Kinetics of binary nucleation: Multiple pathways and the approach

to stationarity
G. Shiand J. H. Seinfeld

Department of Chemical Engineering, California Institute of Technology, Pasadena, California 91125

(Received 7 June 1990; accepted 13 September 1990)

Explicit analytical expressions are obtained for the rate of nucleation over different paths in a
binary system. It is shown that anisotropy in reaction rates and anisotropy in the free energy
surface can cause nucleation to occur bypassing the saddle point. Homomolecular nucleation is
demonstrated to be the natural limit of binary nucleation as the concentration of one
component goes to zero. Explicit expressions are also obtained for the time lag of binary
nucleation by using the singular perturbation approach. It is shown that the time lag associated
with different paths of nucleation is essential in determining the relative importance of

different nucleation pathways.

I. INTRODUCTION

The identification of a preferred nucleation pathway is
essential both for definition of the mechanism of nucleation
and calculation of the nucleation rate in a binary system. The
nucleation pathway in the classical theory of binary nuclea-
tion' is found to go across a saddle point in the free energy
surface (G) for the formation of a mixed particle. The steep-
est descent path corresponding to the minimum energy di-
rection on the surface is defined solely in terms of the geo-
metrical properties of the formation free energy surface
without consideration of the monomer concentrations in the
system.”* Consequently, the classical theory of binary nu-
cleation based on the steepest descent path is not kinetically
consistent in that it does not reduce correctly to one compo-
nent homogeneous nucleation theory when one component
vanishes.”™ Large discrepancy is also found between the
predictions of the classical theory and experimental observa-
tions when the concentration of one component is signifi-
cantly different from that of the other component.’

Based on a general multicluster coordinate nucleation
theory,® Stauffer” has obtained the correct direction of the
nucleation path by considering the properties of both the
formation free energy surface and of the nucleating compo-
nents. His result confirmed an earlier suggestion by Stauffer
and Kiang.> However a correct expression for the rate of
binary nucleation in a system with significantly different
concentrations of the two components has not been ob-
tained,” nor has an expression for the rates of nucleation
taking different paths and their relative contributions to the
total rate of nucleation. Recent attempts along these lines
have been made by Trinkaus,” however a consistent theory
of nucleation in a binary system, which reduces correctly to
the homomolecular nucleation of one component when the
other component is made to vanish, has yet to be developed.

To develop such a theory is one goal of the present pa-
per. An additional goal is to study the role of nonstationarity
at the initial stage of nucleation in determining the relative
importance of different paths.

The present paper is structured as follows. We will first
show that the physical picture of binary saddle point nuclea-
tion is similar to that of homomolecular nucleation and the
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singular pertubation approach used in uniary nucleation can
be followed to treat the present binary nucleation problem.
Using that approach, we will derive the steady state binary
nucleation rate in the case of the cluster flux line going over
the saddle point and compare the result with those existing.
Then an analysis of multiple nucleation pathways will be
given. The relative magnitude of the steady state rate of nu-
cleation over different paths in a binary system will be shown
to be controlled not only by the anisotropy in the reaction
rates but also by the anisotropy in the shape of the free ener-
gy surface. In particular, a continuous transition between
heteromolecular nucleation and homomolecular nuclation
in a binary system will be predicted. Next, using the singular
perturbation approach, we will derive an explicit expression
for the effective time lag for binary nucleation. It will be
shown that the time lag associated with establishing differ-
ent nucleation paths is essential in determining the relative
importance of different stationary nucleation pathways in
contributing the total rate of nucleation.

Il. SINGLE NUCLEATION PATHWAY: CLUSTER FLUX
LINES GO OVER THE SADDLE POINT

A. Basic equations

The basic equation governing the time-dependent clus-

ter number concentration f(g,,g,,t) may be written as"?’
(8a8st) _  Fa iy )
ot dg, Jg,’

where g; is the monomer number in a cluster (i = a,b), and
the cluster flux in composition space is given by

jo= ~ RS LI = R, WD g
g, I8,

where the equilibrium cluster size distribution
Jo=noexp[ —BG(g,.8,)] with n, the total monomer
number concentration in the system and G(g,.g, ) is the for-
mation free energy of the clusters.? No explicit form of G is
needed in treating the kinetics of nucleation in the present
work. 8 = 1/kT where k is Boltzmann’s constant and 7 is
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the absolute temperature. The reaction rate R, (g,.8, ) is de-
fined as the collision rate between monomer / and a cluster of
composition (g,.g, ). For example, in the case of gas-phase
nucleation, the reaction rate R, is proportional to the cluster
surface area and the i-component monomer number concen-
tration. ** In diffusion-limited nucleation in a condensed sys-
tem, R, is proportional to the radius of a cluster and to the i-
component monomer concentration.” Both cases will be
considered although no explicit form of R, need be specified.

