Search for the standard model Higgs boson decaying into two photons in pp collisions at $\sqrt{s} = 7$ TeV

CMS Collaboration

Article info

Article history:
Received 7 February 2012
Received in revised form 1 March 2012
Accepted 2 March 2012
Available online 6 March 2012
Editor: M. Doser

Keywords:
CMS
Physics
Higgs

Abstract

A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a center-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 fb$^{-1}$. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1σ. The global significance of observing an excess with a local significance $\geq 3.1\sigma$ anywhere in the search range 110–150 GeV is estimated to be 1.8σ. More data are required to ascertain the origin of this excess.

© 2012 CERN. Published by Elsevier B.V. All rights reserved.

1. Introduction

The standard model (SM) [1–3] of particle physics has been very successful in explaining experimental data. The origin of the masses of the W and Z bosons that arise from electroweak symmetry breaking remains to be identified. In the SM the Higgs mechanism is postulated, which leads to an additional scalar field whose quantum, the Higgs boson, should be experimentally observable [4–9].

Direct searches at the LEP experiments ruled out a SM Higgs boson lighter than 114.4 GeV at 95% confidence level (CL) [10]. Limits at 95% CL on the SM Higgs boson mass have also been placed by experiments at the Tevatron, excluding 162–166 GeV [11], and by the ATLAS Collaboration at the Large Hadron Collider (LHC), excluding the ranges 145–206, 214–224, and 340–450 GeV [12–14]. Precision electroweak measurements indirectly constrain the mass of the SM Higgs boson to be less than 158 GeV at 95% CL [15].

The $H \rightarrow \gamma\gamma$ decay channel provides a clean final-state topology with a mass peak that can be reconstructed with high precision. In the mass range $110 < m_H < 150$ GeV, $H \rightarrow \gamma\gamma$ is one of the most promising channels for a Higgs search at the LHC. The primary production mechanism of the Higgs boson at the LHC is gluon fusion (VBF) and production in association with a W or Z boson, or a $t\bar{t}$ pair [16–27]. In the mass range $110 < m_H < 150$ GeV the SM $H \rightarrow \gamma\gamma$ branching fraction varies between 0.14% and 0.23% [28]. Previous searches in this channel have been conducted by the CDF and D0 experiments [29,30], and also at the LHC by ATLAS [31].

This Letter describes a search for a Higgs boson decaying into two photons in pp collisions at a center-of-mass energy of 7 TeV, using data taken in 2011 and corresponding to an integrated luminosity of 4.8 fb$^{-1}$. To improve the sensitivity of the search, selected diphoton events are subdivided into classes according to indicators of mass resolution and signal-to-background ratio. Five mutually exclusive event classes are defined: four in terms of the pseudorapidity and the shower shapes of the photons, and a fifth class into which are put all events containing a pair of jets passing selection requirements which are designed to select Higgs bosons produced by the VBF process.

