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MULTIGRID ON COMPOSITE MESHES*
W. D. HENSHAWT AND G. CHESSHIRE}

Abstract. The multigrid method is applied to the numerical solution of elliptic equations on general
composite overlapping meshes. Computational results show that good convergence rates are obtained.
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1. Introduction. We describe the application of the multigrid method to the sol-
ution of elliptic partial differential equations (PDEs) on two-dimensional regions which
have been discretized using composite overlapping grids. A general purpose code,
CGMG, has been developed (in FORTRAN) which can solve problems on composite
meshes created by the grid construction program CMPGRD, Chesshire [5]. With
CMPGRD the user may create a composite grid containing any number of component
grids at any number of multigrid levels. CGMG can then be used to solve elliptic PDE
boundary value problems.

A composite overlapping grid consists of a number of simpler component grids.
These component grids cover a region and overlap where they meet. Functions defined
on the composite mesh are matched by interpolation at the overlapping grid boundaries.
The problem of generating grids for regions of complicated geometry can be difficult,
especially for those grid generation algorithms which attempt to fit a single global grid.
With a composite overlapping grid, however, the component grids can be generated
almost independently of each other. Each component grid can be stretched and refined
with little effect on the other component grids. The numerical solution of PDEs on
such grids has been examined by, among others, Starius [10], [11], Reyna [9], Kreiss
[8], Atta and Vadyak [1], Benek et al. [2], Henshaw [7] and Berger [3].

The multigrid method is a fast iterative method for the solution of elliptic problems.
Multigrid utilizes a sequence of grids of varying degrees of coarseness to accelerate
the convergence of the solution on the finest grid. The basic principle rests on the fact
that it is possible to obtain iterative procedures (smoothers) for which the high frequency
components of the solution converge rapidly. This means that after a few smoothing
iterations the part of the solution yet to converge is smooth and hence can be accurately
solved for on a coarser grid. Discussions of the multigrid method in general can be
found, for example, in Brandt [4], or Stiiben and Trottenberg [12]. Multigrid on a
model composite mesh has been described in Stiiben and Trottenberg [12] and for
more general two component meshes in Henshaw [7].

In the next section we outline the implementation of the multigrid algorithm on
fairly general composite meshes. This includes a description of the technique we use
to discretize PDEs on overlapping meshes. In § 3 numerical results are presented for
some test cases. These results show that the good convergence rates expected from
multigrid can be obtained on composite meshes.
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2. Description. The multigrid code CGMG was written to solve linear, variable
coefficient elliptic PDEs of the form

u 8’u u  ou_  du
la Lu=c,—+c¢oy——+¢,—+cc—+c,—+cu=f inQ,
(1a) ox? Yoxay Yay* Tox oy U
ou u
(1b) Bu=b,—+b,—+bu=g on Q.
ox ay

Periodic boundary conditions are also allowed. Currently a second-order difference
approximation has been implemented.

Let us first describe how the above PDE boundary value problem is discretized
on a composite mesh, without any references to multigrid. The grid construction
program CMPGRD can be used to generate a composite overlapping mesh for the
region (). This mesh is composed of one or more component meshes. See, for example,
the composite meshes of Figs. 1 and 2. Each component mesh is logically rectangular,
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F1G. 1. Grid 1: Composite meshes for multigrid levels 1,2 and 3 and a contour plot of the calculated solution.
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FI1G. 2. Grid 2: Composite meshes for multigrid levels 1 and 2 and a contour plot of the calculated solution.

although some points in overlap regions are discarded. A point on a component grid
will be one of the following four types:
(i) An interior point where the PDE (1a) should be applied.

(i) A boundary point, which corresponds to 3}, where the boundary condition
(1b) holds.

(iii) A point where the solution is matched, by interpolation to the solution on
other component grids. We sometimes call the set of all such interpolation
points the interpolation boundary.

(iv) A point in a region of overlap which is not used.

There are a number of possible ways to generate the discrete approximations to the
PDE (1a), the boundary conditions (1b) and the interpolation equations. The approach
we take is a mapping method and proceeds as follows. Each component grid is simple
enough so that it can be mapped smoothly to a unit square (coordinates (7, s)). The
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PDE can be written in these (r, s) coordinates.
3’u o’u u_ ou_ du
Lu=c,—S+tcs——+c 5t —+e—+cu=f
or ar ds as ar as

u du
Bu=b,—+b,—+bu=g.
"ar s 8

The coefficients in these equations depend on derivatives of the mapping. These
derivatives are supplied as output from the composite grid construction program
CMPGRD. The solution of a PDE on a composite mesh can then be considered as
the solution of PDEs on a sequence of unit squares. The solutions on the squares are
coupled to each other through the interpolation boundaries. Let the discrete solution
at point (i, j) on component grid k be denoted by v, (i, j). Then for each k we obtain
discrete approximations to the elliptic equation and the boundary conditions of the form