B. Saddle-point binary nucleation

Consider the case of the saddle point nucleation in a
binary system in which no single species is supersaturated
with respect to its pure state, i.e., the trajectory of cluster flux
lines passes only over the saddle point (conditions for saddle
point nucleation will be clarified below). A supersaturation
with respect to the mixed-component cluster may develop
and clusters may grow spontaneously to be larger stable par-
ticles after passing over the saddle point. The cluster size at
the saddle point is the so-called the critical size. Thus the
physical picture of binary saddle point nucleation is similar
to that of homomolecular nucleation and the approach for
deriving the rate of uniary nucleation has often been fol-
lowed to derive the expression for binary nucleation.’ For
uniary gas-phase nucleation it has been shown® that the clas-
sical steady state rate is exact to the leading order in ¢, a
parameter inversely proportional to (8G*)'/?. Here G * is
the formation free energy barrier at the critical point.

The approach of singular pertubation has proved to be
useful in addressing a number of problems in homogeneous
nucleation theory.®'? It will prove to be similarly useful in
attacking binary nucleation problems. To provide a basis for
the analytical approach of this paper, we will first derive the
rate of binary saddle point nucleation by using that approach
and compare the result with the existing ones."*’

Following the procedure presented previously,® we will
first derive the equations governing cluster number concen-
tration valid in both the outer and inner regions. The inner
region is defined as that in the vicinity of the saddle point. It
also can be called the critical region in which an unstable
cluster becomes a stable cluster by passing over the saddle
point. It is expected that the cluster size distribution within
this region is far from equilibrium. In contrast, the cluster
size distribution in the outer region is close to the equilibri-
um distribution corresponding to the individual monomer
concentrations.

1. Outer solutions

Normalizing Eq. (1) by introducing z=f/f,
m=g,/g*and n = g, /g¥, and by neglecting terms propor-
tional to € and €, where €, = /R */g* and €, = \[R ¥ /g*
which are proportional to (g*)~'/? and (g¥) ~'/3, respec-
tively, for gas-phase nucleation and (g*) ~*¥and (g¥) ~ %3,
respectively, for nucleation in a condensed system, we obtain
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R
’ 'a—zz -2 aﬂ[Gaa+ be (n_l)]_az—
ot g gt m
R G,
—2—jﬂ[Gb,, + (m—l)]ﬁ. (3)
gb a an

ik

We have used to indicate the value at the saddle point.
Also we have used the quadratic expansion for G '*%#

G=G*+G,(g, —g?)2+be(gb—g?)2

+2G,, (g, —8¥)(8 — &2), 4

where G, =13°G/dg:, G, =19°G/dg;, and
G,, =10°G /38,08, atg, = g*and g, = g¥. Thesecond de-
rivatives describe the shape of the saddle point. While this
expansion is more valid near the saddle point, the functional
form is expected to be also correct in the outer region. More-
over, it will be shown later a more detailed expression for G
does not significantly change the result obtained. The above
equation valid in the outer region is not easily solved except
for the case in which no cross term appears in G. We thus
have to diagonalize the matrix

( Gaa Gab )
Gba be ’

which can be accomplished by introducing an ordinary rota-
tional transformation. This transformation can be intro-
duced more clearly in solving for the inner solution given
below.

2. Inner solutions

Introducing the inner variables X = (m — 1)/e,,
Y= (n— 1)/€,,and Z = z, we have the following equation
valid in the inner region from Eqgs. (1) and (2),

oz (1 | XJRZ +uY R z)”
_ =

at

dlnf, 9Z

X(aZZ 2z
ax* oay? X dx
KALY/S é-z—+iea g—aa—z+—2—eb&iz—), (5)
Y dY 3 "g*dx 3 “g*dY
where p is the ratio of a- and b-monomer volumes and
g* =g¥ + ugl. By neglecting terms containing €, and
smaller in Eq. (5) we have

dZ _3°Z | I’Z _3BG IZ _ IBG OZ

%~ ar axax avror O

and now

BG=pG. + D, X*+D,,Y*>+2D, XY
with

D,. =BG,R7,

D,, =BG,,RE,
and

D,, =BG\ RIRY.

By diagonalization we have

PG —BG* = —ux? +vy?, uw>0. @A)
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The minus and plus signs in Eq. (7) show that the variables x
and p are, respectively, unstable and stable. Here

u= —%[Daa +Dyy — (D — D)’ +4D%]  (8)
and
v=%[Daa + D4y ++ (Do — D> 44D, ], 9)

which are the two eigenvalues of the matrix

(Daa Dab)
B Dba Dbb '

The rotational transformation introduced to diagonalize the
bilinear form of G to a quadratic form allowing us to deter-
mine the stable and unstable variables is

x=Xcosa + Ysina,

y= —Xsina + Ycos a, (10)

[D,, — D,, +J(D,, —D,,)> +4D%,].

tan @ = !
2

ab

In Eq. (7) that the squares of the variables have different
signs means that the energy barrier has a saddle character
(G, Gy, — G,, <0). The determination of the stable and
the unstable variables enables us to obtain the outer and in-
ner solutions by solving Eqs. (3) and (6). First we address
the inner solution. By using the variables x and y to describe
the cluster, Eq. (6) becomes

dz 3 z 3%z Jz Jz
— + — 4+ 2ux — — 2vp —, 11
5t 0% oy x Yo (b
which is solved at steady state to give
w(x) =Af exp( — uk*)dk + B (12)
()
with

w(x) =J z(x,p)exp( — vy?)dy.