2. The CMS detector

A detailed description of the CMS detector can be found elsewhere [32]. The main features and those most pertinent to this analysis are described below. The central feature is a superconducting solenoid, 13 m in length and 6 m in diameter, which provides an axial magnetic field of 3.8 T. The bore of the solenoid is instrumented with particle detection systems. The steel return yoke outside the solenoid is instrumented with gas detectors used to identify muons. Charged particle trajectories are measured by the silicon pixel and strip tracker, with full azimuthal coverage...
within $|\eta| < 2.5$, where the pseudorapidity η is defined as $\eta = -\ln[\tan(\theta/2)]$, with θ being the polar angle of the trajectory of the particle with respect to the counterclockwise beam direction. A lead-tungstate crystal electromagnetic calorimeter (ECAL) and a brass/scintillator hadron calorimeter (HCAL) surround the tracking volume and cover the region $|\eta| < 3$. The ECAL barrel extends to $|\eta| \approx 1.48$. A lead/silicon-strip preshower detector is located in front of the ECAL endcap. A steel/quartz-fibre Cherenkov forward calorimeter extends the calorimetric coverage to $|\eta| < 5.0$. In the region $|\eta| < 1.74$, the HCAL cells have widths of 0.087 in both pseudorapidity and azimuth (ϕ). In the (η, ϕ) plane, and for $|\eta| < 1.48$, the HCAL cells map on to 5 \times 5 ECAL crystal arrays to form calorimeter towers projecting radially outwards from points slightly offset from the nominal interaction point. In the endcap, the ECAL arrays matching the HCAL cells contain fewer crystals. Calibration of the ECAL uses data, and interactions with asymmetric transverse energy, E_T, thresholds and complementary photon selections were used. One selection required a loose calorimetric identification using the shower shape and very loose isolation requirements on photon candidates, and the other required only that the photon candidate had a high value of the R_0 variable. This variable is defined as the energy sum of 3 \times 3 crystals centered on the most energetic crystal in the supercluster (described below) divided by the energy of the supercluster. Its value is used in the analysis to identify photons undergoing a conversion. The E_T thresholds used were at least 10% lower than the final selection thresholds. As the instantaneous luminosity delivered by the LHC increased, it became necessary to tighten the isolation cut applied in the trigger. To maintain high trigger efficiency, all four possible combinations of threshold and selection criterion were deployed (i.e., with both photon candidates having the R_0 condition, with the high threshold candidate having the R_0 condition applied and the low threshold candidate having the loose ID and isolation, and so on). Accepting events that satisfy any of these triggers results in a $>99\%$ trigger efficiency for events passing the offline selection.

Photon candidates are reconstructed from clusters of ECAL channels around significant energy deposits, which are merged into superclusters. The clustering algorithms result in almost complete recovery of the energy of photons that convert in the material in front of the ECAL. In the barrel region, superclusters are formed from five-crystal-wide strips in η centered on the locally most energetic crystal (seed) and have a variable extension in ϕ. In the endcaps, where the ECAL crystals do not have an $\eta \times \phi$ geometry, matrices of 5 \times 5 crystals (which may partially overlap) around the most energetic crystals are merged if they lie within a narrow road in η.

The photon energy is computed starting from the raw supercluster energy. In the endcaps the preshower energy is added where the preshower is present ($|\eta| > 1.65$). In order to obtain the best resolution, the raw energy is corrected for the containment of the shower in the clustered crystals, and the shower losses for photons which convert in material upstream of the calorimeter. These corrections are computed using a multivariate regression technique based on the TMVA boosted decision tree implementation [33]. The regression is trained on photons in a sample of simulated events using the ratio of the true photon energy to the raw energy as the target variable. The input variables are the global η and ϕ coordinates of the supercluster, a collection of shower-shape variables, and a set of local cluster coordinates.

Jets, used in the dijet tag, are reconstructed using a particle-flow algorithm [34,35], which uses the information from all CMS sub-detectors to reconstruct different types of particles produced in the event. The basic objects of the particle-flow reconstruction are the tracks of charged particles reconstructed in the central tracker, and energy deposits reconstructed in the calorimetry. These objects are clustered with the anti-k_T algorithm [36] using a distance parameter $\Delta R = 0.5$. The jet energy measurement is calibrated to correct for detector effects using samples of dijet, $\gamma +$ jet, and $Z +$ jet events [37]. Energy from overlapping pp interactions other than that which produced the diphoton (pile-up), and from the underlying event, is also included in the reconstructed jets. This energy is subtracted using the FASTJET technique [38–40], which is based on the calculation of the η-dependent transverse-momentum density, evaluated on an event-by-event basis.

Samples of Monte Carlo (MC) events used in the analysis are fully simulated using GEANT4 [41]. The simulated events are reweighted to reproduce the distribution of the number of interactions taking place in each bunch crossing.

4. Vertex location

The mean number of pp interactions per bunch crossing over the full dataset is 9.5. The interaction vertices reconstructed using the tracks of charged particles are distributed in the longitudinal direction, z, with an RMS spread of 6 cm. If the interaction point is known to better than about 10 mm, then the resolution on the opening angle between the photons makes a negligible contribution to the mass resolution, as compared to the ECAL energy resolution. Thus the mass resolution can be preserved by correctly assigning the reconstructed photons to one of the interaction vertices reconstructed from the tracks. The techniques used to achieve this are described below.

