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COMMUTING PAULI HAMILTONIANS AS MAPS BETWEEN

FREE MODULES

JEONGWAN HAAH

Abstract. We study unfrustrated spin Hamiltonians that consist of commut-
ing tensor products of Pauli matrices. Assuming translation-invariance, we
observe that the Hamiltonian is described by a map between modules over the
translation group algebra, so homological methods are applicable. We show
universal properties of topologically ordered phases in low spatial dimensions.
Particularly, we prove that in three dimensions there exists a point-like charge
that can be isolated with energy barrier at most logarithmic in the separation
distance. The isolation is due to a fractal operator. We also develop tools to
compute the ground state degeneracy and to handle local unitary transforma-
tions.

Contents

1. Algebraic structure of commuting Pauli Hamiltonians 5

1.1. Pauli group as a vector space 5

1.2. Pauli space on a group 6

1.3. Local Hamiltonians on groups 8

1.4. Excitations 8

2. Equivalent Hamiltonians 9

2.1. Symplectic transformations 10

2.2. Coarse-graining 13

2.3. Tensoring ancillas 13

3. Topological order 13

3.1. Characterization of exact sequences 15

4. Ground state degeneracy 16

4.1. Condition for degenerate Hamiltonian 17

4.2. Counting number of points in an algebraic set 18

5. One dimension 21

6. Two dimensions 23

7. Three dimensions and fractal generators 28

8. Examples 32

9. Discussion 36

References 37

Commuting Pauli Hamiltonians form a small class of Hamiltonians that are
consisted of products of Pauli matrices such that each term commutes with any
other terms. Classical examples are the Ising models in one or two dimensions.
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Albeit its simplicity of the energy spectrum, there are many intriguing models in
this class for which the long range entanglement of the ground state plays a very
important role. Prototypical is the Kitaev toric code model [1], which has been a
solid testbed of ideas for topologically ordered systems.

The topological ordered models exhibit, as the name suggests, many proper-
ties that are insensitive local changes or defects. They had been discussed for the
states of the fractional quantum Hall effects and the spin liquids; see e.g. Wen [2].
Perhaps, the most well-defined characteristic of the topological order is the local
indistinguishability of the degenerate ground states; two different ground states
gives the same expectation value for any local observables. (Note that this char-
acteristic is not directly applicable to e.g. the topological insulators [3], for which
certain symmetry properties distinguish them from trivial phases.) Due to the local
indistinguishability, the topologically ordered systems are thought to be candidate
media on which quantum information processing is performed. As a special appli-
cation, the topologically ordered system can be used as a quantum memory, just
like the ferromagnetic system is used as a classical memory.

However, the quantum memories in the topologically ordered systems often suf-
fer from thermal instability. For example, the toric code model has point-like
excitations, which can freely propagate by external noise from the thermal bath.
Although a local operator can never access to the ground space, their accumula-
tion may be able to. Indeed, by the thermal fluctuation, a ground state is often
mapped to a different state, and the anticipated protection of the stored quantum
information is not viable. The excitations that affects the stability of the quantum
memory may be called “topological charges”. A charge is an excitation that cannot
be created alone locally but can be created with some other excitations. Indeed,
the 4D toric code [4] has no charge at all, and can be used as a quantum mem-
ory whose failure probability decreases exponentially with the system size at low
enough temperatures [5, 6].

The situation in three dimensions is more subtle but interesting. Models like
3D toric code model have charges that can freely propagate across the system by
the interaction with the thermal bath, thereby two different ground states become
mixed. On the other hand, as in the cubic code [7, 8, 9], there can exist charges that
cannot propagate by any means. This class of models provides modest reliability as
a quantum memory at nonzero temperature. However, the scaling of the memory
time, until which the system is reliable as a memory medium, is not as favorable
as it is for the 4D toric code model; the memory time grows with the system size
according to a power law whose exponent is proportional to the inverse temperature,
provided that the system size does not exceed some critical value determined by
the temperature.

The very existence of the charges seems to adversely affect the memory time.
In order to have a quantum memory, one needs to devise a read-out procedure
explicitly — a classical analog is the measurement of the average magnetization of
2D Ising model. Though the charges may not propagate, they can be separated
arbitrary far from their partner charges at a modest energy cost [8]. It may sound
contradictory, but crucial is that a set of charges can expand only in a highly
restrictive way. No good read-out procedure (sometimes called decoder) is known
for the configurations of far separated charges. This should be contrasted to the
4D toric code model, in which any excited state consists of several loops. The
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large loops are suppressed by the Boltzmann factor, and the small loops can be
almost perfectly treated by the read-out procedure. In short, the large entropy
due to the point-likeness of the charges would likely drag the ground state to a
hard-to-decipher state. See the discussion in [9].

Apart from the issue of the thermal stability and the possibility of quantum
memory, the cubic code model apparently necessitates new tools to analyze it.
When defined on a finite system with periodic boundary conditions, it shows exotic
dependence of the ground state degeneracy on the system size. The degeneracy is
sensitive to the number theoretic property of the linear system size L. For example,
when L is a power of 2, the degeneracy grows exponentially with L, but becomes a
constant if L = 2p + 1. This was a numerical observation, and was not rigorously
treated [7].

Results

In this paper, we systematically study commuting Pauli Hamiltonians that are
translation-invariant. We always assume that our Hamiltonians are frustration-free;
every term in the Hamiltonian is minimized on the ground space.

The main observation is that there is a purely algebraic description of com-
muting Pauli Hamiltonians in terms of maps between free modules over a Lau-
rent polynomial ring by exploiting the translation-invariance. A Pauli matrix can
be written as two binary numbers if we ignore the phase factors. For example,
I = (00), σx = (10), σz = (01), σy = (11). We write these binary numbers in the
coefficients of Laurent polynomials. The exponents of the Laurent polynomials
will represent the positions at which the Pauli matrices act. If the Hamiltonian is
translation-invariant, and there are finitely many distinct interaction types, then
it follows that only a finite number of the Laurent polynomials convey all data
of the Hamiltonian. We view this finite data as a map between two free modules
over the translation group algebra. We will show that the physical phase is solely
determined by the image of this associated map.

We provide a few tools to compute the transformations of the Hamiltonians by
local unitary operators and coarse-graining. They come down to a well-defined
set of elementary row operations on the matrices associated to the Hamiltonians.
As we restrict our scope to the commuting Pauli Hamiltonians, the local unitary
operators are also restricted to the Clifford operators. (Clifford operators maps a
tensor product of Pauli operators to a tensor product of Pauli operators.)

We define the characteristic dimension d associated to the Hamiltonian. If a
Hamiltonian gives rise to a map between free modules, it is natural to think of
the determinantal ideal of this map. The characteristic dimension is the Krull
dimension of the algebraic set defined by this ideal. It is always upper bounded
by the spatial dimension D. Moreover, d is less than or equal to D − 2 if the
Hamiltonian is locally topologically ordered.

The characteristic dimension d controls the rate at which the ground state degen-
eracy may increase. Roughly speaking, the logarithm of degeneracy can grow like
Ld where L is the linear system size. Thus, D = 3 is the minimal spatial dimension
such that the degeneracy of a topologically ordered system can be diverging. For
instance, the toric code models in various dimensions all correspond to the charac-
teristic dimension 0, while the 3D cubic code model has characteristic dimension
1. However, it should be pointed out that the actual degeneracy does not behave
as smooth as the function Ld; it can depend very sensitively on the system size.
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Indeed, it shall be shown that the degeneracy is related to the number of points
in an algebraic set. The boundary condition imposes a global constraint on the
relevancy of the points in the algebraic set. The numerically observed phenomena
for the cubic code model shall be exactly calculated.

In one dimension, we completely classify translation-invariant commuting Pauli
Hamiltonians. We algorithmically show how to transform an arbitrary Hamiltonian
into several copies of the Ising models.

In two dimensions, we characterize how the charges behave for topologically
ordered models. Specifically, we prove that any excited state is a configuration of
finitely many kinds of the charges, and the charges can be moved to an arbitrary
position by a string operator. The result is a refined formulation of that of Bombin
et al [10, 11].

In three dimensions, we prove that there always exists a point-like charge for
any locally topologically ordered translation-invariant commuting Pauli Hamilton-
ian. A charge can be separated arbitrarily far from its partners by a local process
with energy cost at most logarithmic in the separation distance. Here, the local
process means a sequence of Pauli operators that are obtained by successive appli-
cations of single qubit Pauli operators. This is a fundamental property of the three
dimensions. It suggests that we might not be able to have a topologically ordered
system in three dimensions where the excitations are all loop-like as in 4D toric
code model.

Our language is not completely new. A similar one appears in the error correcting
code theory of computer science in the topic of multi-dimensional cyclic codes; see
e.g. [12] and references therein. Also, there is an algebraic-geometry based design
like Goppa codes [13]. However, the focus is different: We are interested in a fixed
set of generators and exact sequences of modules describing the topological order.
The fact that the commuting Pauli operators are represented as matrix, is very well-
known in the theory of quantum error correcting codes. Our treatment is different
in that the entries are not the binary values but the Laurent polynomials.

Only the system of qubits, or spin-1/2, will be discussed, but all of our results and
argument straight-forwardly generalize to the system of qudits of prime dimensions.
Technically, the ground field F2 for the qubit should be replaced by Fp for a prime
integer p. Only important is that the ground field is finite. Some numerical value
2 should be replace by the characteristic p of the field. With this generalization
in mind, we keep necessary minus (−) signs in the statements, which should be
ignored for qubits. Examples in this direction can be found in [14].

We start by deriving the matrix representation of commuting Pauli Hamilton-
ian, and explain in detail how the translation-invariance is exploited. The notion
of modules over the translation-group algebra shall naturally emerge. Then, the
operations on modules are induced by those on physical Hilbert space. They will
define an equivalence relation between Hamiltonians. We move on to the topo-
logical orders and translate the conditions into those on a complex of modules.
Consequences of the topological order condition in two and three spatial dimen-
sions will be derived. Explicit calculations and more examples are presented in the
last section. All ring in the current paper shall be commutative with 1.
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F2 binary field {0, 1}
D spatial dimension
R F2[x1, x

−1
1 , . . . , xD, x

−1
D ]

bL ideal (xL1 − 1, . . . , xLD − 1)
q number of qubits per site
t number of interaction types
G free R-module of the interaction labels (rank t)
P free R-module of Pauli operators (rank 2q)
E free R-module of excitations (rank t)
σ G→ P , generating matrix or map for the stabilizer module
ǫ P → E, generating matrix or map for excitations

r 7→ r̄ antipode map of the group algebra R.
† transpose followed by antipode map

λq anti-symmetric 2q × 2q matrix

(

0 I
−I 0

)

Table 1. Reserved symbols. Any ring in this paper is commuta-
tive with 1.

1. Algebraic structure of commuting Pauli Hamiltonians

1.1. Pauli group as a vector space. The Pauli matrices

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

satisfy

σaσb = iεabcσc, {σa, σb} = 2δab.

Thus, the Pauli matrices together with scalars ±1,±i form a group under multi-
plication. Given a system of qubits, the set of all possible tensor products of the
Pauli matrices form a group, where the group operation is the multiplication of
operators. If the system is infinite, physically meaningful operators are those of
finite support, i.e., acting on all but finitely many qubits by the identity. We shall
only consider this Pauli group of finite support, and call it simply the Pauli group.
An element of the Pauli group is called a Pauli operator.

Since any two elements of the Pauli group either commute or anti-commute,
ignoring the phase factor altogether, one obtains an abelian group. Moreover, since
any element O of the Pauli group satisfies O2 = ±I, An action of Z/2Z on Pauli
group modulo phase factors P/{±1,±i} is well-defined, by the rule n · O = On

where n ∈ Z/2Z. For F2 = Z/2Z being a field, P/{±1,±i} becomes a vector space
over F2. The group of single qubit Pauli operators up to phase factors is identified
with the two dimensional F2-vector space. If Λ is the index set of all qubits in
the system, the whole Pauli group up to phase factors is the direct sum

⊕

i∈Λ Vi
where Vi is the vector space of the Pauli operators for the qubit at i. Explicitly,
I = (00), σx = (10), σz = (01), σy = (11). A multi-qubit Pauli operator is written
as a finite product of the single qubit Pauli operators, and hence is written as a
binary string in which all but finitely many entries are zero. A pair of entries of the
binary string describes a single qubit component in the tensor product expression.
The multiplication of two Pauli operators corresponds to entry-wise addition of the
two binary strings modulo 2.
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The commutation relation may seem at first lost, but one can recover it by

introducing a symplectic form [15]. Let λ1 =

(

0 1
−1 0

)

be a symplectic form on

the vector space (F2)
2 of a single qubit Pauli operators. 1 One can easily check that

the commutation relation of two Pauli matrices O1, O2 is precisely the value of this
symplectic form evaluated on the pair of vectors representing O1, O2, respectively.
Two multi-qubit Pauli operator (anti-)commutes if and only if there are (odd)even
number of pairs of the anti-commuting single qubit Pauli operators in their tensor
product expression. So, the two Pauli operator (anti-)commutes precisely when
the value of the direct sum of symplectic form

⊕

q∈Λ λ1 is (non-)zero. (Λ could be
infinite but the form is well-defined since any vector representing a Pauli operator
is of finite support.) We shall call the value of the symplectic form the commutation
value.