The constants 4 and B are to be determined by matching the
outer and inner solutions. It is noted that Eq. (11) is similar
in the form to the inner equation for homomolecular nuclea-
tion.®

The direction of the nucleation path at the saddle point
is given by @ which is an angle with respect to the g, axis. The
value of the angle reduces to the classical result of Reiss' for
isotropic reaction rates, R, = R,,. Our result for a, Eq. (10),
is the same as that obtained by Stauffer. In particular, in the
limit of R ¥ <R ¥, tan @ -0, @ = 0, thus the nucleation pro-
ceeds along the g -axis direction. At the opposite limit,
a = 7/2, the nucleation proceeds in the g,-axis direction.
Thus the directions of the nucleation path at those limits are
kinetically consistent with physically based expectations. A
continuous transition between the angle of the binary nu-
cleation and that of the uniary nucleation of the more abun-
dant component (if its concentration is large enough to be
supersaturated) is ensured, i.e., the nucleation path changes
from passing over the saddle point on the two-dimensional
energy surface to a path going over a point on the mountain
ridge in the one-dimensional energy curve. The problem now

is why previous theories of binary nucleation do not reduce
to that of uniary nucleation in a kinetically consistent way
even though the direction of the nucleation path exhibits a
proper transition? This is one of the questions we will ad-
dress in the remainder of the paper.

3. Matching inner and outer solutions

Using the coordinate rotation introduced above to ob-
tain the inner solution we can obtain the left steady state
outer solution from Eq. (3),

Zigp = 1 (13)
This left outer solution satisfies one of the boundary condi-
tions (B.C.) to Eq. (1), i.e,,

z-»1 as g, +g,—1.

Satisfying the remaining B.C.,

z—0 as g, +g,— o,
the right outer solution is given by

Zione = 0. (14)

Matching the inner solution with the left outer solution,

lim lim limz= lim lim lim z,,, (15)

X— — w0 -0 X—1 X — o0 €—0 X—1

and the right outer solution

lim lim lim z = lim lim lim z

right (16)
zZ— 0 €—0 X1 X~ €—0 X1

gives

u

JR*R¥[det G|

A=

and
= — 17'/
2

with det G = G2, — G,,G,,.

4. Steady-state rate of binary saddle-point nucleation

The total cluster flux in the size space in the case of
binary nucleation is difficult to define."**” From Egs. (11)
and (12), we have

dw _ 3w w_ 14 ( 8w)
20 2 9(_frow

9t o + x fO Ox Jo x
or

; 5w )
f Sxy)dy = 7 % —f .amn
The Jacobian of the transformation going from variables
8.:8, to X,y in fis /R *R ¥. Changing the variables x,y into
8.8, in fon the left-hand side of Eq. (17), we have
d

+ o
= Sx(8285):7(8.:85) 1dY(8..85)

ad - dw ad
_9(_ ReRFrer )= _9 4 18
ax( a’tsfof ax) % (18)
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where J is the one-dimensional cluster flux along the unsta-
ble variable x, averaged over the stability variable y

+ o
J= —JRIRife 2= — [RIRE | figtdy

(19)

The left-hand side of Eq. (18) is the rate change of the clus-
ter number concentration which is now equivalent to the
left-hand side of Eq. (1); thus J defined by Eq. (18) is also
the total flux of clusters in the composition space. The rate of
nucleation is given by the total cluster flux at the critical size,
and we finally get for the steady-state rate of binary nuclea-
tion

Jr = —\/R:Rtfoe"fg—f=——u——noe"’c'. (20)

The above expression for the rate of binary nucleation is
similar in form to that of uniary nucleation (which is given
by ZR *f¥, where Z is the Zeldovich factor, R * is the reac-
tion rate of a critical-sized cluster, and /¥ is the cluster num-
ber concentration at the critical size). An important differ-
ence lies in the fact that the reaction rate in the expression for
uniary nucleation is replaced by a complicated factor u that
is determined by the reaction rates as well as by the shape of
the free energy surface at the saddle opint [Eq. (8)]. Our
result for the steady-state rate of binary nucleation with the
cluster flux lines passing over the saddle point is exactly the
same as that obtained by Trinkaus’ who employed a differ-
ent coordinate transformation. Our result is also the same as
that obtained by Stauffer.?