The reconstructed primary vertex which most probably corresponds to the interaction vertex of the diphoton event can be identified using the kinematic properties of the tracks associated with the vertex and their correlation with the diphoton kinematics. In addition, if either of the photons converts and the tracks from the conversion are reconstructed and identified, the direction of the converted photon, determined by combining the conversion vertex position and the position of the ECAL supercluster, can be used to point to and so identify the diphoton interaction vertex. For the determination of the primary vertex position using kinematic properties, three discriminating variables are constructed from the measured scalar, p_T, or vector, \vec{p}_T, transverse momenta of the tracks associated with each vertex, and the transverse momentum of the diphoton system, $p_T^{\gamma\gamma}$. These three variables are: $\sum p_T^2$, and two variables which quantify the p_T balance with respect to the diphoton system: $-\sum (\vec{p}_T \cdot \vec{p}_T^{\gamma\gamma})/|\vec{p}_T^{\gamma\gamma}|$ and $\langle (\sum p_T^2 - p_T^{\gamma\gamma})/(\sum p_T^2 + p_T^{\gamma\gamma}) \rangle$. An estimate of the pull to each vertex from the longitudinal location on the beam axis pointed to by any reconstructed tracks (from a photon conversion) associated with the two photon candidates is also computed: $|z_{\text{conversion}} - z_{\text{vertex}}|/\sigma_{\text{conversion}}$. These variables are used in a multivariate system based on boosted decision trees (BDT) to choose the reconstructed vertex to associate with the photons.

The vertex-finding efficiency, defined as the efficiency to locate the vertex to within 10 mm of its true position, has been studied with $Z \rightarrow \mu \mu$ events where the algorithm is run after the removal of the muon tracks. The use of tracks from a converted photon
to locate the vertex is studied with γ + jet events. In both cases the ratio of the efficiency measured in data to that in MC simulation is close to unity. The value is measured as a function of the boson p_T, as measured by the reconstructed muons, and is used as a correction to the Higgs boson signal model. An uncertainty of 0.4% is ascribed to the knowledge of the vertex finding efficiency coming from the statistical uncertainty in the efficiency measurement from $Z \rightarrow \mu\mu$ (0.2%) and the uncertainty related to the Higgs boson p_T spectrum description, which is estimated to be 0.3%. The overall vertex-finding efficiency for a Higgs boson of mass 120 GeV, integrated over its p_T spectrum, is computed to be $83.0 \pm 0.2 \text{ (stat)} \pm 0.4 \text{ (syst)}$.

5. Photon selection

The event selection requires two photon candidates with $p_T^p (1) > m_{\gamma\gamma}/3$ and $p_T^p (2) > m_{\gamma\gamma}/4$ within the ECAL fiducial region, $|\eta| < 2.5$, and excluding the barrel-endcap transition region 1.44 < $|\eta|$ < 1.57. The fiducial region requirement is applied to the supercluster position in the ECAL, and the p_T threshold is applied after the vertex assignment. The excluded barrel-endcap transition region removes from the acceptance the last two rings of crystals in the barrel, to ensure complete containment of accepted showers, and the first ring of trigger towers in the endcap which is obscured by cables and services exiting between the barrel and endcap. In the rare case where the event contains more than two photons passing all the selection requirements, the pair with the highest summed (scalar) p_T is chosen.

The dominant backgrounds to $H \rightarrow \gamma\gamma$ consist of 1) the irreducible background from the prompt diphoton production, and 2) the reducible backgrounds from $pp \rightarrow \gamma$ + jet and $pp \rightarrow $ jet + jet where one or more of the “photons” is not a prompt photon. Photon identification requirements are used to greatly reduce the contributions from non-prompt photon background.