1.2. Pauli space on a group. Let Λ be the index set of all qubits, and suppose
now that Λ itself is an abelian group. There is a natural action of Λ on the Pauli
group modulo phase factors induced from the group action of Λ on itself by mul-
tiplication. For example, if Λ = Z, the action of Λ is the translation on the one
dimensional chain of qubits. If R = F2[Λ] is the group algebra with multiplicative
identity denoted by 1, the Pauli group modulo phase factors acquires a structure
of an R-module. We shall call it the Pauli module. The Pauli module is free and
has rank 2.

Let r 7→ r̄ be the antipode map of R, i.e., the F2-linear map into itself such that
each group element is mapped to its inverse. Since Λ is abelian, the antipode map
is an algebra-automorphism. Let the coefficient of a ∈ R at g ∈ Λ be denoted by
ag. Hence, a =

∑

g∈Λ agg for any a ∈ R. One may write ag = (aḡ)1.
Define

tr(a) = a1

for any a ∈ R.

Proposition 1.1. Let (a, b), (c, d) ∈ R2 be two vectors representing Pauli operators
O1, O2 up to phase factors:

O1 =





⊗

g∈Λ

(σ(g)
x )ag









⊗

g∈Λ

(σ(g)
z )bg



 ,

O2 =





⊗

g∈Λ

(σ(g)
x )cg









⊗

g∈Λ

(σ(g)
z )dg





where σ(g) denotes the single qubit Pauli operator at g ∈ Λ. Then, O1 and O2

commute if and only if

tr

(

(

ā b̄
)

(

0 1
−1 0

)(

c
d

))

= 0.

1The minus sign is not necessary for qubits, but is for qudits of prime dimensions
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Proof. The commutation value of (σ
(g)
x )n(σ

(g)
z )m and (σ

(g)
x )n

′

(σ
(g)
z )m

′

is nm′ −
mn′ ∈ F2. Viewed as pairs of group algebra elements, (σ

(g)
x )n(σ

(g)
z )m and (σ

(g)
x )n

′

(σ
(g)
z )m

′

are (ng,mg) and (n′g,m′g), respectively. We see that

nm′ −mn′ = tr

(

(

ng−1 mg−1
)

(

0 1
−1 0

)(

n′g
m′g

))

.

Since any Pauli operator is a finite product of these, the result follows by linearity.
�

We wish to characterize a F2-subspace S of the Pauli module invariant under the
action of Λ, i.e., a submodule, on which the commutation value is always zero. As we
will see in the next subsection, this particular subspace yields a local Hamiltonian
whose energy spectrum is exactly solvable, which is the main object of this paper.
Let (a, b) be an element of S ⊆ R2 = (F2[Λ])

2. For any r ∈ R, (ra, rb) must be a
member of S. Demanding that the symplectic form on S vanish, by Proposition 1.1
we have

tr(rab̄ − rbā) = 0.

Since r was arbitrary, we must have ab̄ − bā = 0. 2 Let us denote
(

ā b̄
)

as
(

a
b

)†

, and write any element of R2 as a 2 × 1 matrix. We conclude that S is a

submodule of R2 over R generated by s1, . . . , st such that any commutation value
always vanishes, if and only if

s†iλ1sj = 0

for all i, j = 1, . . . , t.
The requirement that Λ be a group might be too restrictive. One may have a

coarse group structure on Λ, the index set of all qubits. We consider the case that
the index set is a product of a finite set and a group. By abuse of notation, we
still write Λ to denote the group part, and insist that to each group element are
associated q qubits (q ≥ 1). Thus obtained Pauli module should now be identified
with R2q, where R = F2[Λ] is the group algebra that encodes the notion of trans-
lation. We write an element v of R2q by a 2q × 1 matrix, and denote by v† the
transpose matrix of v whose each entry is applied by the antipode map. We always
order the entries of v such that the upper q entries describes the σx-part and the
lower the σz-part. Since the commutation value on R2q is the sum of commutation
values on R2, we have the following: If S is a submodule of R2q over R generated
by s1, . . . , st, the commutation value always vanishes on S, if and only if for all
i, j = 1, . . . , t

s†iλqsj = 0

where λq =

(

0 idq
−idq 0

)

is a 2q × 2q matrix.

Let us summarize our discussion so far.

Proposition 1.2. On a set of qubits Λ × {1, . . . , q} where Λ is an abelian group,
the group of all Pauli operators of finite support up to phase factors, form a free
module P = R2q over the group algebra R = F2[Λ]. The commutation value

〈a, b〉 = tr(a†λqb)

2A symmetric bilinear form 〈r, s〉 = tr(rs̄) on R is non-degenerate.
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for a, b ∈ P is zero if and only if the Pauli operators corresponding to a and b
commute. If σ is a 2q× t matrix whose columns generate a submodule S ⊆ P , then
the commutation value on S always vanishes if and only if

σ†λqσ = 0.

1.3. Local Hamiltonians on groups. Recall that we place q qubits on each site
of Λ. The total system of the qubits is Λ× {1, . . . , q}.
Definition 1. Let

H = −
∑

g∈Λ

h1,g + · · ·+ ht,g

be a local Hamiltonian consisted of Pauli operators that is (i)commuting, (ii)
translation-invariant up to signs, and (iii) frustration-free. We call H a code Hamil-
tonian (also known as stabilizer Hamiltonian). The stabilizer module of H is the
submodule of the Pauli module P generated by the images of h1, . . . , ht in P . The
number of interaction types is t.

The energy spectrum of the code Hamiltonian is trivial; it is discrete and equally
spaced.

Example 1. One dimensional Ising model is the Hamiltonian

H = −
∑

i∈Z

σ(i)
z ⊗ σ(i+1)

z .

The lattice is the additive group Z, and the group algebra is R = F2[x, x̄]. The
Pauli module is R2 and the stabilizer module S is generated by

(

0
1 + x

)

.

One can view this as the matrix σ of Proposition 1.2. H is commuting; σ†λ1σ = 0.

1.4. Excitations. For a code Hamiltonian H , an excited state is described by the
terms in the Hamiltonian that have eigenvalues −1. Each of the flipped terms is
interpreted as an excitation. Although the actual set of all possible configurations
of excitations that are obtained by applying some operator to a ground state, may
be quite restricted, it shall be convenient to think of a larger set. Let E be the set of
configurations of all finite number of excitations without asking physical relevance.
Since an excitation is by definition a flipped term in H , the set E is equal to the
collection of all finite sets consisted of the terms in H .

If Pauli operators U1, U2 acting on a ground state creates excitations e1, e2 ∈ E,
their product U1U2 creates excitations (e1 ∪ e2) \ (e1 ∩ e2). Here, we had to remove
the intersection because each excitation is its own annihilator; any term in the H
squares to the identity. Exploiting this fact, we make E into a vector space over
F2. Namely, we take formal linear combinations of terms in H with the coefficient
1 ∈ F2 when the terms has −1 eigenvalue, and the coefficient 0 ∈ F2 when the
term has +1 eigenvalue. The symmetric difference is now expressed as the sum
of two vectors e1 + e2 over F2. In view of Pauli group as a vector space, U1U2 is
the sum of the two vectors v1 + v2 that respectively represents U1, U2. Therefore,
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the association Ui 7→ ei induces a linear map from the Pauli space to the space of
excitations E.

The set of all excited states obeys the translation-invariance as the code Hamil-
tonianH does. So, E is a module over the group algebraR = F2[Λ]. The association
Ui 7→ ei clearly respects this translation structure. Our discussion is summarized
by saying that the excitations are described by an R-linear map

ǫ : P → E

from the Pauli module P to the module of excitations E.
As the excitation module is the collection of all finite sets of the terms in H ,

we can speak of the module of generator labels G, which is equal to E as an R-
module. G is a free module of rank t if there are t types of interaction. The matrix
σ introduced in Section 1.2 can be viewed as

σ : G→ P

from the module of generator labels to the Pauli module.

Proposition 1.3. If σ is the generating map for the stabilizer module of a code
Hamiltonian, then

ǫ = σ†λq.

Proof. This is a simple corollary of Proposition 1.2. Let hi,g be the terms in the
Hamiltonian where i = 1, . . . , t, and g ∈ Λ. In the Pauli module, they are expressed
as ghi where hi is the i-th column of σ. For any u ∈ P , let ǫ(u)i be the i-th
component of ǫ(u). By definition,

ǫ(u)i =
∑

g∈Λ

g tr
(

(ghi)
†λqu

)

=
∑

g∈Λ

g tr
(

ḡh†iλqu
)

= h†iλqu

Thus, h†iλq is the i-th row of ǫ. �

Remark 1. The commutativity condition in Proposition 1.2 of the code Hamil-
tonian is recast into the condition that

G
σ−→ P

ǫ−→ E

be a complex, i.e., ǫ ◦ σ = 0. Equivalently,

imσ ⊆ (im σ)⊥ = ker ǫ

where ⊥ is with respect to the symplectic form.

2. Equivalent Hamiltonians

The stabilizer module entirely determines the physical phase of the code Hamil-
tonian in the following sense.

Proposition 2.1. Let H and H ′ be code Hamiltonians on a system of qubits, and
suppose their stabilizer modules are the same. Then, there exists a unitary

U =
⊗

g∈Λ

Ug

mapping the ground space of H onto that of H ′. Moreover, there exist a continuous
one-parameter family of gapped Hamiltonians connecting UHU † and H ′.
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Proof. Let {pα} be a maximal set of F2-linearly independent Pauli operators of
finite support that generates the common stabilizer module S. {pα} is not neces-
sarily translation-invariant. Any ground state |ψ〉 of H is a common eigenspace of
{pα} with eigenvalues pα |ψ〉 = eα |ψ〉, eα = ±1. Similarly, the ground space of H ′

gives the eigenvalues e′α = ±1 for each pα.
The abelian group generated by {pα} is precisely the vector space S, and the

assignment pα 7→ eα defines a dual vector on S. If U is a Pauli operator of possibly
infinite support, then pαU |ψ〉 = e′′αeαU |ψ〉 for some e′′α = ±1, where e′′α is deter-
mined by the commutation relation between U and pα. Thus, the first statement
follows if we can find U such that the commutation value between U and pα is
precisely e′′α. This is always possible since the dual space of the vector space P is
isomorphic to the direct product

∏

Λ×{1,...,q} F
2
2, which is vector-space-isomorphic

to the Pauli group of arbitrary support up to phase factors. 3

Now, UHU † and H ′ have the same eigenspaces, and in particular, the same
ground space. Consider a continuous family of Hamiltonians

H(u, u′) = uUHU † + u′H ′

where u, u′ ∈ R. It is clear that

H = H(1, 0) → H(1, 1) → H(0, 1) = H ′

is a desired path. �

The criterion of Proposition 2.1 to classify the physical phases is too narrow.
Physically meaningful universal properties should be invariant under simple and
local changes of the system. More concretely,

Definition 2. Two code Hamiltonians H and H ′ are equivalent if their stabilizer
modules become the same under a finite composition of symplectic transformations,
coarse-graining, and tensoring ancillas.

We shall define the symplectic transformations, the coarse-graining, and the
tensoring ancillas shortly.

2.1. Symplectic transformations.

Definition 3. A symplectic transformation T is an automorphism of the Pauli
module induced by a unitary operator on the system of qubits such that

T †λqT = λq

where † is the transposition followed by the entry-wise antipode map.

Only the unitary operator on the physical Hilbert space that respects the trans-
lation can induce a symplectic transformation. By definition, a symplectic trans-
formation maps each local Pauli operator to a local Pauli operator, and preserves
the commutation value for any pair of Pauli operators.

Proposition 2.2. Any two unitary operators U1, U2 that induces the same sym-
plectic transformation differ by a Pauli operator (of possibly infinite support).