5. Limiting behavior of saddle point binary nucleation

The limiting behavior of binary nucleation taking a sad-
dle trajectory for significantly different reaction rates is
sought to examine the kinetic consistency of the theory.

Considering R, € R, (we can also of course consider the
analogous limit, R, € R, ) we have from Eq. (8),

a. G, <0. Negative G,, at the saddle point implies that
a barrier exists along the axis g, on G for a given small con-
centration of g,. In this case, from Eq. (8),

u=~PR*G,,| 21

Thus, the kinetic factor in the rate of binary nucleation [Eq.
(20) ] is controlled by the fast (or more abundant) compo-
nenta (i.e., R, > R, ), which seems on the surface to be con-
tradictory to physical intuition and the direction of the nu-
cleation path. This inconsistency has been attributed to the
assumption that the trajectory of the cluster flux line even in
the limit of R, » R, crosses the saddle point.”''*> However,
we will show later that the steady-state prediction by Eq.
(20) with » given by Eq. (21) is kinetically unattainable
because an infinite time lag is required as R */R ¥ -0 for
G,, <0. Thus in this case the total rate of nucleation is zero
because neither component is supersaturated. Therefore, the
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kinetic consistency of binary nucleation theory is ensured for
the case of R *> R ¥ and G,, <0 which will be further dis-
cussed below. When the a component is supersaturated with
respect to its pure state, the total rate of nucleation in the
system equals the rate of nucleation of the a component at a
given small concentration of the & component with a path
along a ridge of the one-dimensional free energy curve. A
kinetically consistent theory of nucleation has to be devel-
oped by considering multiple nucleation pathways as will be
done in the next section.

b. G,, > 0. Positive G, means the saddle point is a mini-
mum along the g, -axis in G for a given negligible concentra-
tion of g,. Under this condition,

u~BR*det G/G,,. (22)

Thus, the slow (or the less abundant) component controls
the kinetic factor in the nucleation rate. In the limit of
R ¥ -0, the rate of binary nucleation thus goes to zero as
expected physically. In this case as also shown below the
steady-state rate predicted here [ Egs. (20) and (22) ] might
be realized without constraints due to the long time lag as for
the case of R, <O0.

¢. G,,=0. G,, = 0implies that the saddle point is not a
critical point along the g, axis for a given small concentra-
tion of g,. In this case, from Eq. (8),

um—- BCuRERY (23)
and the kinetic factor in the nucleation rate is determined by
both the slow and fast components. In the limit of R ¥ -0,
the rate of binary nucleation thus goes to zero as expected
physically. As shown in a section below this is the most ideal
case of a saddle point nucleation whether or not a is supersa-
turated with respect to its pure state.

In the above three cases when R, € R, the cluster flux
line first traces along the equilibrium line G /dg, = 0, un-
less it either reaches the coordinate g¥ of a saddle point with
G,, <0, orit reaches, after having passed over a saddle point
with G, >0, a point G,, = 0 of unstable growth with re-
spect to component 4, or it just reaches the saddle point for
the case of G, = 0. At those points it bends over into the fast
reacting direction a [ Eq. (10) ]. It should be noted that simi-
lar discussions are given for the first two cases by Trinkaus.”

In the following we will explore the relative contribu-
tions of different nucleation pathways to the total rate of
nucleation (binary and uniary) in the system.

1li. MULTIPLE NUCLEATION PATHWAYS: CLUSTER
FLUX LINE BYPASSES THE SADDLE POINT

As discussed above when one reaction rate is significant-
ly different from the other the flux line can turn into the
direction of the fast-reacting component before the saddle
point coordinate of the slowly reacting component is
reached. If the fast-reacting component is supersaturated
with respect to its pure state, the cluster line can pass over
the ridge in the direction of a before g¥ is reached. This ridge
pathway can always coexist with the saddle-point pathway
since for very large values of g, and fixed g, the formation
free energy approaches — oo for the pure bulk liquid of @
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component. The valley pathway and the ridge pathway are
two solutions to 3G /dg, = 0 for a given small g, when the
activity of a is greater than 1.3

The possibilities of multiple nucleation pathways were
discussed by Stauffer and Kiang® but no results were de-
rived. A recent attempt’ to deal with this problem quantita-
tively was not successful. The problem lies in using an incor-
rect governing equation and an incorrect definition for the
rate of nucleation as discussed below.

It is known physically that in the case of significantly
different reaction modes, the fast mode adjusts itself to the
slow one, the slow-reacting one thus determines the overall
kinetics of the process.'* For a binary nucleation system with
significantly different reaction rates, the rate of overall nu-
cleation is governed by the slow component. This means that
we can exclude the rapidly relaxing variable, reducing the
governing equation to an effective one-dimensional equa-
tion. This can be done by using the method of elimination of
the fast variable."?