(2a) Liv = fr,

(2b) By = g

A point (i, j, k) on an interpolation boundary is interpolated from some other com-
ponent grid k. CMPGRD supplies the position (7', s') of the point (i, j, k) on grid k'.
Hence standard interpolation formulae for rectangular grids can be applied:

(2C) vk(iaj) = .IZ_, akk’( iaja i'a .]') vk'(ilaj’)'
t,J

These equations (2a), (2b) and (2¢) will be written as a single linear system:
(3) Av=f.

The vector v of all unknowns will be called a composite mesh function. A is an example
of a composite mesh operator, mapping one composite mesh function to another
composite mesh function.

The mesh equations (3) can be solved in any number of ways; using multigrid is
but one possibility. If there are not too many equations the system can be solved
directly. Sparse matrix routines [6] have been used for this purpose. For large systems
iterative methods become attractive. Many standard iterative methods are applicable.
The matrix is not symmetric, however, so that some schemes do not apply. In general
it is best to try and solve all the equations simultaneously, rather than iterating for too
long on one component grid. The work of J. Linden, as reported in Stiiben and
Trottenberg [12], indicates that an iteration based on the Schwartz alternating procedure
(where the equations on each component grid are solved exactly before updating
interpolation boundaries) is slower and sensitive to the amount of overlap. In contrast
it was found that by using the smoothers presented below, the multigrid convergence
rate was fairly insensitive to the amount of overlap. The general principle to follow
seems to be to iterate in such a way that, at any time, all equations have converged to
about the same degree.

2.1. Multigrid. The multigrid algorithm can be applied to the solution of the mesh
equations (3). Once a composite mesh has been constructed using CMPGRD it is a
simple matter to have CMPGRD generate the sequence of coarser composite meshes
which are used for the multigrid algorithm. Figures 1 and 2 show some composite
meshes which have been generated for multigrid. Denote the finest composite mesh,
level 1, by M' and successively coarser meshes by M/, 1=2,3,---. Note that for
simplicity the composite meshes at the different levels all have the same number of
component meshes. The elliptic PDE boundary value problem can be discretized on
each of the composite meshes M'. Let v' denote the composite mesh function for level
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I. Then at each level I there will be mesh equations of the form (3):
4) AV =1

Now let us outline the multigrid algorithm as it applies to composite meshes. Let
v!(p) be the pth iterate in the solution of the mesh equations on the finest mesh M'.

MULTIGRID ALGORITHM.
while not converged do
smooth v, times
vi(x) < (SH)v'(p)
compute the defect and transfer to the coarser grid
f2<_R1—>2(f1 _Alvl(*)) ‘
“solve” the defect equation on the coarser grid
Ve ( AZ)—le ‘
correct the fine grid solution from coarse grid solution
vi(*%) < v'(%) + PV
smooth v, times
Vi(p+1) < (S") v (xx)
end while
This is the basic defect correction scheme. The smoothing operator S', the restric-
tion operator R'>? and the prolongation operator P>~ will be described in the context
of composite grids. The defect equation need only be “solved” approximately. This
approximate solution can be obtained by multigrid, in which case the algorithm becomes
recursive. At the coarsest level the equations are usually solved directly.

Smoothers. The smoothing operator S for composite grids consists of smoothing
each component grid and updating the interpolation boundaries. A component grid
may be smoothed with any of the standard smoothers that exist. The program CGMG
allows the user to choose from a number of possibilities including Gauss-Seidel,
Red-Black-Gauss-Seidel, Zebra line smoothers and alternating Zebra line smoothers.
Each component grid can have a different smoother; the smoother can be tailored to
the grid. For example, a particular component grid might be stretched to resolve a
boundary layer, in which case one can use a line smoother in the appropriate direction.

There is some freedom as to the order of smoothing and interpolation. One
possibility is to smooth all component grids before updating the interpolation
boundaries:

( Smooth first component grid,

Smooth second component grid,

Smooth last component grid,

\ Interpolate.

From experience, however, it seems that a good procedure involves interpolating after
each component grid is smoothed:

( Smooth first component grid,

Interpolate.

S’ ={ Smooth second component grid,

Interpolate.