Isolation is a powerful tool to reject the non-prompt background due to electromagnetic showers originating in jets – mainly due to single and multiple π^0’s. The isolation of the photon candidate is measured by summing the transverse momentum (or energy =) found in the tracker, ECAL or HCAL within a distance $\Delta R = \sqrt{\Delta\eta^2 + \Delta\phi^2}$ of the candidate (values of $\Delta R = 0.3$ and $\Delta R = 0.4$ are used). The tracks or calorimeter energy deposits very close to the candidates, which might originate from the candidate itself, are excluded from the sum. Pile-up results in two complications. First, the E_T summed in the isolation region in the ECAL and in the HCAL includes a contribution from other collisions in the same bunch crossing. The isolation sums in the ECAL and HCAL, and hence both the efficiency and rejection power of selection based on the sums, are thus dependent on the number of interactions in the bunch crossing. Second, the track isolation requires that the tracks used in the isolation sum are matched to the chosen vertex (so that the sum does not suffer from pile-up). If the vertex is incorrectly assigned, the isolation sum will be unrelated to the true isolation of the candidate. This allows non-prompt candidates which are not, in fact, isolated from tracks originating from their interaction point, to appear isolated.

The first issue is dealt with by calculating the median transverse energy density in the event, ρ, in regions of the detector separated from the jets and photons, and subtracting an appropriate amount, proportional to ρ, from the isolation sums. The second problem is dealt with by applying a selection requirement not only on the isolation sum calculated using the chosen diphoton vertex, but also on the isolation sum calculated using the vertex hypothesis which maximizes the sum. The isolation requirements are applied as a constant fraction of the candidate photon p_T, effectively cutting harder on low p_T photons. It has been shown with $Z \rightarrow ee$ events that the resulting variation of selection efficiency with p_T is well modeled in the simulation.

In addition to isolation variables, the following observables are also used for photon selection: the ratio of hadronic energy behind the photon to the photon energy, the transverse width of the electromagnetic shower, and an electron track veto.

Photon candidates with high values of R_0 are mostly unconverted and have less background than those with lower values. Photon candidates in the barrel have less background than those in the endcap. For this reason it has been found useful to divide photon candidates into four categories and apply a different selection in each category, using more stringent requirements in categories with higher background and worse resolution.

The efficiency of the photon identification is measured in data using tag and probe techniques [42]. The efficiency of the complete selection excluding the electron veto requirement is determined using $Z \rightarrow ee$ events. Table 1 shows the results for data and MC simulation, and the ratio of efficiency in data to that in the simulation, $e_{\text{data}}/e_{\text{MC}}$. The efficiency for photons to pass the electron veto has been measured using $Z \rightarrow \mu\mu\gamma$ events, where the photon is produced by final-state radiation, which provide a rather pure source of prompt photons. The efficiency approaches 100% in all except the fourth category, where it is 92.6 \pm 0.7%, due to imperfect pixel detector coverage at large η. The ratio $e_{\text{data}}/e_{\text{MC}}$ for the electron veto is close to unity in all categories. The quadratic sum of the statistical and systematic uncertainties for the measurements of efficiencies using data are propagated to the uncertainties on the ratios. The ratios are used as corrections to the signal efficiency simulated in the MC model of the signal. The uncertainties on the ratios are taken as a systematic uncertainties in the limit setting.

The efficiency of the trigger has also been measured using $Z \rightarrow ee$ events, with the events classified as described below. For events passing the analysis selection the trigger efficiency is found to be 100% in the high R_0 event classes, and about 95% in the other two classes.

6. Event classes

The sensitivity of the search can be enhanced by subdividing the selected events into classes according to indicators of mass resolution and signal-to-background ratio and combining the results of a search in each class.

Two photon classifiers are used: the minimum R_0 of the two photons, R_0^{min}, and the maximum pseudorapidity (absolute value) of the two photons, giving four classes based on photon properties. The class boundary values for R_0 and pseudorapidity are the same as those used to categorize photon candidates for the photon identification cuts. These photon classifiers are effective in separating photons whose mass is reconstructed with good resolution from those whose mass is less well measured and in separating events for which the signal-to-background probability is higher from those for which it is lower.
A further class of events includes any event passing a dijet tag defined to select Higgs bosons produced by the VBF process. Events in which a Higgs boson is produced by VBF have two forward jets, originating from the two scattered quarks. Higgs bosons produced by this mechanism have a harder transverse momentum spectrum than those produced by the gluon–gluon fusion process or the photon pairs produced by the background processes [43]. By using a dijet tag it is possible to define a small class of events which have an expected signal-to-background ratio more than an order of magnitude greater than events in the four classes defined by photon properties. The additional classification of events into a dijet-tagged class improves the sensitivity of the analysis by about 10%.