The resulting one-dimensional effective equation, ob-
tained by integrating Eq. (1) with respect to g, is

e o 9 5fdg. (24)
g, at
where the total cluster flux is

J=Jj,, dg,. (25)

J. is the cluster flux bending from the equilibrium line (or so-
called valley defined by dG /dg, = 0), passing over the
ridge,

Gr 172
J.(8) = [%l’] R nyexp(—BG"), (26)

where rindicates values on the ridge defined by dG /dg, =0,
d%G /3g> <0. Thus by averaging over the fast variable in the
anisotropic limit, the two-dimensional barrier crossing prob-
lem is reduced to a one-dimensional barrier crossing prob-
lem. The governing equation [Eqs. (24) to (26) ] is new. Eq.
(24) describes the cluster number conservation (continu-
ity).

It is noted that j, given by Eq. (26) is different from the
expression for the same flux given in previous work.” They
used f for n,yin Eq. (25) resulting in an incorrect governing
equation which is similar in the form to the diffusion equa-
tion with a sink term.'#'> The governing equation obtained
is also similar to the governing equation for homomolecular
nucleation in the presence of cluster depletion.®'°

At steady state, by using Eq. (26), Eq. (24) can be inte-
grated to give

B|G..|

12
Jr = ——] R’ nyexp( — BG*™),

27
. (27)

where

+ o0
exp( — BG ") =f exp( — BG")dg,.

9037

We see that the binary nucleation is reduced to a uniary
nucleation with an effective free energy G*7(g, ). G"(g, ) is
essentially equal to G*"[g,(g,).8, ], where g,(g,) is the
value of g, in the valley defined by 4G /dg, = 0. This valley
defines the minimum energy path leading from the outer
region through the saddle point to a stable-growth region. In
general, we can obtain the rate of nucleation passing over the
ridge of the one-dimensional curve G *" from Eq. (27) which
is one of the important results obtained. However, depend-
ing on the relative magnitudes of g, and g¥, we can deter-
mine the relative contributions of different nucleation path-
ways to the total rate of nucleation (binary and uniary) from
Eq. (27). (Here g, and g¥ are the b-monomer numbers in
the two critical sizes existing in a binary system with the
activity of component a greater than 1. One is the usual sad-
dle point; the other, the activation size, is the one at which
point the barrier to addition of molecules of the supersatur-
ated component vanishes. )

A.g, =g}

In the saddle point region the expansion for G given by
Eq. (4) can be used. From Eq. (27), the steady-state rate of
nucleation at g, = g, =g¥ and g, = g/, =g¥ is given by

__Gr 172
JL= [——aa—] R nyexp(— BG*). (28)

be
The ratio between J I, and the rate of the saddle-point
nucleation in the limit of R, > R, with G, <0 is given by
JE 1
J‘:S \/ll—(Gib/lGaabeDl
Thus, the relative contributions of the saddle point path

and the mountain ridge path depend on the anisotropy in the
free energy surface at the saddle point. When

1>G¢21b > |Gaabe|

(29)

Qr
1> !Gaabe‘ > G(zlb’

then J * > J ., i.e., the contribution to the rate of nucleation
from the saddle point is more important than that from the
ridge path. For a symmetrical potential surface,
Gl =|G,.Gypl|, JX/J > 0. Also,J [, = 0for G,, =0.In
those cases, the cluster flux lines can only pass over the sad-
dle point regardless if either of the single species is supersa-
turated with respect to its pure state because of the dominant
importance of the free energy surface. In other words under
those conditions only saddle-point nucleation can occur. Of
course in the limit of R ¥ — 0, the rate of saddle point nuclea-
tion also tends to zero as given by Eqgs. (20) and (23).

When the free energy surface at the saddle point be-
comes very anisotropic such that the ratios between G 2, and
the product G,,G,, become larger than 1, then the cluster
flux line can bypass the saddle point completely and the
mountain ridge nucleation path becomes dominant in con-
tributing to the total rate of nucleation. This is typically the
case for a flatter potential surface.

Equation (29) is also valid for isotropic reaction rates,
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i.e., R, = R,. Thus we have shown that aniostropic reaction
rates are not the only cause for cluster flux lines to avoid
passing over the saddle point. This saddle point avoidance
caused by anisotropy in the potential surface near the saddle
point even for isotropic reaction rates might also be a general
phenomena in multidimensional activated rate process.'®'®

B.g,>9%

Two pathways can be followed by the cluster flux line.
The first one is the single barrier path. It is the usual path
along which the cluster flux line will first go across the sad-
dle point remain in the valley. Clusters may grow without
thermodynamic constraints by accretion of both a and b
monomers. This saddle point trajectory is the minimum re-
sistance pathway. Another possible pathway is a double bar-
rier pathway. After passing over the saddle point, clusters
may avoid the valley and jump the mountain ridge at g" to
grow by adding mostly @ monomers.