3 If V is a finite dimensional vector space over some field, the dual vector space of
⊕

I
V is

isomorphic to
∏

I
V where I is an arbitrary index set.
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Proof. The symplectic transformation induced by U = U †
1U2 is the identity. Hence,

U maps each single qubit Pauli operator σ
(g,i)
x,z to ±σ(g,i)

x,z . By the argument as in
the proof of Proposition 2.1, there exists a Pauli operator O of possibly infinite
support that acts the same as U on the system of qubits. Since Pauli operators
form a basis of the operator algebra of qubits, we have O = U . �

The effect of a symplectic transformation on the generating map σ is a matrix
multiplication on the left.

σ → Uσ

For example, the following is induced by uniform Hadamard, controlled-Phase,
and controlled-NOT gates. For notational clarity, let Ei,j(a) be the row-addition
elementary 2q × 2q matrix

[Ei,j(a)]µν = δµν + δµiδνja

where δµν is the Kronecker delta, and a ∈ R = F2[Λ] and i 6= j. Recall that we
order the components of P such that the first half components are for σx-part, and
the second half components are for σz-part.

Definition 4. The following are elementary symplectic transformations:

• (Hadamard) Ei,i+q(−1)Ei+q,i(1)Ei,i+q(−1) where 1 ≤ i ≤ q,
• (controlled-Phase) Ei+q,i(f) where f = f̄ and 1 ≤ i ≤ q,
• (controlled-NOT) Ei,j(a)Ej+q,i+q(−ā) where 1 ≤ i 6= j ≤ q.

Recall that the Hadamard gate is a unitary transformation on a qubit given by

UH =
1√
2

(

1 1
1 −1

)

with respect to basis {|0〉 , |1〉}. At operator level,

UHXU
†
H = Z, UHZU

†
H = X

whereX and Z are the Pauli matrices σx and σz , respectively. Thus, the application
of Hadamard gate on every i-th qubit of each site of Λ swaps the corresponding X
and Z components of P .

The controlled phase gate is a two-qubit unitary operator whose matrix is

UP =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1









with respect to basis {|00〉 , |01〉 , |10〉 , |11〉}. At operator level,

UP (X ⊗ I)U †
P = X ⊗ Z, UP (Z ⊗ I)U †

P = Z ⊗ I,

UP (I ⊗X)U †
P = Z ⊗X, UP (I ⊗ Z)U †

P = I ⊗ Z.

Note that since UP is diagonal any two UP on different pairs of qubits commute.
Let (g, i) denote the i-th qubit at g ∈ Λ. The uniform application

U (i)
g =

∏

h∈Λ

UP ((h, i), (h+ g, i))
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of UP throughout the lattice Λ such that each UP ((h, i), (h+ g, i)) acts on the pair
of qubits (h, i) and (h+ g, i) is well-defined. From the operator level calculation of

UP , we see that U
(i)
g induces

P ∋ (. . . , xi, . . . , zi, . . .) 7→ (. . . , xi, . . . , zi + (g + ḡ)xi, . . .) ∈ P

on the Pauli module, which is represented as Ei+q,i(g + ḡ). The composition

U (i)
g1
U (i)
g2

· · ·U (i)
gn

of finitely many controlled-Phase gates U
(i)
g with different g is represented as

Ei,i+q(f) where f = f̄ =
∑n

k=1 gk + ḡk. The single qubit phase gate
(

1 0
0 i

)

maps X ↔ Y and Z 7→ Z. On the Pauli module P , it is

P ∋ (. . . , xi, . . . , zi, . . .)
T 7→ (. . . , xi, . . . , zi + xi, . . .)

T ∈ P.

which is Ei+q,i(1). Note that any f ∈ R such that f = f̄ is always of form
f =

∑

gk + ḡk or f = 1+
∑

gk + ḡk where gk are monomials. Thus, the Phase gate
and the controlled-Phase gate induce transformations Ei+q,i(f) where f = f̄ .

The controlled-NOT gate is a two-qubit unitary operator whose matrix is

UN =









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









with respect to basis {|00〉 , |01〉 , |10〉 , |11〉}. That is, it flips the target qubit con-
ditioned on the control qubit. At operator level,

UN (X ⊗ I)U †
N = X ⊗X, UN (Z ⊗ I)U †

N = Z ⊗ I,

UN(I ⊗X)U †
N = I ⊗X, UN (I ⊗ Z)U †

N = Z ⊗ Z.

If i < j, the uniform application

U (i,j)
g =

⊗

h∈Λ

UP ((h, i), (h+ g, j))

such that each UN((h, i), (h + g, j)) acts on the pair of qubits (h, i) and (h + g, j)
with one at (h, i) being the control induces

P ∋(. . . , xi, . . . , xj , . . . , zi, . . . , zj , . . .)T

7→ (. . . , xi, . . . , xj + gxi, . . . , zi + ḡzj , . . . , zj , . . .)
T ∈ P.

Thus, any finite composition of controlled-NOT gates with various g is of form
Ei,j(a)Ej+q,i+q(ā). It might be useful to note that the controlled-NOT and the
Hadamard combined, induces a symplectic transformation

• (controlled-NOT-Hadamard) Ei+q,j(a)Ej+q,i(ā) where a ∈ R and 1 ≤ i 6=
j ≤ q.

Remark that an arbitrary row operation on the upper q components can be
compensated by a suitable row operation on the lower q components so as to be a
symplectic transformation.
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2.2. Coarse-graining. Not all unitary operators conform with the lattice trans-
lation. In Example 1 the lattice translation has period 1. Then, for example, the
Hadamard gate on every second qubit does not respect this translation structure;
it only respects a coarse version of the original translation. We need to shrink the
translation group to treat such a unitary operators.

Let Λ be the original translation group of the lattice with q qubits per site,
and Λ′ be its subgroup of finite index: |Λ/Λ′| = c < ∞. The total set of qubits
Λ × {1, . . . , q} is set-theoretically the same as Λ′ × {1, . . . , c} × {1, . . . , q} = Λ′ ×
{1, . . . , cq}. We take Λ′ as our new translation group under coarse-graining. The
Pauli group modulo phase factors remains the same as a F2-vector space for it
depends only on the total index set of qubits. We shall say that the system is coarse-
grained by R′ = F2[Λ

′]. It does not change the original Hamiltonian. However, the
modules, G,P,E, etc., should be considered asR′-modules after the coarse-graining.

For example, suppose Λ = Z2, so the original base ring is R = F2[x, y, x̄, ȳ]. If
we coarse-grain by R′ = F2[x

′, y′, x̄′, ȳ′] where x′ = x2, y′ = y2, we are taking the
sites 1, x, y, xy of the original lattice as a single new site.

2.3. Tensoring ancillas. We have considered possible transformations on the sta-
bilizer modules of code Hamiltonians, and kept the underlying index set of qubits
invariant. It is quite natural to allow tensoring ancilla qubits in trivial states. In
terms of the stabilizer module S ⊆ P = R2q, it amounts to embed S into the larger

module R2q′ where q′ > q. Concretely, let σ =

(

σX
σZ

)

be the generating matrix of

S as in Proposition 1.2. By tensoring ancilla, we embed S as

(

σX
σZ

)

→









σX 0
0 0
σZ 0
0 1









.

This amounts to taking the direct sum of the original complex

G
σ−→ P

ǫ−→ E

and the trivial complex

0 → R





0
1





−−−→ R2

(

1 0
)

−−−−−→ R→ 0

to form

G⊕R −→ P ⊕R2 −→ E ⊕R.

3. Topological order

From now on we assume that Λ is isomorphic to ZD as an additive group. D
shall be called the spatial dimension of Λ.

Definition 5. Let σ : G → P be the generating map for the stabilizer module of
a code Hamiltonian H . We say H is exact if (im σ)⊥ = imσ, or equivalently

G
σ−→ P

ǫ=σ†λq−−−−−→ E

is exact, i.e., ker ǫ = imσ.
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It follows from definition that the exactness condition is a property of the equiv-
alence class of code Hamiltonians as defined in Definition 2.

By imposing periodic boundary conditions, a translation-invariant Hamiltonian
yields a family of Hamiltonians {H(L)} defined on a finite system consisted of
LD sites. One might be concerned that some H(L) would be frustrated. We
intentionally exclude such a situation. The frustration might indeed occur, but
it can easily be resolved by choosing the signs of terms in the Hamiltonian. In
this way, one might loose the translation-invariance in a strict sense. However, we
retain the physical phase regardless of the sign choice because different sign choices
are related by a Pauli operator acting on the whole system which is a product
unitary operator. Hence, the entanglement property of the ground state and the
all properties of excitations do not change.

Definition 6. Let H(L) be Hamiltonians on a finite system of linear size L in D
dimensional physical space, and Π be the corresponding ground space projector.
H(L) is called topologically ordered if for any O supported inside a hypercube of
size (L/2)D one has

(1) ΠLOΠL ∝ ΠL.

This means that no local operator is capable of distinguishing different ground
states. This condition is trivially satisfied if H(L) has a unique ground state. A
technical condition that is used in the proof of the stability of topological order
against small perturbations is the following ‘local topological order’ condition [16,
17, 18]. We use a simplified version. We say pyramid region A(r) of linear size r
for the set

A(r) =

{

(i1, . . . , iD) ∈ ZD

∣

∣

∣

∣

∣

iµ ≥ 0,
∑

µ

iµ ≤ r

}

or its translation. The apex will be referred to the point of the smallest coordinates.

Definition 7. Let H(L) be code Hamiltonians on a finite system of linear size L
in D dimensional physical space. For any pyramid region A = A(r) of linear size
r, let ΠA be the projector onto the common eigenspace of the smallest eigenvalue
of terms in the Hamiltonian H(L) that are supported on A. For b > 0, denote by
Ab the distance b neighborhood of A. H(L) is called locally topologically ordered if
there exists a constant b > 0 such that for any operator O supported on a pyramid
region A of linear size r < L/2 one has

(2) ΠAbOΠAb ∝ ΠAb .

Since any operator is a C-linear combination of Pauli operators, if Eq. (1),(2)
are satisfied for Pauli operators, then (local) topological order condition follows. If
a Pauli operator O is anti-commuting with a term in a code Hamiltonian H(L),
The left-hand side of Eq. (1),(2) are identically zero. In this case, there is nothing
to be checked. If O acting on A is commuting with every term in H(L) supported
inside Ab, Eq. (1) demands that it act as identity on the ground space, i.e., O must
be a product of terms in H(L) up to ±i,±1. Eq. (2) further demands that O must
be a product of terms in H(L) supported inside Ab up to ±i,±1.

Lemma 3.1. A code Hamiltonian H is exact if and only if H(L) is locally topo-
logically ordered for all sufficiently large L.
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It shall be important to use Laurent polynomials to express elements of the group
algebra R = F2[Z

D] ∼= F2[x1, x
−1
1 , . . . , xD, x

−1
D ]. For example,

xy2z2 + xy−1 ⇐⇒ 1(1, 2, 2) + 1(1,−1, 0).

The sum of the absolute values of exponents of a monomial will be referred to as
absolute degree. The absolute degree of a Laurent polynomial is defined to be the
maximum absolute degree of its terms. The degree measures the distance or size
in the lattice.

Proof. (“only if”) Without loss of generality, assume that σ is expressed in polyno-
mials with non-negative exponents. Let w be the maximum of all absolute degree
of entries of σ; it is the interaction range. Let O be a Pauli operator supported on
a pyramid region of linear size r. Choose the origin of the lattice ZD such that the
pyramid region has its apex at (w,w, . . . , w) ∈ ZD. Then O as an element of the
Pauli module is expressed as a 2q× 1 matrix v whose entries are polynomials in D
variables with positive exponents of absolute degree at most r + w.

We have to show that for any such v, if v ∈ ker ǫ, then v can be expressed as a
linear combination

v =
∑

i

ciσi

of the columns σi of σ such that the coefficients ci ∈ R have absolute degree not
exceeding w+ r. (The constant b in the definition of the local topological order will
be O(w).)