Candidate diphoton events for the dijet-tagged class have the same selection requirements imposed on the photons as for the other classes with the exception of the p_T thresholds, which are modified so as to be more appropriate for the boosted VBF Higgs bosons and so increasing the signal acceptance. The threshold requirements for this class are $p_T^1(1) > 55 \times m_{\gamma\gamma}/120$, and $p_T^2(2) > 25$ GeV.

The selection variables for the jets use the two highest transverse energy (E_T) jets in the event with pseudorapidity $|\eta| < 4.7$. The pseudorapidity restriction with respect to the full calorimeter acceptance ($|\eta| < 5$), avoids the use of jets for which the energy corrections are less reliable and is found to have only a small effect ($<2\%$ change) on the signal efficiency. The following selection requirements have been optimized using simulated events, of VBF signal and diphoton background, to improve the expected limit at 95% CL on the VBF signal cross section, using this class of events alone. The E_T thresholds for the two jets are 30 and 20 GeV, and the pseudorapidity separation between them is required to be greater than 3.5. Their invariant mass is required to be greater than 350 GeV. Two additional selection criteria, relating the dijet to the diphoton system, have been applied: the difference between the average pseudorapidity of the two jets and the pseudorapidity of the diphoton system is required to be less than 2.5 [44], and the difference in azimuthal angle between the diphoton system and the dijet system is required to be greater than 2.6 radians ($\approx 150^\circ$).

For a Higgs boson having a mass, m_H, of 120 GeV the overall acceptance times selection efficiency of the dijet tag for Higgs boson events is 15% (0.5%) for those produced by VBF (gluon–gluon fusion). This corresponds to about 2.01 (0.76) expected events. Events passing this tag are excluded from the four classes defined by R_9 and pseudorapidity, but enter the fifth class. About 3% of Higgs boson signal events are expected to be removed from the four classes defined by diphoton properties. In the mass range $100 < m_{\gamma\gamma} < 180$ GeV the fractions of diphoton events in the selected data, which pass the dijet VBF tag and enter the fifth class, and which would otherwise have entered one of the four classes defined in Table 2, are 0.8%, 0.5%, 0.3% and 0.4%, respectively.

The number of events in each of the five classes is shown in Table 2, for signal events from all Higgs boson production processes (as predicted by MC simulation), and for data. A Higgs boson with $m_H = 120$ GeV is chosen for the signal, and the data are counted in a bin (± 10 GeV) centered at 120 GeV. The table also shows the mass resolution, parameterized both as $\sigma_{\gamma\gamma}$, half-the-width of the narrowest window containing 68.3% of the distribution, and as the full width at half maximum (FWHM) of the invariant mass distribution divided by 2.35. The resolution in the endcaps is noticeably worse than in the barrel due to several factors, which include the amount of material in front of the calorimeter and less precise single channel calibration.

Significant systematic uncertainties on the efficiency of dijet tagging of signal events arise from the uncertainty on the MC modeling of jet-energy corrections and jet-energy resolution, and from uncertainties in predicting the presence of the jets and their kinematics. These uncertainties arise from the effect of different underlying event tunes, and from the uncertainty on parton distribution functions and QCD scale factor. Overall, an uncertainty of 10% is assigned to the efficiency for VBF signal events to enter the dijet tag class, and an uncertainty of 70%, which is dominated by the uncertainty on the underlying event tune is assigned to the efficiency for signal events produced by gluon–gluon fusion to enter the dijet-tag class. The uncertainty on the underlying event tunes was investigated by comparing the pT_0 [45], pT_0 [46], propt0 and proQ20 [47] tunes to the z2 tune [48] in Pythia [49].