\ .
The latter composite smoother requires more interpolations but this extra work is
usually small compared to the smoothing operations.
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Restriction operators (fine to coarse grid transfer). The defect computed on a given
level is transferred to the next coarsest level by the restriction operator R'”2 (The
superscript 12 indicates that this operator maps mesh functions on M' to mesh
functions on M*.) A typical restriction operator determines the value at points on the
coarse grid as some weighted average of the surrounding points on the fine grid. We
use the so-called full weighting restriction. The defects in the boundary equations are
averaged separately from the defects in the interior equations; boundary defects are
averaged along the boundary line. Since the final stage of the smoothing operation
involves an interpolation, the defects in the interpolation equations are all zero. Hence
no defect need be transferred at these points.

Prolongation operators (coarse to fine grid transfer). The prolongation operator
P*>”! maps the coarse grid solution to the fine grid. This mapping usually takes the
form of an interpolation. We use second order interpolation. Interpolation boundary
values could be corrected as well. However, once all other values have been corrected
the interpolation equations can be solved to update the interpolation boundary. It
turns out that less overlap is needed on finer meshes for the latter approach.

Choice of parameters and cycle. An important part of the multigrid algorithm is
the choice of the parameters v,, v,, etc. and the choice of cycle. Cycle is the term used
to denote the sequence in which the different levels of grids are traversed. The program
dynamically determines the type of cycle and the values for », and v, in a manner
similar to that described by Brandt [4]. There are two basic principles:

(i) Perform smoothing iterations until the smoothing rate (the reduction in
residual per iteration) becomes larger than some value 7, where 7 =.6.

(ii) Return to a finer grid once the residual at this level has been reduced by a

certain factor & with 8 =~ .1.

We have found it very helpful to monitor the smoothing rates and component grid
residuals as the iteration proceeds. This information can be used to determine what
changes can be made to improve the convergence rate. If, for example, one component
grid is converging slowly one can choose a better component smoother for that grid.
Ideally the program should automatically choose the parameters 7 and § and the types
of component smoothers. A program with this level of sophistication has not yet been
developed.

Remarks on grid construction. For practical reasons the amount of overlap between
component grids is kept fairly small. This reduces the number of computational points.
With sufficient overlap, points on an interpolation boundary can be explicitly interpo-
lated from noninterpolation points on other component grids. However, as the amount
of overlap decreases the interpolation equations may couple interpolation points from
different component grids. In this case a system of equations must be solved to obtain
values on the interpolation boundaries in terms of other values. Of course, as the
overlap goes to zero these equations may become singular. The behaviour of the
numerical solution to a model elliptic problem, as a function of the amount of overlap,
was considered in Henshaw [7]. Suppose that the amount of overlap goes to zero as
the grid is refined. To maintain accuracy, the order of accuracy of the interpolation
formulae must be greater than the order of accuracy of the interior formulae. In the
results presented here we use second order accurate approximations to the elliptic
equations and the amount of overlap is required to be greater than one half a grid
line. In this case the interpolation formulae should be third order accurate.

To make the restriction and prolongation operators simple the composite meshes
at different multigrid levels are strongly related. For example, interior points on a
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coarse grid coincide with interior points on finer grids. In Henshaw [7] the coarse grid
was generated first and all finer grids were generated by simply doubling the number
of grid lines. This gave reasonable results for composite grids with 2 component grids.
However, this method does not immediately generalize to more component grids and
it tends to lead to more overlap on the finer grids than is really necessary. Hence the
grid construction program CMPGRD was designed explicitly to meet the requirements
of the multigrid routine [5].

Remarks on programming. A computer code for solving problems on composite
meshes is somewhat more complicated than a code written for a single grid. One of
the major difficulties arises in the handling of all the data which describes the composite
grid. We have worked out a scheme for storing the composite grid data in an efficient
and flexible manner. Physically, all the data is stored on a single array. Logically, the
data is stored in a “directory-tree” fashion. Variables can be stored or accessed by
name using utility routines. Arrays can be stored with a minimum of wasted space.
With this storage structure the composite grid data can be easily passed to subroutines.

3. Numerical results. In this section we present results from the multigrid solver
CGMG. The composite grids used in the examples are shown in Figs. 1 and 2. Grid
1 (Fig. 1) has 3 levels and Grid 2 (Fig. 2) has 2 levels. The interpolation points are
marked with small circles. Notice that the finer meshes are not simply the coarser
meshes with double the number of lines. There is less overlap between component
grids on the finer meshes. One restriction associated with composite overlapping grids
is illustrated by these figures; for complicated regions the most coarse mesh that can
be constructed will still have a substantial number of grid points.

In the two test examples which follow we solve

du du
ox* * 8y2 =/

(5)

f=—2x"cos mx cos my.
The boundary conditions are chosen so that the true solution is
Ugrye = COS 77X COS Y.

One reason for solving this rather simple problem is to allow the reader to compare
the results presented here to other well known results for Poisson’s equation. In addition
it is shown that similar convergence rates are obtained for solving the same problem
on two widely different composite meshes.