By the exactness assumption, ker ǫ = imσ. Since all of our Laurent polynomials
have non-negative exponents, we can use a tool for modules over polynomial rings:
Gröbner basis. (See Chapter 15 of Eisenbud [19].) Buchberger’s algorithm to
calculate Gröbner basis of imσ with respect to the homogeneous degree monomial
order produces Gröbner basis of degree not exceeding w. The standard division
algorithm can then be used to compute the coefficients ci. Thus obtained ci have
non-negative exponents that are bounded above by r + w. 4

(“if”) Suppose v ∈ ker ǫ. We have to show v ∈ imσ. Choose so large L that
the Pauli operator O representing v is contained in a pyramid region far from the
boundary. The local topological order condition implies that O is a product of
terms near the pyramid region. Since this product expression is independent of the
boundary, we see v ∈ imσ. �

3.1. Characterization of exact sequences. The quoted theorem below charac-
terizes an exact sequence from the properties of connecting maps. A few notions
should be recalled. Let M be a matrix, not necessarily square, over a ring. A minor
is the determinant of square submatrix of M. k-th determinantal ideal Ik(M) is
the ideal generated by all k × k minors of M. It is not hard to see that the de-
terminantal ideal is invariant under any invertible matrix multiplication on either

4 This part can be adapted to an error correcting procedure or a decoder. The bottleneck of the
universal decoder presented in [9] is the routine that tests whether a given cluster of excitations
can be created by a Pauli operator supported in the box that envelops the cluster. The Gröbner
basis for im ǫ in the homogeneous degree monomial order provides a fast algorithm for it: The

division algorithm yields zero remainder with respect to the Gröbner basis, if and only if the
given cluster is in im ǫ. One minor modification is that one has to consider an enveloping pyramid
in place of the enveloping box. Note also that this argument proves that the topological order
condition as defined in [9] is always satisfied if the code Hamiltonian is exact.
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side. The rank of M is the largest k such that k-th determinantal ideal is nonzero.
(Sometimes 0-th determinantal ideal is taken to be the unit ideal by convention.)
For a map φ between free modules, we write I(φ) to denote the k-th determinantal
ideal of the matrix of φ where k is the rank of that matrix. Fitting Lemma (Eisen-
bud Corollary-Definition 20.4 [19]) states that determinantal ideals only depend on
cokerφ.

The (Krull) dimension of a ring is the supremum of lengths of chains of prime
ideals. Here, the length of a chain of prime ideals

p0 ( p1 ( · · · ( pn

is defined to be n. In particular, in a dimension zero ring every prime ideal is
maximal. The codimension or height of a prime ideal p is the supremum of the
lengths of chains of prime ideals contained in p. That is, the codimension of p is
the Krull dimension of the local ring Rp. The codimension of an arbitrary ideal I is
the minimum of codimensions of primes that contain I. The dimension of an ideal
I ⊆ R is the Krull dimension of R/I. If S is an affine domain, i.e., a homomorphic
image of a polynomial ring over a field with finitely many variables such that S
has no zero-divisors, it holds that codim I + dim I = dimS. See Chapter 13 of
Eisenbud [19].

We shall be dealing with three different kinds of ‘dimensions’: The first one is
the spatial dimension D, which has an obvious physical meaning. The second one
is the Krull dimension of a ring, just introduced. The Krull dimension is upper
bounded by the spatial dimension in any case. The last one is the dimension of
some module as a vector space. Recall that all of our base ring contains a field – F2

for qubits. The vector space dimension arises naturally when we actually count the
number of orthogonal ground states. The dimension as a vector space will always
be denoted with a subscript like dimF2

.

Proposition 3.2 (Eisenbud [19] Theorem 20.9, Proposition 18.2; Northcott [20]
Chapter 6 Theorem 15). If a complex of free modules over a ring

0 → Fn
φn−−→ Fn−1 → · · · → F1

φ1−→ F0

is exact, then

• rankFk = rankφk + rankφk+1 for k = 1, . . . , n− 1
• rankFn = rankφn.
• I(φk) = (1) or else codim I(φk) ≥ k for k = 1, . . . , n.

Remark 2. For exact code Hamiltonian, we have a exact sequence G
σ−→ P

ǫ=σ†λ−−−−→
E. As we will see in Lemma 6.1, cokerσ has a finite free resolution, and we may
apply the Proposition 3.2. Since Ik(σ) = Ik(ǫ) for any k ≥ 1, we have

2q = rankP = rankσ + rank ǫ = 2 rankσ.

The size 2q× t of the matrix σ satisfies t ≥ q. If Iq(σ) 6= R, then codim Iq(σ) ≥ 2.

4. Ground state degeneracy

Let H(L) be the Hamiltonians on finite systems obtained by imposing periodic
boundary conditions as in Section 3. A symmetry operator of H(L) is a linear
combination of Pauli operator that commutes with H(L). In order for a Pauli
symmetry operator to have a nontrivial action on the ground space, it must not be
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a product of terms in H(L). In addition, since H(L) is a sum of Pauli operators,
a symmetry Pauli operator must commute with each term in H(L). Hence, a
symmetry Pauli operator O with nontrivial action on the ground space must have
image v in the Pauli module such that

v(O) ∈ ker ǫL \ imσL

where

G/bLG
σL−−→ P/bLP

ǫL−→ E/bLE

and

bL = (xL1 − 1, . . . , xLD − 1) ⊆ R,

which effectively imposes the periodic boundary conditions. Since each term in
H(L) acts as an identity on the ground space, if O′ is a term in H(L), the symmetry
operator O and the product OO′ has the same action on the ground space. OO′

is expressed in the Pauli module as v(O) + v′(O′) for some v′ ∈ imσL. Therefore,
the set of Pauli operators of distinct actions on the ground space is in one-to-one
correspondence with the factor module

K(L) = ker ǫL / imσL.

The vector space dimension dimF2
K(L) is precisely the number of independent

Pauli operators that have nontrivial action on the ground space. Since ker ǫL =
(imσL)

⊥ by definition of ǫ, and imσL as an F2-vector space is a null space of the
symplectic vector space P/bLP , it follows that (im σL)

⊥ = imσL ⊕W for some
hyperbolic subspace W . The quotient space K(L) ∼=W is thus hyperbolic and has
even vector space dimension 2k. Choosing a symplectic basis for K(L), it is clear
that K(L) represents the tensor product of k qubit-algebras. Therefore, the ground
space degeneracy is exactly 2k. In the theory of quantum error correcting codes,
k is called the number of logical qubits, and the elements of K(L) are called the
logical operators. In this section, k will always denote 1

2 dimF2
K.

4.1. Condition for degenerate Hamiltonian.

Definition 8. The associated ideal for a code Hamiltonian is the q-th determinantal
ideal Iq(σ) ⊆ R of the generating map σ. Here, q is the number of qubits per site.
The characteristic dimension is the Krull dimension of R/Iq(σ).

Lemma 4.1. Let I be the associated ideal of an exact code Hamiltonian, and m be
a maximal ideal of R. Then, I 6⊆ m implies that the localized homology

K(L)m = ker(ǫL)m / im(σL)m

is zero for all L ≥ 1.

Proof. Recall that the localization and the factoring commute. By assumption,

(Iq(ǫ))m = (Iq(σ))m = (1) = Rm =: S. For notational convenience in the proof, let
us drop the subscript m denoting the localization. Recall that the local ring S has
the unique maximal ideal m, and any element outside the maximal ideal is a unit.
If every entry of ǫ is in m, then Iq(ǫ) ⊆ m 6= S. Therefore, there is a unit entry,
and by column and row operations, ǫ is brought to

ǫ ∼=
(

1 0
0 ǫ′

)
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where ǫ′ is the submatrix. It is clear that Iq−1(ǫ
′) ⊆ Iq(ǫ) since any q − 1 × q − 1

submatrix of ǫ′ can be thought of as a q×q submatrix of ǫ where the first column and
first row have the unique nonzero entry 1 at (1, 1). It is also clear that Iq−1(ǫ

′) ⊇
Iq(ǫ) since any q× q submatrix of ǫ contains either zero row or column, or the (1, 1)
entry 1 of ǫ. Hence, Iq−1(ǫ

′) = (1), and we can keep extracting unit elements into
the diagonal by row and column operations. See also Chapter 1 Theorem 12 of
Northcott [20]. After q steps, t× 2q matrix ǫ becomes precisely

ǫ ∼=
(

idq 0
0 0

)

where idq is the q×q identity matrix. Since localization preserves the exact sequence
G → P → E, σ maps to the lower q components of P with respect to the basis
where ǫ is in the above form. Since Iq(σ) = (1), we must have (after basis change)

σ ∼=
(

0 0
idq 0

)

.

Therefore, even after factoring by the proper ideal bL, the homology K(L) =
ker ǫL / im σL is still zero. �

Corollary 4.2. The associated ideal of an exact code Hamiltonian is the unit ideal,
i.e., Iq(σ) = R, if and only if

K(L) = ker ǫL / imσL = 0

for all L ≥ 1.

Proof. If I(σ) = R, I(σ) is not contained in any maximal ideal m. The above
lemma says K(L)m = 0. Since a module is zero if and only if its localization at
every maximal ideal is zero, K(L) = 0 for all L ≥ 1.

For the converse, observe that if F is any extension field of F2, for any F2-
vector space W , we have dimF F ⊗F2

W = dimF2
W . We replace the ground field

F2 with its algebraic closure Fa to test whether K(L) 6= 0. If Iq(σ) is not the
unit ideal, then it is contained in a maximal ideal m ( R. By Nullstellensatz,
m = (x1 − a1, . . . , xD − aD) for some ai ∈ Fa. Since in R any monomial is a unit,
we have ai 6= 0. Therefore, there exists L ≥ 1 such that aLi = 1 and 2 ∤ L. The
equation xL − 1 = 0 has no multiple root.

We claim that K(L) 6= 0. It is enough to verify this for the localization at m.
Since anything outside m is a unit in Rm, we see (bL)m = m for each xLi −1 contains
exactly one xi − ai factor. Therefore, (ǫL)m = ǫm/(bL)m and (σL)m = σm/(bL)m
is a matrix over the field R/m = Fa. Since Iq(σ) ⊆ m, we have Iq(σL)m = 0.
That is, rankFa(σL)m < q and rankFa(ǫL)m < q. It is clear that dimFa K(L)m =
dimFa ker(ǫL)m/ im(σL)m ≥ 2. �

This corollary says that in order to have a degenerate Hamiltonian H(L), one
must have a proper associated ideal. We shall simply speak of a degenerate code
Hamiltonian if its associated ideal is proper.

4.2. Counting number of points in an algebraic set. It is important that the
factor ring

R/bL = F2[x1, . . . , xD] / (xL1 − 1, . . . , xLD − 1)
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is finite dimensional as a vector space over F2, and hence is Artinian. In fact,
dimF2

R/bL = LD. Due to the following structure theorem of Artinian rings, K(L)
can be explicitly analyzed by the localizations.

Proposition 4.3 (Atiyah-MacDonald [21] Chap. 8, Eisenbud [19] Sec. 2.4). Let S
be an Artinian ring. (For example, S is a homomorphic image of a polynomial ring
over finitely many variables with coefficients in a field F, and is finite dimensional
as a vector space over F.) Then, there are only finitely many maximal ideals of S,
and

S ∼=
⊕

m

Sm

where the sum is over all maximal ideals m of S and Sm is the localization of S at
m.

The following calculation tool is sometimes useful. Recall that a group algebra
is equipped with a non-degenerate scalar product 〈v, w〉 = tr(vw̄). This scalar
product naturally extends to a direct sum of group algebras.

Lemma 4.4. Let F be a field, and S = F[Λ] be the group algebra of a finite abelian
group Λ. Let vi be elements of a free S-module Sn, and

N =

(

∑

i

Svi

)⊥

= {v ∈ Sn|〈v, vi〉 = 0 for all i}.

Then, the dual vector space N∗ of N is isomorphic as vector spaces to

N∗ ∼= Sn/
∑

i

Svi.

Proof. Consider φ : Sn ∋ x 7→ 〈·, x〉 ∈ N∗. The map φ is surjective since the scalar
product is non-degenerate and Sn is a finite dimensional vector space. The kernel
of φ is precisely N⊥. �

Corollary 4.5. Put 2k = dimF2
K(L). Then,

k = qLD − dimF2
imσL = dimF2

ker ǫL − qLD.

Further, if q = t, then
k = dimF2

coker ǫL.

Proof. Put S = R/bL. If v1, . . . , vt denote the columns of σL, we have

(3) kerσ†
L = λq ker ǫL =

⋂

i

v⊥i =

(

∑

i

Svi

)⊥

= (imσL)
⊥
.

Hence, dimF2
ker ǫL = dimF2

S2q − dimF2
imσL. Since dimF2

S = LD and K(L) =
ker ǫL/ imσL, the first claim follows.

Since imσL ∼= St/ kerσL, if t = q, we have k = dimF2
kerσL by the first claim.