7. Background and signal modeling

The MC simulation of the background processes is not used in the analysis. However, the diphoton mass spectrum that is observed after the full event selection is found to agree with the distribution predicted by MC simulation, within the uncertainties on the cross sections of the contributing processes which is estimated to be about 15%. The background components have been scaled by K-factors obtained from CMS measurements [50–52]. The contribution to the background in the diphoton mass range $110 < m_{\gamma\gamma} < 150$ GeV from processes giving non-prompt photons is about 30%.

The background model is obtained by fitting the observed diphoton mass distributions in each of the five event classes over the range $100 < m_{\gamma\gamma} < 180$ GeV. The choice of function used to fit the background, and the choice of the range, was made based on a study of the possible bias introduced by the choice on both the limit, in the case of no signal, and the measured signal strength, in the case of a signal.

The bias studies were performed using background-only and signal-plus-background MC simulation samples and showed that for the first four classes, the bias in either excluding or finding a Higgs boson signal in the mass range $110 < m_{\gamma\gamma} < 150$ GeV can be ignored, if a 5th order polynomial fit to the range $100 < m_{\gamma\gamma} < 180$ GeV is used. In both cases the maximum bias was found to be at least five times smaller than the statistical uncertainties of the fit. For the dijet-tagged event class, which contains much fewer events, the bias correction was also found to be negligible.

Table 2

<table>
<thead>
<tr>
<th></th>
<th>Both photons in barrel</th>
<th>One or both in endcap</th>
<th>Dijet tag</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$R_9^{\text{min}} > 0.94$</td>
<td>$R_9^{\text{min}} < 0.94$</td>
<td>G (GeV)</td>
</tr>
<tr>
<td>SM signal expected</td>
<td>25.2 (33.5%)</td>
<td>26.6 (35.3%)</td>
<td>9.5 (12.6%)</td>
</tr>
<tr>
<td>Data (events/GeV)</td>
<td>97.5 (22.8%)</td>
<td>143.4 (33.6%)</td>
<td>76.7 (17.3%)</td>
</tr>
<tr>
<td>$\sigma_{\gamma\gamma}$ (GeV)</td>
<td>1.39</td>
<td>1.84</td>
<td>2.76</td>
</tr>
<tr>
<td>$\text{FWHM}/2.35$ (GeV)</td>
<td>1.19</td>
<td>1.53</td>
<td>2.81</td>
</tr>
</tbody>
</table>
Fig. 1. Background model fit to the $m_{\gamma\gamma}$ distribution for the five event classes, together with a simulated signal ($m_H = 120$ GeV). The magnitude of the simulated signal is what would be expected if its cross section were twice the SM expectation. The sum of the event classes together with the sum of the five fits is also shown. a) The sum of the five event classes. b) The dijet-tagged class. c) Both photons in the barrel, $R_{\min}^9 > 0.94$. d) Both photons in the barrel, $R_{\min}^9 < 0.94$. e) At least one photon in the endcaps, $R_{\min}^9 > 0.94$. f) At least one photon in the endcaps, $R_{\min}^9 < 0.94$.

8. Results

The confidence level for exclusion or discovery of a SM Higgs boson signal is evaluated using the diphoton invariant mass distribution for each of the event classes. The results in the five classes are combined in the CL calculation to obtain the final result. The limits are evaluated using a modified frequentist approach, CL$_s$, taking the profile likelihood as a test statistic [63–65]. Both a
Table 3 lists the sources of systematic uncertainty considered in the analysis, together with the magnitude of the variation of the source that has been applied. The limit set on the cross section of a Higgs boson decaying to two photons using the frequentist CLs computation and an unbinned evaluation of the likelihood, is shown in Fig. 2. Also shown is the limit relative to the SM expectation, where the theoretical uncertainties on the expected cross sections from the different production mechanisms are individually included as systematic uncertainties in the limit setting procedure. The observed limit excludes at 95% CL the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The SM Higgs boson cross sections and branching ratios used are taken from Ref. [66].