Test 1. The Poisson equation (4) is solved on Grid 1. This grid might be used to
study flow around an obstacle in a varying channel. Periodic boundary conditions are
applied at the left and right ends of the channnel. Dirichlet boundary conditions,
U = Uy, are given at all other boundaries. For smoothers we chose Red-Black on the
rectangular grid and line-Zebra smoothers for the 3 curvilinear grids. The Zebra
smoothers are on lines normal to the boundaries since this is the direction in which
the grids are stretched. Smoothing was performed until the smoothing rate became
greater than n =.6. The residual at level 2 had to be decreased by a factor of 6 =.01
before the program would return to level 1. These parameters resulted in a “ W” cycle,
that is the levels were traversed in the order (1,2, 3,2, 3,2, 1). A value of 8 =.1 resulted
in a “V” cycle, (1,2, 3,2, 1), which gave slightly inferior results.

Test 2. Equation (4) is solved on Grid 2 with Dirichlet boundary conditions at
all boundaries. Grid 2 is meant to represent an airfoil with a flap. Alternating Zebra
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smoothers were used on all component grids since they all are stretched in both the r
and s directions. A value of n =.36=(.6)* was chosen since the alternating smoothers
comprise two sweeps.

Convergence results for the two tests are summarized in Table 1. r(p) is the
residual on the finest composite mesh after the pth multigrid iteration,

r(p)=[f' —AW'(p)|.

Define WU (p) to be the number of work units used for the pth iteration. A work unit
is the amount of work (number of multiplications) to perform one iteration of SOR
on the composite mesh. The effective convergence rate, ECR, is defined as

r(p) \ -1
ECR(p)—<r(p_l)) , p=(WU(p) .
Theoretically the ECR for multigrid should be independent of the grid spacing h as
h—0. In contrast the (effective) convergence rate for many other standard iterative
schemes deteriorates as h - 0. For optimal SOR, ECR =1 — ¢, h, and for Gauss-Seidel,
ECR=~1-c,h> In Table 1 the ECR increases on the fourth iteration for Grid 1 since
the solution has almost converged to single precision accuracy.

In Tables 2 and 3 the errors in the solution to the elliptic problem are given. The
problem was solved on the fine mesh (level 1) and also on each of the coarser meshes.
The error on component grid k, multigrid level I, e(k, 1), is the maximum difference

TABLE 1
Convergence rates.

Grid 1 Grid 2
Iteration r(p)/r(p—1) ECR (p) r(p)/r(p—1) ECR (p)
p=1 019 1 .091 73
p=2 .065 72 .033 .63
p=3 .055 71 11 75
p=4 385 .89 .14 a7
TABLE 2

Errors in solution for Grid 1.

) k n, ng e(k, 1) e(k, 1)/ e(k,1)
1 1 93 77 1.5x1073 1
2 81 21 1.1x1073 1
3 81 21 1.1x1073 1
4 93 17 1.7x1073 1
2 1 47 39 7.4x1073 5
2 41 11 5.4x1073 4.8
3 41 11 5.4x1073 4.8
4 47 9 7.4%x1073 44
3 1 24 20 3.7x1072 25
2 21 6 2.6%x1072 23
3 21 6 2.6x1072 23
4 24 5 3.3%x1072 20
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TABLE 3
Errors in solution for Grid 2.

) k n, n e(k, 1) e(k, 1)/ e(k,1)
1 1 101 61 1.8x1072 1
2 121 13 2.0x1072 1
3 111 13 5.7x1072 1
2 1 51 31 9.8x1072 5.4
61 7 8.7x1072 4.4
3 56 7 2.7%1072 4.7

between the calculated and true solution. The number of points on the component
grids in the r and s directions is given by n, and n,, respectively. Not all the points
are used since there is overlap between the grids. Level 1 of Grid 1 has 8431 computa-
tional points while there are 7431 computational points on the finest level of Grid 2.
Contour plots of the calculated solutions are shown in Figs. 1 and 2.

4. Summary. We have given a brief description of a computer code, CGMG,
which solves elliptic PDEs on general composite overlapping meshes using the multigrid
algorithm. Multigrid meshes can be created using the composite grid construction
program CMPGRD. Care has been taken in the grid construction to keep the amount
of overlap to a minimum. The multigrid algorithm for composite meshes involves only
minor modifications to its standard form. These changes are necessary in order to
handle the interpolation points of the overlapping grids. We have shown the results
of solving Poisson’s equation with Dirichlet boundary conditions on two nontrivial
composite meshes. The numerical solutions were shown to be accurate. Convergence
rates were obtained which compare favourably with those rates which might be obtained
on a more simple grid.
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