From Eq. (3), we conclude that k = dimF2
St/ imσ†

L = dimF2
coker ǫL. �

We will apply these results in Section 8.
The characteristic dimension is related to the rate at which the degeneracy

increases as the system size increases in the following sense. Recall that 2k =
dimF2

K(L) and the ground state degeneracy is 2k.
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Lemma 4.6. Suppose 2 ∤ L. Let Fa be the algebraic closure of F2. If N is the
number of maximal ideals in Fa ⊗F2

R that contains bL + Iq(σ), then

2N ≤ dimF2
K(L) ≤ 2qN.

Proof. We replace the ground field F2 with Fa. Any maximal ideal of an Artinian
ring Fa[x±1

i ]/bL is of form m = (x1 − a1, . . . , xD − aD) where aLi = 1 by Nullstel-
lensatz. Since 2 ∤ L, we see that (bL)m = m and that (R/bL)m ∼= Fa is the ground
field. (See the proof of Corollary 4.2.)

Now, Iq(σ)+bL ⊆ m iff Iq(σ)m+(bL)m ⊆ mm = (bL)m iff Iq(σ) becomes zero over
Rm/(bL)m ∼= Fa iff 2 ≤ dimFa K(L)m ≤ 2q. Since by Proposition 4.3, dimFa K(L)
is a finite direct sum of localized ones, we are done. �

Lemma 4.7. Let I be an ideal such that dimR/I = d. We have

dimF2
R/(I + bL) ≤ cLd

for all L ≥ 1 and some constant c independent of L.

Proof. We replace the ground field with its algebraic closure Fa. Write x̃i for the
image of xi in R/I. By Noether normalization theorem, there exist y1, . . . , yd ∈ R/I
such that R/I is a finitely generated module over Fa[y1, . . . , yd]. Moreover, one can

choose yi =
∑D

j=1Mij x̃j for some rank d matrix M whose entries are in Fa. (See

Theorem 13.3 of Eisenbud [19]) Making M into a reduced row echelon form, we
may assume yi = x̃i +

∑

j>d aij x̃j for each 1 ≤ i ≤ d.

Let S = Fa[z1, . . . , zD] be a polynomial ring in D variables. Let φ : S →
R/(I+bL) be the ring homomorphism such that zi 7→ yi for 1 ≤ i ≤ d and zj 7→ x̃j
for d < j ≤ D. By the choice of yi, φ is clearly surjective. Consider the ideal J of S
generated by the initial terms of kerφ with respect to the lexicographical monomial
order in which x1 < · · · < xD. Since x̃j is integral over F[y1, . . . , yd], the monomial
ideal J contains z

nj

j for some positive nj for all d < j ≤ D. Here, nj is independent

of L. Since zLi ∈ J for 1 ≤ i ≤ d, we conclude that

dimFa R/(I + bL) = dimFa S/J ≤ Ld · nd+1nd+2 · · ·nD

by Macaulay theorem (Theorem 15.3 of Eisenbud [19]). �

Corollary 4.8. If 2 ∤ L, and d = dimR/Iq(σ) is the characteristic dimension of a
code Hamiltonian, then

dimF2
K(L) ≤ cLd

for some constant c independent of L.

Proof. If J = bL + I(σ), N in Lemma 4.6 is equal to dimFa R/ radJ . This is at
most dimFa R/J . �

Lemma 4.9. Let d be the characteristic dimension. There exists an infinite set of
integers {Li} such that

dimF2
K(Li) ≥ Li

d

Proof. We replace the ground field with its algebraic closure Fa. Let p′ ⊇ I(σ) be a
prime of R of codimension D − d. Let p be the contraction (pull-back) of p′ in the
polynomial ring S = Fa[x1, . . . , xD]. Since the set of all primes of R is in one-to-
one correspondence with the set of primes in S that does not include monomials, it
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follows that p has codimension D − d and does not contain any monomials. Let V
denote the affine variety defined by p = (g1, . . . , gn). Since p contains no monomials,
V is not contained in any hyperplanes xi = 0 (i = 1, . . . , D).

Let A1 be a finite subfield of Fa that contains the coefficients of gi so V can
be defined over A1. Let An ⊆ Fa be the finite extension fields of A1 of extension
degree n. Put Ln = |An| − 1. For any subfield A of Fa, let us say a point of V is
rational over A if its coordinates are in A. The number N ′(Ln) of points (ai) ∈ V

satisfying aLn

i = 1 is precisely the number of the rational points of V over An that
are not contained in the hyperplanes xi = 0. Since I(σ) ⊆ p′, the number N in
Lemma 4.6 is at least N ′(Ln). It remains to show 2N ′(Ln) ≥ Ld

n for all sufficiently
large n.

This follows from the result by Lang and Weil [22], which states that the number
of points of a projective variety of dimension d that are rational over a finite field

of m elements is md + O
(

md− 1
2

)

asymptotically in m. Since Lang-Weil theorem

is for projective variety and we are with an affine variety V , we need to subtract
the number of points in the hyperplanes xi = 0 (i = 0, 1, . . . , D) from the Zariski
closure of V . The subvarieties in the hyperplanes, being closed, have strictly smaller
dimensions, and we are done. �

5. One dimension

The group algebra R = F2[x, x̄] for the one dimensional lattice Z is a Euclidean
domain where the degree of a polynomial is defined to be the maximum exponent
minus the minimum exponent. (In particular, any monomial has degree 0.) Given
two polynomials f, g in R, one can find their gcd by the Euclid’s algorithm. It can
be viewed as a column operation on the 1 × 2 matrix

(

f g
)

. Similarly, one can
find gcd of n polynomials by column operations on 1× n matrix

(

f1 f2 · · · fn
)

.

The resulting matrix after the Euclid’s algorithm will be
(

gcd(f1, . . . , fn) 0 · · · 0
)

.

Given a matrix M of univariate polynomials, we can apply Euclid’s algorithm to
the first row and first column by elementary row and column operations in such a
way that the degree of (1, 1)-entry M11 decreases unless all other entries in the first
row and column are divisible by M11. Since the degree cannot decrease forever,
this process must end with all entries in the first row and column being zero except
M11. By induction on the number of rows or columns, we conclude that M can be
transformed to a diagonal matrix by the elementary row and column operations.
This is known as the Smith’s algorithm.

The following is a consequence of the finiteness of the ground field.

Lemma 5.1. Let F be a finite field and S = F[x] be a polynomial ring. Let φ :

S
f(x)×−−−−→ S be a 1 × 1 matrix such that f(0) 6= 0. φ can be viewed as an n × n

matrix acting on the free S′-module S where S′ = F[x′] and x′ = xn. Then, for
some n ≥ 1, the matrix φ is transformed by elementary row and column operations
into a diagonal matrix with entries 1 or x′ − 1. The number of x′ − 1 entries in the
transformed φ is equal to the degree of f .
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Proof. The splitting field F̃ of f(x) is a finite extension of F. Since F̃ is finite, every

root of f(x) is a root of xn
′ − 1 for some n′ ≥ 1. Choose an integer p ≥ 1 such that

2p is greater than any multiplicity of the roots of f(x). Then, clearly f(x) divides

(xn
′ −1)2

p

= x2
pn′ −1. Let n be the smallest positive integer such that f(x) divides

xn − 1.
Consider the coarse-graining by S′ = F[x′] where x′ = xn. S is a free S′-module

of rank n, and (f) is now an endomorphism of the module S represented as an n×n
matrix. Since f(x)g(x) = xn − 1 for some g(x) ∈ F[x], we have

AB = (x′ − 1)idn

where x′ = xn, and A,B are the matrix representation of f(x) and g(x) respec-
tively as endomorphisms. A and B have polynomial entries in variable x′. The
determinants of A,B are nonzero for their product is (x′ − 1)n 6= 0. Let E1 and E2

be the products of elementary matrices such that A′ = E1AE2 is diagonal. Such
matrices exist by the Smith’s algorithm. Put B′ = E−1

2 BE−1
1 . Then,

A′B′ = E1AE2E
−1
2 BE−1

1 = E1ABE
−1
1 = (x′ − 1)idn.

Since A′ and In are diagonal of non-vanishing entries, B′ must be diagonal, too. It
follows that the diagonal entries of A′ divides (x′ − 1); that is, they are 1 or x′ − 1.

The number of x′ − 1 entries can be counted by considering S/(f(x)) as an F-
vector space. It is clear that dimF S/(f(x)) = deg f(x). S/(f(x)) = cokerφ viewed
as a S′-module is isomorphic to S′n/ imA′, the vector space dimension of which is
precisely the number of x′ − 1 entries in A′. �

Theorem 1. If Λ = Z, any system governed by a code Hamiltonian is equivalent to
finitely many copies of Ising models, plus some non-interacting qubits. In particular,
the topological order condition is never satisfied.

We will make use of the elementary symplectic transformations and coarse-
graining to deform σ to a familiar form. Recall that for any elementary row-addition
E on the upper block of σ there is a unique symplectic transformation that restricts
to E. We will freely apply elementary row-additions on the upper block of σ so σ
becomes diagonal.

Proof. Applying Smith’s algorithm to the first row and the first column of 2m× t
matrix σ, one gets











f1 0
0 A
g1 g2
... B











by elementary symplectic transformations. Let 1 ≤ i < j ≤ q be integers. If
some (1, q+ j)-entry is not divisible by f1, apply Hadamard on j-th qubit to bring
(q+ j)-th row to the upper block, and then run Euclid’s algorithm again to reduce
the degree of (1, 1)-entry. The degree is a positive integer, so this process must end
after a finite number of iteration. Now every (q + j, 1)-entry is divisible by f1 and
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hence can be made to be 0 by the controlled-NOT-Hadamard:








f1 0
0 A
g1 g2
0 B









.

Further we may assume deg f1 ≤ deg g1. Since σ
†λqσ = 0, we have a commutativity

condition

f̄1g1 − ḡ1f1 = 0.

Let g1 = hf1 + r be the result of the division where deg r < deg f1. The commu-
tativity condition reads, (h − h̄)f̄1f1 = r̄f1 − rf̄1 . If it is nonzero, the left-hand
side has degree ≥ 2 deg f1, while the right-hand side < 2 deg f1. Therefore, h = h̄.
The controlled-Phase Eq,1(h) reduces the degree of g1, which can then be swapped
with f1. Again, this iteration must end, and g1 becomes 0. The commutativity
condition between i-th(i > 1) column and the first is f1ḡi = 0. Since f1 6= 0, we
get gi = 0:









f1 0
0 A
0 0
0 B









.

Continuing, we transform σ into a diagonal matrix. (We have shown that σ can be
transformed via elementary symplectic transformations to the Smith normal form.)

Now the Hamiltonian is a sum of non-interacting purely classical spin chains plus
some non-interacting qubits (fi = 0). It remains to classify classical spin chains
whose stabilizer module is generated by

(

f
)

where we omitted the lower half block. We can always choose f = f(x) such
that f(x) has only non-negative exponents and f(0) 6= 0 since x is a unit in R.
Lemma 5.1 says that (f) becomes a diagonal matrix of entries 1 or x′ − 1 after a
suitable coarse-graining followed by a symplectic transformation and column oper-
ations. 1 describes the ancilla qubits, and x′ − 1 = x′ +1 does the Ising model. �

According to the proof, for the interaction range w of classical Hamiltonian, the
amount of coarse-graining n needed to map it to the Ising models can be exponential
in w. One cannot naively reduce n; if n = 2w − 1, the minimal polynomial of a
primitive n-th root of unity has degree w.

6. Two dimensions

We will be mainly interested in exact code Hamiltonians. If D = 2, the lattice
is Λ = Z2, and our base ring is R = F2[x, x̄, y, ȳ].

Example 2 (Toric Code). Although the original two-dimensional toric code has
qubits on edges [1], we put two qubits per site of the square lattice to fit it into
our setting. Concretely, the first qubit to each site represents the one on its east
edge, and the second qubit the one on its north edge. With this convention, the
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Hamiltonian is the negative sum of the following two types of interactions:

XI XX

II IX

ZI II

ZZ IZ

y xy

1 x

where we used X,Z to abbreviate σx, σz, and omitted the tensor product symbol.
Here, the third square specifies the coordinate system of the square lattice. Since
there are q = 2 qubits per site, the Pauli module is of rank 4. The corresponding
generating map σ : R2 → R4 is the matrix

σ2D-toric =









y + xy 0
x+ xy 0

0 1 + y
0 1 + x









∼=









1 + x̄ 0
1 + ȳ 0
0 1 + y
0 1 + x









.

