rich variety in the mechanisms by which distinct areas of the brain process and encode information at synapses.

REFERENCES

Bliss TVP, Collingridge GL (1993) A synaptic model of memory: long-term potentiation (LTP) and long-term depression (LTD), will have quite different postsynaptic mechanisms in glutamatergic synapses made onto GABAergic interneurons when compared with glutamatergic synapses made onto excitatory neurons. In particular, the absence of expression of the α subunit of CaM kinase II in GABAergic neurons means that most mechanisms of LTP of glutamatergic synapses onto these neurons will be different from the well studied mechanisms in the Schaffer collateral pathway (Bliss and Collingridge, 1993). In fact, direct NMDA receptor-dependent LTP does not occur at excitatory synapses on most classes of interneurons in the hippocampus in response to the usual induction stimuli (Maccaferri and McBain, 1996; Maccaferri et al., 1998; Sik et al., 1998). Furthermore, a novel form of LTD occurs at glutamatergic synapses on CA1 interneurons after tetanic stimulation (McMahon and Kauer, 1997). The mixing of a variety of synaptic regulatory mechanisms in different ways among neurons in different parts of the brain seems likely to provide rich variety in the mechanisms by which distinct areas of the brain process and encode information at synapses.

REFERENCES

Bliss TVP, Collingridge GL (1993) A synaptic model of memory: long-term potentiation (LTP) and long-term depression (LTD), will have quite different postsynaptic mechanisms in glutamatergic synapses made onto GABAergic interneurons when compared with glutamatergic synapses made onto excitatory neurons. In particular, the absence of expression of the α subunit of CaM kinase II in GABAergic neurons means that most mechanisms of LTP of glutamatergic synapses onto these neurons will be different from the well studied mechanisms in the Schaffer collateral pathway (Bliss and Collingridge, 1993). In fact, direct NMDA receptor-dependent LTP does not occur at excitatory synapses on most classes of interneurons in the hippocampus in response to the usual induction stimuli (Maccaferri and McBain, 1996; Maccaferri et al., 1998; Sik et al., 1998). Furthermore, a novel form of LTD occurs at glutamatergic synapses on CA1 interneurons after tetanic stimulation (McMahon and Kauer, 1997). The mixing of a variety of synaptic regulatory mechanisms in different ways among neurons in different parts of the brain seems likely to provide rich variety in the mechanisms by which distinct areas of the brain process and encode information at synapses.

REFERENCES