The limit set on the cross section of a Higgs boson decaying to two photons using the frequentist CLs computation and an unbinned evaluation of the likelihood, is shown in Fig. 2. Also shown is the limit relative to the SM expectation, where the theoretical uncertainties on the expected cross sections from the different production mechanisms are individually included as systematic uncertainties in the limit setting procedure. The observed limit excludes at 95% CL the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The fluctuations of the observed limit about the expected limit are consistent with statistical fluctuations to be expected in scanning the mass range. The largest deviation, at $m_{\gamma\gamma} = 124$ GeV, is discussed in more detail below. It has also been verified that the shape of the observed limit is insensitive to the choice of background model fitting function. The results obtained from the binned evaluation of the likelihood are in excellent agreement with the results shown in Fig. 2.

Fig. 3 shows the local p-value calculated, using the asymptotic approximation [67], at 0.5 GeV intervals in the mass range $m_H > 110$ GeV. The local p-values for the dijet-tag event class, and for the combination of the four other classes, are also shown (dash-dotted and dashed lines respectively). The local p-value quantifies the probability for the background to produce a fluctuation at least as large as observed, and assumes that the relative signal strength between the event classes follows the MC signal model for the standard model Higgs boson.
corresponding to the largest upwards fluctuation of the observed limit, at 124 GeV, has been computed to be 9.2×10^{-4} (3.1σ) in the asymptotic approximation, and $1.5 \pm 0.4 \times 10^{-3}$ (3.0σ) when the calculation uses pseudo-data (the value for the pseudo-data ensemble at 124 GeV is shown in Fig. 3). The combined best fit signal strength, for a SM Higgs boson mass hypothesis of 124 GeV, is 2.1 ± 0.6 times the SM Higgs boson cross section. In Fig. 4 this combined best fit signal strength is compared to the best fit signal strengths in each of the event classes. Since a fluctuation of the background could occur at any point in the mass range there is a look-elsewhere effect [68]. When this is taken into account the probability, under the background only hypothesis, of observing a similar or larger excess in the full analysis mass range ($110 < m_H < 150$ GeV) is 3.9×10^{-2}, corresponding to a global significance of 1.8σ.

9. Conclusions

A search has been performed for the standard model Higgs boson decaying into two photons using data obtained from pp collisions at $\sqrt{s} = 7$ TeV corresponding to an integrated luminosity of 4.8 fb$^{-1}$. The selected events are subdivided into classes according to indicators of mass resolution and signal-to-background ratio, and the results of a search in each class are combined. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes at 95% confidence level the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 ± 2.4 GeV with a local significance of 3.1σ. The global significance of observing an excess with a local significance $\geq 3.1\sigma$ anywhere in the search range 110–150 GeV is estimated to be 1.8σ. More data are required to ascertain the origin of this excess.

Acknowledgements

We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CPanq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NCPB (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, and RFBR (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie programme and the European Research Council (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); and the Council of Science and Industrial Research, India.

Open access

This article is published Open Access at scienceDirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

N. Shumeiko, J. Suarez Gonzalez
National Centre for Particle and High Energy Physics, Minsk, Belarus

M. Korzhik
Research Institute for Nuclear Problems, Minsk, Belarus

Universiteit Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussel, Belgium

Université Libre de Bruxelles, Bruxelles, Belgium

Ghent University, Ghent, Belgium

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

N. Beliy, T. Caebergs, E. Daubie
Université de Mons, Mons, Belgium

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil

V. Genchev, P. Iaydjiev, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, V. Tcholakov, R. Trayanov, M. Vutova
Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

A. Dimitrov, R. Hadjiiska, A. Karadzhinova, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov
University of Sofia, Sofia, Bulgaria

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

INFN Sezione di Bari, Bari, Italy
Università di Bari, Bari, Italy
Politecnico di Bari, Bari, Italy