Here the each column expresses one type of interaction. The upper q = 2 rows
expresses σx and the lower σz . It is clear that

ǫ2D-toric = σ†λ2 =

(

0 0 1 + x 1 + y
1 + ȳ 1 + x̄ 0 0

)

and ker ǫ = imσ; the two dimensional toric code satisfies our exactness condition.
The associated ideal is I(σ) = ((1+x)2, (1+x)(1+ y), (1+ y)2). The characteristic
dimension is dimR/I(σ) = 0. Note also that ann coker ǫ = (x − 1, y − 1).

The connection with cellular homology can be mentioned. σ can be viewed as
the boundary map from the free module of all 2-cells with Z2 coefficients of the
cell structure of 2-torus induced from the tessellation by the square lattice. The
ǫ then is interpreted as the boundary map from the free module of all 1-cells to
that of all 0-cells. σ or ǫ is actually the direct sum of two boundary maps. Indeed,
the space of symmetry operators (logical operators) K(L) = ker ǫL/ imσL has four
generators

ly(X) =









1 + y + · · ·+ yL−1

0
0
0









, lx(X) =









0
1 + x+ · · ·+ xL−1

0
0









,

lx(Z) =









0
0

1 + x+ · · ·+ xL−1

0









, ly(Z) =









0
0
0

1 + y + · · ·+ yL−1









,

which correspond to the usual nontrivial homology classes of 2-torus.
The description by the cellular homology is more or less advantageous for the

toric code over our description with pure Laurent polynomials; in this way, it is
clear that the toric code can be defined on an arbitrary tessellation of compact ori-
entable surfaces. However, it is unclear whether this cellular homology description
is possible after all for other topologically ordered code Hamiltonians.

Example 3 (2D Ising model on square lattice). The Ising model has nearest neigh-
bor interactions: horizontal and vertical. In our formalism, they are represented as
1 + x and 1 + y. Thus,

σ2D Ising =

(

0 0
1 + x 1 + y

)

.



COMMUTING PAULI HAMILTONIANS AS MAPS BETWEEN FREE MODULES 25

Although σ†λ1σ = 0 so we have a complex G→ P → E, it is not exact. Moreover,
σ is not injective.

σ2D Ising;1 =

(

1 + y
1 + x

)

generates the kernel of σ. That is, the complex

0 → G1
σ2D Ising;1−−−−−−→ G

σ2D Ising−−−−−→ P

is exact.

We turn to general properties. The following asserts that the local relations —
a few terms in the Hamiltonian that multiply to identity in a nontrivial way as in
2D Ising model, or the kernel of σ — among the terms in a code Hamiltonian, can
be completely removed for exact Hamiltonians in two dimensions.

Lemma 6.1. If G
σ−→ P

ǫ−→ E is exact over R = F2[x1, x̄1, . . . , xD, x̄D], There exists
σ′ : G′ → P such that imσ′ = imσ and

0 → GD−2 → · · · → G1 → G′ σ′

−→ P
ǫ−→ E

is an exact sequence of free R-modules. If D = 2, one can choose σ′ to be injective.

We make use of a constructive version of Hilbert’s syzygy theorem via Gröbner
basis.

Proposition 6.2 (Theorem 15.10, Corollary 15.11 of Eisenbud [19]). Let {g1, . . . , gn}
be a Gröbner basis of a submodule of a free module M0 over a polynomial ring.
Then, the S-polynomials τij of {gi} in the free module M1 =

⊕n
i=1 Sei generate

the syzygies for {gi}. If the variable x1, . . . , xs are absent from the initial terms of
gi, one can define a monomial order on M1 such that x1, . . . , xs+1 is absent from
the initial terms of τij . If all variables are absent from the initial terms of gi, then
M0/(g1, . . . , gn) is free.

Proof of Lemma 6.1. Without loss of generality assume that the t×2qmatrix ǫ have
entries with nonnegative exponents so they are in fact polynomials, not Laurent
polynomials. Below, every module is over the polynomial ring S = F2[x1, . . . , xD]
unless otherwise noted. Let E+ be the free S-module of rank equal to rankR E.

If g1, · · · , c2q are the columns of ǫ, apply Buchberger’s algorithm to obtain a
Gröbner basis g1, · · · , g2q, . . . , gn of im ǫ. Let ǫ′ be the matrix whose columns are
g1, . . . , gn. We regard ǫ′ as a map M0 → E+. By Proposition 6.2, the initial terms
of the syzygy generators (S-polynomials) τij for {gi} lacks the variable x1. Writing
each τij in a column of a matrix τ1, we have a map τ1 : M1 → M0.

By induction on D, we have an exact sequence

MD
τD−−→MD−1

τD−1−−−→ · · · τ1−→M0
ǫ′−→ E+

of free S-modules, where the initial terms of columns of τD lack all the variables.
By Proposition 6.2 again, M ′

D−1 = MD−1/ im ττD is free. Since ker τD−1 = im τD,
we have

0 →M ′
D−1

τ̃D−1−−−→ · · · τ1−→M0
ǫ′−→ E+

Since g2q+1, . . . , gn are S-linear combinations of g1, . . . , g2q, there is a basis change
of M0 so that the matrix representation of ǫ′ becomes

ǫ′ ∼=
(

ǫ 0
)

.
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With respect to this basis of M0, the matrix of τ1 is

τ1 ∼=
(

τ1u
τ1d

)

where τ1u is the upper 2q × t′ submatrix. Since ker ǫ′ = im τ1, The first row r of
τ1d should generate 1 ∈ S. (This property is called unimodularity.) Quillen-Suslin
theorem (Theorem 3.5 in Chapter XXI of Lang [23]) states that there exists a basis
change of M1 such that r becomes

(

1 0 · · · 0
)

. Then, by some basis change of
M0, one can make

ǫ′ ∼=
(

ǫ 0
)

, τ1d ∼=
(

1 0
0 τ ′1d

)

.

where τ ′1d is a submatrix. By induction on the number of rows in τ1d, we deduce
that the matrix of τ1 can be brought to

ǫ′ ∼=
(

ǫ 0
)

, τ1 ∼=
(

σ′′ σ′

I 0

)

Note that ǫσ′′ = 0 and ǫσ′ = 0. The basis change of M0 by

(

I −σ′′

0 I

)

gives

ǫ′ ∼=
(

ǫ 0
)

, τ1 ∼=
(

0 σ′

I 0

)

.

The kernel of

(

σ′

0

)

determines ker τ1 = im τ2. Let M
′
1 denote the projection of M1

such that the sequence

0 →M ′
D−1

τ̃D−1−−−→ · · · →M2 →M ′
1

σ′

−→M ′
0

ǫ−→ E+

of free S-modules is exact.
Taking the ring of fractions with respect to the multiplicatively closed set

U = {xi11 · · ·xiDD |i1, . . . , iD ≥ 0},
we finally obtain the desired exact sequence over U−1S = R with P = U−1M ′

0 and
E = U−1E+. Since imσ = ker ǫ, we have im σ′ = imσ. �

Lemma 6.3. Let R be a Laurent polynomial ring in D variables over a finite field
F, and N be a module over R. Suppose J = annRN is a proper ideal such that
dimR/J = 0. Then, there exists an integer L ≥ 1 such that

ann
R′

N = (xL1 − 1, . . . , xLD − 1) ⊆ R′

where R′ = F[xL1 , x̄
L
1 , . . . , x

L
D, x̄

L
D] is a subring of R.

This is a variant of Lemma 5.1.

Proof. Since R is a finitely generated algebra over a field, for any maximal ideal
m of R, the field R/m is a finite extension of F (Nullstellensatz in the form of
Theorem 4.19 of Eisenbud [19]). Hence, R/m is a finite field. Since xi is a unit in R,
the image ai ∈ R/m of xi is nonzero. ai being an element of finite field, a power of ai
is 1. Therefore, there is a positive integer n such that bn = (xn1 −1, . . . , xnD−1) ⊆ m.

Since xn−1 divides xnn
′ −1, we see that there exists n ≥ 1 such that bn ⊆ m1∩m2

for any two maximal ideals m1,m2. One extends this by induction to any finite
number of maximal ideals.
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Since dimR/J = 0, any prime ideal of R/J is maximal and the Artinian ring
R/J has only finitely many maximal ideals. rad J is then the intersection of the
contractions (pull-backs) of these finitely many maximal ideals. Therefore, there is
n ≥ 1 such that

bn ⊆ rad J.

Since R is Noetherian, (rad J)p
r ⊆ J for some r ≥ 0 where p is the characteristic

of F. Hence, we have

bnpr ⊆ bp
r

n ⊆ (rad J)p
r ⊆ J.

Let L = npr. If R′ = F[xL1 , x̄
L
1 , . . . , x

L
D, x̄

L
D], annR′ N is nothing but J ∩R′. We

have just shown bL ∩ R′ ⊆ J ∩ R′. Since J is a proper ideal, we have 1 /∈ J ∩ R′.
Thus, bL ∩R′ = J ∩R′ since bL ∩R′ is maximal in R′. �

Theorem 2. For any two dimensional degenerate exact code Hamiltonian, there
exists an equivalent Hamiltonian such that

ann coker ǫ = (x− 1, y − 1).

Proof. By Lemma 6.1, we can find an equivalent Hamiltonian such that the gener-
ating map σ for its stabilizer module is injective:

0 → G
σ−→ P.

Let t be the rank of G. The exactness condition says

0 → G
σ−→ P

ǫ−→ E

is exact where ǫ = σ†λq and E has rank t. Applying Proposition 3.2, since I(σ) =
I(ǫ) and hence in particular codim I(σ) = codim I(ǫ), we have that q = t and
codim I(ǫ) ≥ 2 if I(ǫ) 6= R. But, I(ǫ) 6= R by Corollary 4.2.

Since q = t, I(ǫ) is equal to the initial Fitting ideal, and therefore has the same
radical as the annihilator of coker ǫ = E/ im ǫ. (See Eisenbud Proposition 20.7 [19]
or Lang Chapter XIX Proposition 2.5 [23].) In particular, dimR/(ann coker ǫ) = 0.
Apply Lemma 6.3 to conclude the proof. �

An interpretation of the theorem is the following:
A (topological) charge is an isolated excitation that cannot be created alone

from a ground state by an operator of finite support, but can be created if some
other excitations are simultaneously created. If v ∈ E represents a charge, then by
definition v /∈ im ǫ. Recall coker ǫ = E/ imE. If coker ǫ = 0, i.e, E = im ǫ, then
any excitation can be realized by some operator of finite support, and in particular,
there is no charge. If coker ǫ 6= 0 and f ∈ ann coker ǫ is nonzero, we have that
0 6= fv ∈ im ǫ. Since f must be non-unit, it consists of at least two terms, and fv
is a union of v at different positions. For example, if f = 1 + xn, then fv is a pair
of v’s, where one is a translation of another by distance n.

For systems of qubits, Theorem 2 says that x+1 and y+1 are in ann coker ǫ. In
other words, any element v of E is a charge, and a pair of v’s of distance 1 apart
can be created by a local operator. Equivalently, v can be translated by distance
1 by the local operator. Since translation by distance 1 generates all translations
of the lattice, we see that any excitation can be moved though the system by some
sequence of local operators. This is exactly what happens in the 2D toric code:
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Any excited state is described by a configuration of magnetic and electric charge,
which can be moved to a different position by a string operator.

Moreover, since (x − 1, y − 1) = ann coker ǫ, the action of x, y ∈ R on coker ǫ
is the same as the identity action. Therefore, the R-module coker ǫ is completely
determined up to isomorphism by its dimension k as an F2-vector space. The mod-
ule K(L) of Pauli operators acting on the ground space (logical operators), can
be viewed as K(L) = Tor1(coker ǫ, R/bL). Thus, K(L) is determined by k up to
isomorphisms. This implies that the translations of a logical operator are all equiv-
alent. It is not too obvious whether the symplectic structure, or the commutation
relations among the logical operators, of K(L) is also completely determined.

A similar result is reported in [10, 11].

7. Three dimensions and fractal generators

Definition 9. For a complex G
σ−→ P

ǫ−→ E, an element f ∈ R \ {0} is a fractal
generator if there exists v ∈ E \ im ǫ such that fv ∈ im ǫ.

There is a natural reason the fractal generator deserves its name. Consider a
code Hamiltonian with a single type of interaction: t = 1. So each configuration of
excitations is described by one Laurent polynomial. For example, in two dimensions,
f = 1+x+y = ǫ(p) represents three excitations, one at the origin of the lattice and
another at (2, 1) created by a Pauli operator represented by p. In order to avoid
repeating phrase, let us call each element of the Pauli module a Pauli operator, and
instead of using multiplicative notation we use module operation + to mean the
product of the corresponding Pauli operators.

