Rapid Communications

The Rapid Communications section is intended for the accelerated publication of important new results. Manuscripts submitted to this section are given priority in handling in the editorial office and in production. A Rapid Communication may be no longer than 3/5 printed pages and must be accompanied by an abstract. Page proofs are sent to authors, but, because of the rapid publication schedule, publication is not delayed for receipt of corrections unless requested by the author.

Highlights of the reaction $\pi^- p \rightarrow \pi^- \pi^+ n$ at 100 and 175 GeV/c

H. Haggerty and E. Malamud
Fermi National Accelerator Laboratory, Batavia, Illinois 60510

University of Illinois at Chicago Circle, Chicago, Illinois 60680

A. Dzierba, F. Fredericksen,* R. Heinz, J. Krider, H. Martin, and D. Petersen
Indiana University, Bloomington, Indiana 47405

(Received 17 October 1983)

We present a summary of the physics results from an experimental study of the reaction $\pi^- p \rightarrow \pi^- \pi^+ n$ at 100 and 175 GeV/c incident-beam momentum. Our data show the continuing dominance of one-pion exchange in these reactions with the characteristic $1/\rho_{ab}$ momentum dependence. We extract the pion Regge trajectory from our data on $\pi^- p \rightarrow \rho^0 n$ and study the zero structure of the $\pi\pi$ differential cross section up to $s_{\pi\pi}=12$ GeV².

This paper summarizes the main results from an experiment which measured the reaction $\pi^- p \rightarrow \pi^- \pi^+ n$ at beam momenta of 100 and 175 GeV/c. A complete discussion of our data may be found in another paper* and the theses of Fredericksen‡ and Stampke. The experiment, E110, used a multiparticle spectrometer set up to the M6W beam line at Fermilab. This spectrometer was originally used to study jet production (E260) in high-transverse-momentum collisions. The data reported here were taken simultaneously with those for the reactions $\pi^- p \rightarrow K\bar{K}\pi X$ (Ref. 5), $\pi^- p \rightarrow A\bar{p}$ (Ref. 6), and $K^- p \rightarrow K^+ p$ (Ref. 7).

The experimental apparatus is described in detail elsewhere. The final-charged-particle momenta were analyzed by a large-aperture superconducting dipole magnet and a combination of proportional and spark wire chambers. The trigger for the reaction $\pi^- p \rightarrow \pi^- \pi^+ n$ required two and only two hits in several of the proportional wire chambers combined with the requirement of no signal in neutral-particle (photon) detectors placed near the target. The recoil neutron was not detected but rather was identified by a missing-mass technique. The secondary-particle species were identified by two large atmospheric-pressure segmented Cherenkov counters placed after the magnet.

After a careful analysis†‡‡ to ensure clean data samples, we obtained about 10,000 events of reaction (1) at each of our two beam momenta. The acceptance in final-state $\pi^- \pi^+$ mass extends to about 3 (3.5) GeV at 100 (175) GeV. All data presented have been corrected for known experimental biases and acceptance losses. The uncertainty in these corrections is substantially less than the statistical errors for all distributions presented here. The corrections were all rather uniform as a function of the dynamical variable selected for the geometric acceptance of very asymmetric decays of the $\pi^- \pi^+$ system when one of the pions is at large angles and has low momentum. This effect is negligible at the ρ^0 mass but can be seen as a loss at low $t_{\pi\pi}$ in the distributions of Fig. 4 at high $\pi\pi$ mass.

Our experiment is able to probe both the dynamics of the two-body peripheral process $\pi^- p \rightarrow p\bar{n}$ and the nature of the low-energy $\pi^+ \pi^-$ scattering amplitude. The extension to high energy of earlier measurements is important for several reasons. The two-body description becomes extremely clean with no contamination from competing processes such as $\pi^- p \rightarrow \pi^- N^{**}$. Further, the asymptotic Regge theory becomes reliable at high energies. It becomes possible to produce high-mass $\pi^- \pi^+$ states in the region (small momentum transfer $t_{\pi\pi}$) where the interpretation as $\pi\pi$ scattering becomes possible.