INFN Sezione di Bologna, Bologna, Italy
Università di Bologna, Bologna, Italy

S. Albergo, G. Cappello, M. Chiorboli, S. Costa, R. Potenza, A. Tricomi, C. Tuve

INFN Sezione di Catania, Catania, Italy
Università di Catania, Catania, Italy

G. Barbaglia, V. Ciulli, C. Civinini, R. D’Alessandro, E. Focardi, S. Frosali, E. Gallo, S. Gonzi, M. Meschini, S. Paoletti, G. Sguazzoni, A. Tropiano

INFN Sezione di Firenze, Firenze, Italy
Università di Firenze, Firenze, Italy

L. Benussi, S. Bianco, S. Colafranceschi, F. Fabbri, D. Piccolo

INFN Laboratori Nazionali di Frascati, Frascati, Italy

P. Fabbricatore, R. Musenich

INFN Sezione di Genova, Genova, Italy

INFN Sezione di Milano-Bicocca, Milano, Italy
Università di Milano-Bicocca, Milano, Italy

INFN Sezione di Napoli, Napoli, Italy
Università di Napoli “Federico II”, Napoli, Italy

D. Spiga, M. Spiropulu4, M. Stoye, A. Tsirou, G.I. Veres16, P. Vichoudis, H.K. Wöhri, S.D. Worm35, W.D. Zeuner

CERN, European Organization for Nuclear Research, Geneva, Switzerland

Paul Scherrer Institut, Villigen, Switzerland

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

E. Aguilo, C. Amsler, V. Chiochia, S. De Visscher, C. Favaro, M. Ivova Rikova, B. Millan Mejias, P. Otiougova, P. Robmann, H. Snoek, M. Verzetti

Universität Zürich, Zurich, Switzerland

National Central University, Chung-Li, Taiwan

National Taiwan University (NTU), Taipei, Taiwan

A. Adiguzel, M.N. Bakirci39, S. Cerci40, C. Dozen, I. Dumanoglu, E. Eskut, S. Girgis, G. Gokbulut, I. Hos, E.E. Kangal, G. Karapinar, A. Kayis Topaksu, G. Onengut, K. Ozdemir, S. Ozturk41, A. Polatoz, K. Sogut42, D. Sunar Cerci40, B. Tali40, H. Topakli39, D. Uzun, L.N. Vergili, M. Vergili

Cukurova University, Adana, Turkey

Middle East Technical University, Physics Department, Ankara, Turkey

M. Deliomeroglu, E. Gülmez, B. Isildak, M. Kaya43, O. Kaya43, S. Ozkorucuklu44, N. Sonmez45

Bogazici University, Istanbul, Turkey

L. Levchuk

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine

University of Bristol, Bristol, United Kingdom

Rutherford Appleton Laboratory, Didcot, United Kingdom
Imperial College, London, United Kingdom

Brunel University, Uxbridge, United Kingdom

K. Hatakemaya, H. Liu, T. Scarborough
Baylor University, Waco, USA

C. Henderson
The University of Alabama, Tuscaloosa, USA

Boston University, Boston, USA

Brown University, Providence, USA

University of California, Davis, Davis, USA

University of California, Los Angeles, Los Angeles, USA

University of California, Riverside, Riverside, USA

University of California, San Diego, La Jolla, USA

University of California, Santa Barbara, Santa Barbara, USA
Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.

Also at The University of Kansas, Lawrence, USA.

Also at Paul Scherrer Institut, Villigen, Switzerland.

Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.

Also at Gaziosmanpasa University, Tokat, Turkey.

Also at Adiyaman University, Adiyaman, Turkey.

Also at The University of Iowa, Iowa City, USA.

Also at Mersin University, Mersin, Turkey.

Also at Kafkas University, Kars, Turkey.

Also at Suleyman Demirel University, Isparta, Turkey.

Also at Ege University, Izmir, Turkey.

Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.

Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy.

Also at Utah Valley University, Orem, USA.

Also at Institute for Nuclear Research, Moscow, Russia.

Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.

Also at Los Alamos National Laboratory, Los Alamos, USA.

Also at Argonne National Laboratory, Argonne, USA.

Also at Erzincan University, Erzincan, Turkey.

Also at Kyungpook National University, Daegu, Republic of Korea.