Consider the Pauli operator fp = p + xp + yp ∈ P . It describes the Pauli
operator p at the origin multiplied by the translations of p at (1, 0) and at (0, 1).
So fp consists of three copies of p. This Pauli operator maps the ground state to
the excited state f2 = 1 + x2 + y2. The number of excitations is still three, but
ones at (1, 0), (0, 1) have been replaced by the ones at (2, 0), (0, 2). Similarly, the
Pauli operator f2+1p = f2(fp) consists of three copies of fp, or 32 copies of p.

The excited state created by f3p is f4 = (f2)2 = 1 + x2
2

+ y2
2

. Still it has three
excitations, but they are further apart. The Pauli operator f2n−1p consists of 3n

copies of p in a self-similar way, and the excited state caused by f2n−1p consists of
a constant number of excitations.

More generally, if there are t > 1 types of terms in the Hamiltonian, the exci-
tations are described by a t× 1 matrix. If it happens to be a of form fv for some
1 6= f ∈ R, there is a family of Pauli operators f2n−1p in a self-similar fashion such
that it only creates a bounded number of excitations. An obvious but uninteresting
way to have such a situation is to put fv = ǫ(fp′) for a Pauli operator p′ where
v = ǫ(p′). Our definition avoids this triviality by requiring v /∈ im ǫ.

Thus, if there does exist a fractal generator, we have a charge v that cannot be
created from a ground state alone, but can be observed as an isolated cluster of
excitations that is separated from the other by an arbitrary long distance. Since
v has finite size anyway (the maximum exponent minus the minimum exponent
of the Laurent polynomials in the t × 1 matrix v), we can say that the charge v
is point-like. Moreover, we shall have a description how the point-like charge can
be separated from the other by a local process. By the local process we mean a
sequence of Pauli operators [[o1, . . . , on]] such that oi+1 − oi is a monomial. The
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number of excitations, i.e., energy, at an instant i will be the number of terms in
ǫ(oi).

Theorem 3. If there is a fractal generator of a code Hamiltonian, then for all
sufficiently large r, there is a local process starting from the identity by which a
point-like charge is separated from the other excitations by distance at least 2r.
One can choose the local process in such a way that at any intermediate step there
are at most cr excitations for some constant c independent of r.

For notational simplicity, we denote the local process [[o1, . . . , on]] by

s = [o1, o2 − o1, o3 − o2, . . . , on − on−1].

It is a recipe to construct on, consisted of single qubit operators. on can be expressed
as “on =

∫

s”, the sum of all elements in the recipe.

Proof. Let f be a fractal generator, and put fv = ǫ(p) where v /∈ im ǫ. We already
know v is a point-like charge. Write

p =
n
∑

i=1

pi, f =
l
∑

i=1

fi

where each of pi and fi is a monomial. Let s0 = [0, p1, p2, . . . , pn] be a recipe for
constructing p;

∫

s0 = p. Given si, define inductively

si+1 = (f2i

1 · si) ◦ (f2i

2 · si) ◦ · · · ◦ (f2i

l · si)
where ◦ denotes the concatenation and fi · [u1, . . . , un′ ] = [fiu1, . . . , fiun′ ]. It is
clear that si+1 constructs the Pauli operator

∫

sr = f2r−1

∫

sr−1 = f2r−1

f2r−2

∫

sr−2

= f2r−1+2r−2+···+1

∫

s0 = f2r−1p

whose image under ǫ is f2rv. Thus, if r is large enough so that 2r is greater than
the size of v, the configuration of excitations is precisely l copies of v. The distance
between v’s is at least 2r minus twice the size of v.

Therefore, there is a constant e > 0 such that for any r ≥ 0 the energy of
f2rv ∈ E is ≤ e. Let ∆(r) be the maximum energy during the process sr. We
prove by induction on r that

∆(r) ≤ el(r + 1).

When r = 0, it is trivial. In sr+1, the energy is ≤ ∆(r) until f2r

1 sr is finished. At
the end of f2r

1 sr, the energy is ≤ e. During the subsequent f2r

2 sr, the energy is
≤ ∆(r) + e, and at the end of (f2r

1 sr) ◦ (f2r

2 sr), the energy is ≤ 2e. During the
subsequent f2r

j sr, the energy is ≤ ∆(r) + je. Therefore,

∆(r + 1) ≤ ∆(r) + el ≤ el(r + 2)

by the induction hypothesis. This proves the theorem with c = 2el. �

Note that the notion of fractal generators includes that of ‘string operators’. In
fact, a fractal generator that contains exactly two terms gives a family of nontrivial
string segments of unbounded length, as defined in [7]. The proof here mimics the
explicit construction of fractal operators in [8].



30 JEONGWAN HAAH

Algebraically, a charge is a torsion element of coker ǫ, and a fractal generator is
a zero divisor on coker ǫ.

Proposition 7.1. For code Hamiltonians, the existence of a fractal generator is a
property of an equivalence class of Hamiltonians defined in Definition 2.

Proof. Suppose imσ = imσ′. Each column of σ′ is a R-linear combination of
those of σ, and vice versa. Thus, there is a matrix B and B′ such that ǫ′ = Bǫ and
ǫ = B′ǫ′. BB′ and B′B are identity on im ǫ′ and im ǫ respectively. In particular, B′

and B are injective on im ǫ′ and im ǫ respectively. Suppose f is a fractal generator
for ǫ, i.e., fv = ǫp 6= 0. Then, 0 6= Bfv = fBv = Bǫ(p) = ǫ′(p). If Bv ∈ im ǫ′,
then v = B′Bv ∈ im ǫ, a contradiction. Therefore, f is also a fractal generator for
ǫ′. By symmetry, a fractal generator for ǫ′ is a fractal generator for ǫ, too.

Suppose R′ ⊆ R is a coarse-grained base ring. If coker ǫ is torsion-free as an
R-module, then so it is as an R′-module. If f ∈ R is a fractal generator, the
determinant of f as a matrix over R′ is a fractal generator.

A symplectic transformation or tensoring ancillas does not change coker ǫ. �

Proposition 7.2. Suppose coker ǫ 6= 0. Then, the following are equivalent:

• There does not exist a fractal generator.
• coker ǫ is torsion-free.
• There exists a free R-module E′ of finite rank such that

P
ǫ−→ E → E′

is exact.

Proof. The first two are equivalent by definition. The sequence is exact if and only
if 0 → coker ǫ→ E′ is exact. Since coker ǫ has a finite free resolution, the second is
equivalent to the third. See Bruns-Vetter 16.33 [24]. �

Corollary 7.3. For any ring S and t ≥ 1, if 0 → St → S2t φ−→ St is exact and
I(φ) 6= S, cokerφ is not torsion-free. In particular, for a degenerate exact code
Hamiltonian, if σ is injective, then there exists a fractal generator.

Proof. By Proposition 3.2, rankφ = t. Since 0 ( It(φ) ( S is the initial Fitting
ideal, we have 0 6= ann cokerφ 6= S. That is, cokerφ is not torsion-free.

For the second statement, set S = R. If σ is injective, we have an exact sequence

0 → G
σ−→ P

ǫ−→ E.

By Remark 2, t = rankG = rankσ = rank ǫ = q. �

Corollary 7.4. Suppose the characteristic dimension is D − 2 for a degenerate
exact code Hamiltonian. Then, there exists a fractal generator.

Proof. Suppose on the contrary there are no fractal generators. Then, by Proposi-
tion 7.2,

G
σ−→ P

ǫ−→ E → E′

is exact for some finitely generated free module E′. Since coker ǫ has finite free
resolution by Lemma 6.1, Proposition 3.2 implies codim I(σ) ≥ 3 unless I(σ) = R.
But, codim I(σ) = 2 and I(σ) 6= R by Corollary 4.2. This is a contradiction. �
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Lemma 7.5. Suppose D = 3,

0 → G1
σ1−→ G

σ−→ P
ǫ=σ†λq−−−−−→ E

is exact, and I(σ) ⊆ m = (x− 1, y − 1, z − 1). Then, coker ǫ is not torsion-free.

Proof. Suppose on the contrary coker ǫ is torsion-free. We have an exact sequence

0 → G1
σ1−→ G

σ−→ P
ǫ−→ E → E′.

If G1 = 0, Corollary 7.3 implies the conclusion. So we assume G1 6= 0, and therefore
we have I(σ1) = R.

Let us localize the sequence at m to have I(σ1)m = Rm. Since rank(G1)m =
rank(σ1)m, the matrix of (σ1)m becomes

(σ1)m =

(

0
I

)

for some basis of (G1)m and Gm. See the proof of Lemma 4.1. In other words, there
is an invertible matrix B ∈ GLt×t(Rm) such that

σmB =
(

σ̃ 0
)

where σ̃ is the 2q × t′ submatrix. Since the antipode map of R preserves m, it is a
well-defined automorphism of Rm. Indeed, if α : R → R denotes the antipode map,

α(m) = (x−1 − 1, y−1 − 1, z−1 − 1) = (1− x, 1− y, 1− z) = m.

Since ǫ = σ†λq, we have

(4) B†ǫm =

(

σ̃†

0

)

λq =

(

σ̃†λq
0

)

.

Therefore, we get a new exact sequence

0 → G′ σ̃−→ Pm

ǫ̃=σ̃†λq−−−−−→ Rt′

m

where G′ = Gm/ im(σ1)m is a free Rm-module and t′ = rankG′. It is clear that
rank ǫ̃ = rank σ̃. Setting S = Rm in Corollary 7.3 implies that coker ǫ̃ is not torsion-
free. But, since we are assuming coker ǫm is torsion-free, coker σ̃† is also torsion-free
by Eq. (4). This is a contradiction. �

Theorem 4. For any three dimensional, degenerate and locally topologically ordered
code Hamiltonian, there exists a fractal generator.

Proof. By Lemma 6.1, there exists an equivalent Hamiltonian such that

0 → G1
σ1−→ G

σ−→ P
ǫ=σ†λq−−−−−→ E

is exact. The existence of a fractal generator is a property of the equivalence class
by Proposition 7.1. If we show that I(σ) is contained in (x − 1, y − 1, z − 1) after
some coarse-graining, then Lemma 7.5 shall imply the conclusion.

Recall that ǫL and σL denote the induced maps by factoring out bL = (xL −
1, yL − 1, zL − 1). See Sec. 4. There exists L such that K(L) = ker ǫL/ imσL 6= 0
by Corollary 4.2. Consider the coarse-grain by x′ = xL, y′ = yL, z′ = zL. Let
R′ = F2[x

′±1, y′±1, z′±1] denote the coarse-grained base ring. If K ′(L′) denotes
ker ǫ′L′/ imσ′

L′ as R′-module, we see that K ′(1) = K(L) as F2-vector space. In
particular, K ′(1) 6= 0. Put m = (x′ − 1, y′ − 1, z′ − 1) = b′1 ⊆ R′. Then, K ′(1)m =
K ′(1) 6= 0. By Lemma 4.1, we have I(σ′) ⊆ m. �
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8. Examples

Example 4 (Toric codes in higher dimensions). Any higher dimensional toric code
can be treated similarly as for two dimensional case. In three dimensions one
associates each site with q = 3 qubits. It is easily checked that

σ3D-toric =

















1 + x̄ 0 0 0
1 + ȳ 0 0 0
1 + z̄ 0 0 0
0 0 1 + z 1 + y
0 1 + z 0 1 + x
0 1 + y 1 + x 0

















.

Both two- and three-dimensional toric codes have the property that coker ǫ is
not torsion-free. Indeed, 1 + x and 1 + y are fractal generators. Being consisted of
two terms, they generate the ‘string operators’.

The 4D toric code [4] has σx-type interaction and σz-type interaction. Originally
the qubits are placed on every plaquette of 4D hypercubic lattice; we place q = 6
qubits on each site. The generating map σ for the stabilizer module is written as a
12× 8-matrix (t = 8)

σ4D-toric =

(

σX 0
0 σZ

)

where

σX =

















1 + y 1 + x 0 0
1 + w 0 0 1 + x
1 + z 0 1 + x 0
0 1 + z 1 + y 0
0 1 + w 0 1 + y
0 0 1 + w 1 + z

















,

σ̄Z =

















0 0 1 + w 1 + z
0 1 + z 1 + y 0
0 1 + w 0 1 + y

1 + w 0 0 1 + x
1 + z 0 1 + x 0
1 + y 1 + x 0 0

















.