Since the rate of this double barrier nucleation is smaller
than that of the single barrier saddle-point nucleation by a
factor of exp( — G'") one expects

Jr
Je~
and the contribution from the saddle point path is the deci-

sive one in determining the total nucleation rate in a binary
system when g; > g¥.

»

C.9,<9;
In this case we can expand G "about g; =0,

G =Gg_o+G,8 +G:(8 —8:), (30)

where G, = 3G /dg,, G, =9G /dg, at g, =g, =0, and
g, =&, Thus,atg, =g, and g, =0,

J;s = - fja dgb

r 172 exp( — BG, _,)
(BlGaal) R;no xp ﬁ 8,=0

il

27 BG,
=(%)I/2Rﬁnoexp( —BGY), (31
where
G'=G, _, —%m(ﬁag).
Since

1
E In(BG})

is negligibly small in comparison with G; _, we have

G'=G; _,.
Equation (31) thus gives the exact expression for the rate of
a uniary nucleation of component a.

We have therefore demonstrated for the first time a con-

tinuous transition between binary nucleation and uniary nu-
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cleation and the conditions under which this transition oc-
curs.

The contribution to the total nucleation rate from nu-
cleation across the saddle point is given by Eq. (20), with the
eigenvalue given by Eq. (21). The ratio of the rate of saddle
nucleation and to that of the ridge nucleation is

Ry |Gl ( 2m )'/2
R, [[detG[\BIG.,]
xexp[ —B(G* - G"],

which is smaller than 1 if G*> G" but it is larger than 1 if
det G goes to zero. This is in contrast with our expectation
that J, >J*. Also it is surprising to find that the ratio does
not depend on the ratio of R,/R,. That the ratio of the
steady-state rate of nucleation taking the saddle point path
over that taking the ridge path does not depend on the ratio
of the reaction rates is also in contrast with previous proposi-
tions® and conclusions.”

It will be shown in the next section that the steady-state
assumption of different paths might not be realized. The
time lag associated with the different paths controls the rela-
tive importance in contributing to the total rate of nucleation
in a binary system, and it is indeed the ratio of the reaction
rates that determines the time lag. Thus a consistent theory
for nucleation in a binary system must include the effect of
this initial nonstationarity.

Before going on, it is worthwhile pointing out that in
previous studies,” the governing equation used was incorrect
as mentioned above, and the cluster flux at g, = 0 was used
as the rate of nucleation, which is only correct for g, €g¥.

JEIT =

IV. TRANSIENT KINETICS OF BINARY NUCLEATION
A. Effective time lag in binary nucleation

The pathways of nucleation that have been discussed up
to now are stationary ones. We have shown that binary nu-
cleation reduces to uniary nucleation of the fast-reacting
component a when R, > R, and G,, <0. But what if no sin-
gle species is saturated with respect to its pure state when
R,>R,? Physically neither binary nucleation nor uniary
nucleation should exist. The prediction given by Eqgs. (20)
and (21) is in contrast with this physically based expecta-
tion. In the following we will show the steady-state rate of
binary nucleation as predicted by Egs. (20) and (21) is kine-
tically unattainable because of the associated infinitely long
time lag.

An explicit expression for the time lag for binary nuclea-
tion in the case of the trajectory of the cluster flux line pass-
ing over the saddle point will be obtained by solving the time-
dependent governing equation (1) using the singular
perturbation approach.

1. Outer solution
Equation (1) can be simplified as follows:
dz dz G R dz dpG

o _ . by — (32)
ot dg, dg, ag, 9g,
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in the outer region as shown in Sec. II.
Using the coordinate rotation adopted above, we have

Jz Jz oz
— = —2ux(1+ex)?? = —2pp(1 + ex)?3 33
Ey o p( ) e (33)
where
R * cos R * si
c=‘/ X a+pu ,,sma. (34)
g*
Solving Eq. (33) by introducing

z(x,y,5) = f& exp( — st)z(x,p,t)dt, we obtain the Laplace
transformation of the outer solution as

. =l(1_§):/2u(1+§+§2>——s/4u
left s ]__50 1+§0+§(2)
Xexp[ ——ﬁ%[tan"(%)
_tan—'(zﬁﬁill)]}, (35)
V3
where
E=(1+ cx)!/3 (36)

and £,isthe valueof £atg, = 1, g, = 1.
For the diffusion-limited nucleation in a condensed
phase system, we have

) S

Xexp[ﬁ Z—[t(%;)

@) e

and the right outer solution still is z,;,,, = 0 for both cases.