Note the bar on σZ .
Theorem 4 does not prevent the absence of a fractal generator in four or higher

dimensions. Indeed, this 4D toric code lacks any fractal generator. To see this, it

enough to consider σZ since cokerσ†
X

∼= cokerσ†
Z as R-modules. If

ǫ1 =
(

1 + x 1 + y 1 + z 1 + w
)

: R4 → R,

then

R6 σ
†

Z−−→ R4 ǫ1−→ R

is exact. (A direct way to check it is to compute S-polynomials of the entries of ǫ1,
and to verify that they all are in the rows of σZ . See Chapter 15 of Eisenbud [19].)

Hence, cokerσ†
Z is torsion-free by Proposition 7.2.

For the toric codes in any dimensions, σ has nonzero entries of form xi − 1. The
radical of the associated ideal I(σ) is equal to m = (x1−1, . . . , xD −1). So m is the
only maximal ideal of R that contains I(σ). The characteristic dimension is zero.
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If 2 ∤ L, since (bL)m = mm, (σL)m is a zero matrix. Any other localization of σL
does not contribute to dimF2

K(L) by Lemma 4.1. Therefore, if 2 ∤ L, K(L) has
constant vector space dimension independent of L; the ground state degeneracy is
independent of system size.

Example 5 (Wen plaquette [25]). This model consists of a single type of interaction
(t = q = 1)

X Y

Y X

σWen =

(

1 + x+ y + xy
1 + xy

)

where X,Y are abbreviations of σx, σy. It is known to be equivalent to the 2D toric
code. Take the coarse-graining given by R′ = F2[x

′, y′, x̄′, ȳ′] where

x′ = xȳ, y′ = y2.

As an R′-module, R is free with basis {1, y}. With the identification R = (R′ · 1)⊕
(R′ · y), we have x · 1 = x′ · y, x · y = x′y′ · 1, and y · 1 = 1 · y, y · y = y′ · 1. Hence,
x and y act on R′-modules as the matrix-multiplications on the left:

x 7→
(

0 x′y′

x′ 0

)

, y 7→
(

0 y′

1 0

)

.

Identifying

Rn = [(R′ · 1)⊕ (R′ · y)]⊕ · · · ⊕ [(R′ · 1)⊕ (R′ · y)],
our new σ on the coarse-grained lattice becomes

σ′ =









1 + x′y′ y′ + x′y′

1 + x′ 1 + x′y′

1 + x′y′ 0
0 1 + x′y′









.

By a sequence of elementary symplectic transformations, we have

σ′ E2,4(1)−−−−→
E1,3(1)









0 y′ + x′y′

1 + x′ 0
1 + x′y′ 0

0 1 + x′y′









E4,1(ȳ
′)−−−−−→

E3,2(y′)









0 y′ + x′y′

1 + x′ 0
1 + y′ 0
: 0 x′y′ + x′









col.2−−−−→
×x̄′ȳ′









0 1 + x̄′

1 + x′ 0
1 + y′ 0

0 1 + ȳ′









1↔3−−−→









1 + y′ 0
1 + x′ 0

0 1 + x̄′

0 1 + ȳ′









,

which is exactly the 2D toric code.

Example 6 (Chamon model [26, 27]). This three dimensional model consists of
single type of term in the Hamiltonian. The generating map is

σChamon =

(

x+ x̄+ y + ȳ
z + z̄ + y + ȳ

)

.

Since

σ†λ1

(

0
1

)

= (1 + xȳ)

(

0
x̄+ y

)

,
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1+xȳ is a fractal generator. Consisted of two terms, it generates a string operator.
The degeneracy can be calculated using Corollary 4.5. Assume all the three linear
dimensions of the system are even. Put

S = R/(x+ x̄+ y + ȳ, z + z̄ + y + ȳ, x2l − 1, y2m − 1, z2n − 1).

Then, the log2 of the degeneracy is k = dimF2
S. In S, we have x+x̄ = y+ȳ = z+z̄.

Since S has characteristic 2, it holds that

wp+1 + w−p−1 = (w + w−1)(wp + wp−2 + · · ·+ w−p)

for p ≥ 1 and w = x, y, z. By induction on p, we see that wp +w−p is a polynomial
in w + w−1. Therefore,

xp + x̄p = yp + ȳp = zp + z̄p

for all p ≥ 1 in S. Put g = gcd(l,m, n). Since xl+x−l = ym+ y−m = zn+ z−n = 0
in S, we have xg + x−g = yg + y−g = zg + z−g = 0.

Applying Buchberger’s criterion with respect to the lexicographic order in which
x < y < z, we see that

S = F2[x, y, z]/(z
2 + zx2l−1 + zx+ 1, y2 + yx2l−1 + yx+ 1, x2g + 1)

is expressed with a Gröbner basis. Therefore,

k = dimF2
S = 8 gcd(l,m, n).

Example 7 (Cubic Code). The Hamiltonian of code 1 in [7] is the translation-
invariant negative sum of the following two types of interaction terms:

IZ

⑧
⑧
⑧
⑧

ZI

⑧
⑧
⑧
⑧

ZI ZZ

II IZ

IZ ZI

⑧
⑧
⑧
⑧

IX

⑧
⑧
⑧
⑧

XI

⑧
⑧
⑧
⑧

XI II

XX IX

IX XI

⑧
⑧
⑧
⑧

z

⑧
⑧
⑧
⑧

yz

⑧
⑧
⑧
⑧

xz xyz

1 y

x xy

⑧
⑧
⑧
⑧

Here, the third cube specifies the coordinate system of the simple cubic lattice. The
corresponding generating map for the stabilizer module is

σcubic−code =









1 + xy + yz + zx 0
1 + x+ y + z 0

0 1 + x̄+ ȳ + z̄
0 1 + x̄ȳ + ȳz̄ + z̄x̄









The associated ideal is contained in a prime ideal of codimension 2:

I(σ) ⊆ (1 + x+ y + z, 1 + xy + yz + zx) = p.

Since codim I(σ) ≥ 2, the characteristic dimension is 1. Since coker ǫcubic-code =
R/p⊕R/p̄, any nonzero element of p is a fractal generator.

Let us explicitly calculate the ground state degeneracy when the Hamiltonian is
defined on L × L × L cubic lattice with periodic boundary conditions. By Corol-
lary 4.5,

k = dimF2
R/(p+ bL)⊕R/(p̄+ bL) = 2 dimF2

R/(p+ bL).

So the calculation of ground state degeneracy comes down to the calculation of

d = dimF2
T ′/p
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where T ′ = F2[x, y, z]/(x
n1 − 1, yn2 − 1, zn3 − 1).

We may extend the scalar field to any extension field without changing d. Let F
be the algebraic closure of F2 and let

T = F[x, y, z]/(xn1 − 1, yn2 − 1, zn3 − 1)

be an Artinian ring. By Proposition 4.3, it suffices to calculate for each maximal
ideal m of T the vector space dimension

dm = dimF(T/p)m

of the localized rings, and sum them up.
Suppose n1, n2, n3 > 1. By Nullstellensatz, any maximal ideal of T is of form

m = (x− x0, y− y0, z− z0) where x
n1

0 = yn2

0 = zn3

0 = 1. (If n1 = n2 = n3 = 1, then
T becomes a field, and there is no maximal ideal other than zero.) Put ni = 2lin′

i

where n′
i is not divisible by 2. Since the polynomial xn1 − 1 contains the factor

x− x0 with multiplicity 2l1 , it follows that

Tm = F[x, y, z]m/(x
2l1 + a′, y2

l2

+ b′, z2
l3

+ c′)

where a′ = x2
l1

0 , b′ = y2
l2

0 , c′ = z2
l3

0 . Hence, (T/p)m ∼= F[x, y, z]/I ′ where

I ′ = (x+ y + z + 1, xy + xz + yz + 1, x2
l1

+ a′, y2
l2

+ b′, z2
l3

+ c′).

If I ′ = F[x, y, z], then dm = 0.
Without loss of generality, we assume that l1 ≤ l2 ≤ l3. By powering the first

two generators of I ′, we see that (x0, y0, z0) must be a solution of them in order
for I ′ not to be a unit ideal. Eliminating z and shifting x→ x+ 1, y → y + 1, our
objective is to calculate the Gröbner basis for the proper ideal

I = (x2 + xy + y2, x2
l1

+ a, y2
l2

+ b)

where a = a′ + 1 and b = b′ + 1. So

dm = dimF F[x, y]/I.

One can easily deduce by induction that y2
m

+ x2
m−1(mx+ y) ∈ I for any integer

m ≥ 0. And b = ωa2
l2−l1

for a primitive third root of unity ω. So we arrive at

I = (y2 + yx+ x2, yx2
l2−1 + b(1 + l2ω

2), x2
l1

+ a)

We apply the Buchberger criterion. If a 6= 0, i.e., x0 6= 1, then b 6= 0 and I =

(x+ (ω2 + l2)y, x
2l1 + a), so dm = 2l1

If a = b = 0, then I = (y2 + yx + x2, yx2
l2−1, x2

l1
). The three generators form

Gröbner basis if l2 = l1. Thus, in this case, dm = 2l1+1 − 1. If l2 > l1, then
dm = 2l1+1.

To summarize, except for the special point (1, 1, 1) ∈ F3 of the affine space, each
point in the algebraic set

V =

{

(x, y, z) ∈ F3

∣

∣

∣

∣

x+ y + z + 1 = xy + xz + yz + 1 = 0

xn
′
1 − 1 = yn

′
2 − 1 = zn

′
3 − 1 = 0

}

contribute 2l1 to d. The contribution of (1, 1, 1) is either 2l1+1 or 2l1+1 − 1. The
latter occurs if and only if l1 and l2, the two smallest numbers of factors of 2 in
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n1, n2, n3, are equal. Let d0 = #V be the number of points in V . The desired
answer is

d = 2l1(d0 − 1) +

{

2l1+1 − 1 if l1 = l2

2l1+1 otherwise

where l1 ≤ l2 ≤ l3 are the number of factors of 2 in ni.
The algebraic set defined by (x+ y+ z+1, xy+xz+ yz+1) is the union of two

isomorphic lines intersecting only at x = y = z = 1, one of which is parametrized
by x ∈ F as

(1 + x, 1 + ωx, 1 + ω2x) ∈ F3,

and another is parametrized as

(1 + x, 1 + ω2x, 1 + ωx) ∈ F3.

where ω is a primitive third root of unity. Therefore, the purely geometric number
d0 = 2d1 − 1 can be calculated by

d1 = degx gcd
(

(1 + x)n
′
1 + 1, (1 + ωx)n

′
2 + 1, (1 + ω2x)n

′
3 + 1

)

.

In particular, if L = n1 = n2 = n3 > 1 (including all the factors of 2),

(5)
d+ 1

2
= degx gcd

(

(1 + x)L + 1, (1 + ωx)L + 1, (1 + ω2x)L + 1
)

for any L ≥ 2. The true ground state degeneracy is 2k = 4d. Some special cases
are explicitly computed:

Corollary 8.1. Let k be log2 of the ground state degeneracy of the cubic code on
the cubic lattice of size L3 with periodic boundary conditions. Let p ≥ 1 be any
integer. Then,

k

2
=



















1 if L = 2p + 1,

2L− 1 if L = 2p,

2L− 5 if L = 4p − 1,

1 if L = 22p+1 − 1.

Proof. Recall k = 2d in Eq. (5). Use (α+β)2
p

= α2p +β2p and ω2+ω+1 = 0. �

9. Discussion

There are many natural questions left unanswered. Perhaps, it would be the
most interesting to answer how much the associated ideal I(σ) determines about
the Hamiltonian. Note that the very algebraic set defined by the associated ideal is
not invariant under coarse-graining. For instance, in the characteristic dimension
zero case, the algebraic set can be a several points in the affine space, but becomes
a single point under a suitable coarse-graining.

It is reasonable to conceive that the algebraic set is mapped by the affine map
(ai) 7→ (ani ) under the coarse-graining by x′i = xni . This is true if t = q so the
q-th determinantal ideal of ǫ, being the initial Fitting ideal, has the same radical as
ann coker ǫ. In fact, we have implicitly used this idea in the proofs of Lemma 5.1, 6.3,
and Theorem 4. The case t > q is not explicitly handled here.

Also, it is an interesting on its own to prove or disprove that the elementary
symplectic transformations generate the whole symplectic transformation group.

The author would like to thank Sergey Bravyi, Lawrence Chung, Alexei Kitaev,
John Preskill, Eric Rains, and Ari Turner for useful discussions.
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