In obtaining the above outer solutions we have assumed
that the solutions depend only on the unstable variable (x).
The reason that cluster nucleation can be generally de-
scribed in terms of a single nucleation path in the outer re-
gion is that for relative large g* the system is essentially in
equilibrium everywhere outside the saddle point region. In
the inner (saddle point) region the solution has to be ob-
tained by solving the complete equation in terms of unstable
and stable variables as will be done below. The accuracy of
our solution will be confirmed by reducing it to the known
asymptotic result. Our solution is an improvement over that
of Wilemski'? who assumed that the solution depends solely
on the unstable variable over the whole region, which is phy-
sically incorrect as he pointed out. Another improvement is
that we have adopted a more proper coordinate transforma-
tion scheme. Wilemski assumed that tan a = g*/g* which is
also incorrect physically in view of the present result [Eq.
(10)]. Finally our result is analytically expressed in terms of
the properties of the free energy surface and the reaction
rates of the two species present. A stochastic approach'' and
a variational method'? have been developed to study the
transient kinetics of binary nucleation, but no explicit analy-
tical expression for the time lag was obtained.

2. Inner solution

Solving the time-dependent equation (11) by using La-
place transformation, we obtain the inner solution in terms
of two repeated error functions,

w = A" erfc(xu) + Bi* erfe( — xJu), (38)

which is the same for both gas-phase and diffusion-limited
condensed phase nucleation.

3. Matching outer and inner solutions

By matching the outer and inner solutions we get

A=LF< s){c\/m

1+—
2s 3V3u(l - &)

2u
s/2u
Xexp[ —ﬁ(i—tan_'lﬁ)” I (39
3 3 v
for the case of the gas phase, and
1 2
4 =ir(1 +L){C\/ tt+5o

2s 2u/ 3/3u(1 — &)

ol 5w L o

for the case of diffusion-limited nucleation in the condensed
phase, and B = 0 for both cases.

4. Time-dependent rate of binary nucleation

After an inversion, we have, from Eqs. (38)-(40),

wziﬁerfc[\/—u—x+exp(— t_iT)] (41)
v T

for both of the diffusion-limited and gas-phase nucleation.
Using Eq. (19) and the above obtained cluster size distribu-
tion,

J=J* exp[—exp(—2 I_AT)], (42)
T
where
7= Qu)"" (43)

is the characteristic time scale of binary nucleation deter-
mined by the collision frequency between monomers and a
critical-sized mixed cluster, and

A7 an—t L+ 260
i_ﬁ(3 tan A )
3V3u (1 — &)
ef1+&+£&3

for gas-phase nucleation. For diffusion-limited condensed
phase nucleation, we have,

A= —ﬁ(g_tan—nl_%@)

+ ln[ 44)

C\/1+§0+§g
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and c is given by Eq. (34). The difference between the gas-
phase and diffusion-limited cases is obviously due to the dif-
ference in the reaction rates.

Equation (42) is given at g, = g* and g, = g¥. Differ-
ent time dependency can be observed at different cluster
sizes. It is also noted that the time dependency of the rate of
binary of nucleation is similar to that of uniary nucleation.’
This double exponential dependency of the transient rate of
nucleation differs functionally from all other previously ob-
tained results (for a more detailed discussion see Ref. 9).

5. Effective time lag of binary nucleation

The number density of critical sized clusters formed in
the system following the increase in activities of both compo-
nents at ¢ = 0 is the integrated flux N(¢) = fJ(¢')dt’. Us-
ing Eq. (42), the dimensionless total number is

o2
NG _ 1 dx
T - 2 Je-wisrr—a xe*

JSS
=—;_—[E.(e—2“/f-“> —E\(e), (46)

where E| is the exponential integral.

As (¢/r—A)=—o, we have e 247~V _,0, and
Ele7?7" P = —y -2 —1/7) + O [e7 2"/~ P],
thus

N(t)

J7

55

- —%[El(e“)+y+u]+£, (47)

where ¥ = 0.5772 is Euler’s constant.

Eq. (47) thus indicates that at large times, N(?) in-
creases linearly with time ¢ as expected. The beginning of the
steady state regime can be determined experimentally by the
time at which the increase of N(¢) becomes linear with time.
The time lag (7,) defined in such a way is the effective time
lag which is given by

Te=%[E,(e“)+y+2}»]‘r (48)

with 4 given by Eq. (44) for gas-phase nucleation and Eq.
(45) for diffusion-limited nucleation in the condensed
phase.

The effective time lag for binary nucleation is function-
ally the same as that for uniary nucleation.’ In analogy to

uniary nucleation, the term ¢~ '\ u is equivalent to the small
parameter (€). Also the present expression for 7 reduces to
the same 7 in the case of an uniary nucleation when R, or R,
equals zero. Thus we can examine the accuracy of the qua-
dratic expansion for G in solving for the time lag for the
binary nucleation by comparing the expressions for the time
lag for uniary nucleation using the quadratic expansion for G
and using the complete conventional expression for G. In
using the quadratic expression,

—1/3
i:ﬁ[i—tan_'-—————z(g*) +1]
3 NE]

+—tnf : |
2 L1+ @) P+ (g)™??

+in{21— @)
€
while
A= =1+ 21— @)
€

using the complete conventional expression for G.° For
g* = 30, the difference between the two expressions for A is
1.557. Using the quadratic approximation, we have overesti-
mated the value of A. Since the term In(3/¢) is the dominant
one in the expression for the A, the small difference (1.557)
in the above expressions for A implies that the quadratic
expansion for G used in the present work for deriving the
expression for the time lag of binary nucleation is acceptable.
However if G is known the procedure presented can be fol-
lowed to obtain a more accurate expression as done in the
case of an uniary nucleation.’

B. Transient kinetics and nucleation paths in a binary
system

Let us first examine the time lag at the limit of R, €R,,.
In this limit, we have

(49)

(50)

(51)

Thus, we observe the following important behavior.
First for G, <0, the time lag for saddle point nucleation in
the limit of R, € R, can be relatively long (depending on the
ratio of R */R ¥*) since 7, is proportional to In(3¢c™'u). As
R, /R, goes to zero, the time lag 7, approaches infinity. The
physics of the problem is clear. If the concentration of one
species becomes vanishingly small, heteromolecular nuclea-
tion becomes impossible when the remaining species is not
supersaturated with respect to its pure state. An infinite time
lag of nucleation corresponds to a zero rate of binary nuclea-
tion in this case. Thus, although Egs. (20) and (21) predict
that the steady-state rate of nucleation for G,, <0 depends
on the fast reactive component g, the actual rate depends on
the transient kinetics. If @ is supersaturated with respect to
its pure state, then for R, » R, and G, <0, since the time lag
of heteromolecular nucleation is longer than that for ridge
nucleation, the degeneration of the saddle-point binary nu-
cleation into uniary nucleation as discussed in Sec. III (case
3) will be realizable.

We have thus resolved the conflicit” between the predic-
tion by Egs. (20) and (21) inthecaseof R, >R, and G, <0
and the physical expectation. The theory of nucleation in a
binary system is therefore consistently developed.

The first case (G,, <0) shows how the anisotropy in the
reaction rates affects the transient kinetics of nucleation.
The second case (G,, >0) will show how the anisotropy in
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the free energy surface affects the transient kinetics. From
the above expression for G,, >0, as |det G | decreases, the
time lag of nucleation increases. It should be noted that in
this case the time lag is independent of the anisotropy in the
reaction rates. Although the transient kinetics might not be
the controlling factor in realizing the steady-state rate of
nucleation, the rate is controlled by the slow-reacting com-
ponent b as predicted by Egs. (20) and (23). If a is also
supersaturated with respect to its pure state, then the con-
cept of nucleation becomes meaningless for G5 > 0 at the
ridge (G <" > 0 because of G,, >0).

In the third case of G,, = 0, the effective time lag also
increases with increasing R, /R, . In this case the ridge cross-
ing nucleation is impossible as discussed in Sec. III A. The
prediction for the rate of saddle point nucleation given by
Eqs. (20) and (23) will be realized after a relatively long
time lag for a nonzero concentration of b.

V. RELATIONSHIP TO OTHER ACTIVATED RATE
PROCESSES

Kramers classical theory of activated barrier crossing
deals only with the case of isotropic diffusion rates. Recent-
ly, the role of anisotropy in both potential surface and diffu-
sion rates in affecting the rate of barrier crossing has been an
active area of investigation.'®'%2-22 Since nucleation is an
activated barrier crossing rate process, our present resulis
have some implications to the other activated barrier cross-
ing processes. First our results show that saddle-point avoid-
ance can occur even for isotropic diffusion rates when the
shape of the potential surface in the saddle region is very
asymmetric. In the context of chemical kinetics, this effect is
still under study.!®?3

The saddle point avoidance caused by the anisotropy in
diffusion rates is related to the time lag required for system to
reach its steady state. The importance of transient kinetics in
determining the rate of multidimensional barrier crossing
process has not been fully addressed.?' It will be interesting
to apply the present procedure to study the rate and the
transient kinetics of a general multidimensional barrier
Crossing process.

VI. CONCLUSIONS

Explicit analytical expressions are obtained for the rate
of nucleation taking different stationary paths in a binary
system. It is shown that not only the anisotropy in reaction

rates but also the anisotropy in the free energy surface can
cause nucleation to bypass the saddle point completely. Ho-
momolecular nucleation is shown to be the natural limit of
heteromolecular nucleation as the concentration of one
component goes to zero. Explicit expressions are also ob-
tained for the time lag of binary nucleation by using the sin-
gular perturbation approach. Knowledge of the steady state
rate of nucleation taking different paths is not sufficient to
determine the relative importance of different paths. The
saddle point avoidance caused by the anisotropy in diffusion
rates is shown to be related to the time lag required for sys-
tem to reach its steady state.
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