Figure 1 shows the conventional (Regge) particle-exchange interpretation of the reaction (1). It also indicates...
HIGHLIGHTS OF THE REACTION $\pi^- p \to \pi^- \pi^+ n$ AT 100 AND ...
the same results at our two energies. We use the technique developed in Refs. 15 and 16, and Fig. 4 shows a sample of our data; the quantity called I_0 is essentially the $\pi \pi$ elastic differential cross section.1,13

Of interest here is the pattern of decay-distribution dips and breaks. These can be interpreted as the location in $s_{\pi\pi}$ and $t_{\pi\pi}$ of the scattering-amplitude zeros.17 A particularly striking feature of Fig. 4 is the dip at $t_{\pi\pi} \sim -1$ GeV2, which becomes a break at higher masses. The difference between a break and a dip is probably not significant as a dip can easily be "turned into" a break by superimposing the same amplitude structure on a more rapidly falling $t_{\pi\pi}$ dependence as is in fact seen at the highest masses. Thus we are motivated to catalog the dips and breaks in the $\pi \pi$ scattering region probed by our experiment. Dips are found as the minima of the $d\sigma/dt_{\pi\pi}$ distributions while breaks are located at the maxima of the second derivative of the logarithm of $d\sigma/dt_{\pi\pi}$. Our results, given in Fig. 5, show good agreement between our two energies in accord with the $\pi \pi$-scattering interpretation.

In Fig. 5, we see two lines of zeros at fixed values of $u_{\pi\pi}$ at approximately 0 and -1. Our data suggest other fixed $u_{\pi\pi}$ structure (the figure shows the start of a possible $u_{\pi\pi} \sim -2$ GeV2 zero) but it is not statistically significant. These lines of zeros are termed Odorico18 or Lovelace-Veneziano zeros.19,20 In the Veneziano model, the $\pi^+\pi^-$ amplitude has zeros at

$$u_{\pi\pi} = 4m_{\pi}^2 - 0.9n ,$$

where n is a non-negative integer. The $n = 0$ and 1 zeros of this simple theory are clearly indicated by our data. Lovelace pointed out that the $n = 0$ zero becomes the
HIGHLIGHTS OF THE REACTION $\pi^- p \rightarrow \pi^- \pi^+ n$ AT 100 AND . . .

FIG. 4. I_0, essentially the $\pi^+\pi^-$ differential cross section, plotted as a function of t_{ww} for various m_{ww} bins. These illustrative data come from our 175-GeV/c sample. The solid (dashed) lines above 1.9 GeV correspond to single- (double-) exponential fits.

$s_{\text{ww}} = t_{\text{ww}} = u_{\text{ww}} = 0$ PCAC (partial conservation of axial-vector current) zero and this is consistent with an extrapolation of the $t_{\text{ww}} \sim 0$ line of zeros seen in our data.

The $t_{\text{ww}} = -1$ GeV2 dip which extends to $s_{\text{ww}} = 12$ GeV2 seems to have a different origin. This is not present in the model, which is not surprising as diffraction (the Pomeron) is absent from the Veneziano formalism. Comparing with the expected formula for a shell $[J_0(R \sqrt{-t})]$ or a sphere $[J_1(R \sqrt{-t})]$, we find pion radii of 0.5 and 0.75 fm, respectively. The latter appears to be in better agreement with the pion (charge) radius measurements than the 0.5-fm value. $\pi\pi$ scattering provides a unique laboratory for studying diffraction as geometrical structure translates into very different zero positions in the different spin amplitudes. Only in $\pi\pi$ scattering do we find but one amplitude and no confusion from the many possible spin states. The $t_{\text{ww}} = -1$ GeV2 zero may turn and exit the physical region near $s_{\text{ww}} = 2$ GeV2. On the other hand, as mentioned above, the zeros for $0 \leq -t_{\text{ww}} \leq 1$ GeV2 starting at $s_{\text{ww}} = 2$ GeV2 may be the start of the $n = 2$ fixed-u_{ww} zero.

We would like to thank Fermilab for help in the running and analysis of this experiment. This research was supported in part by the U.S. Department of Energy and the National Science Foundation.

FIG. 5. Positions of the dips and breaks in our $\pi^-\pi^+\pi^0$ decay distributions in the region $-t_{\text{fm}} < 0.15$ GeV2. Points with horizontal bars (an estimate of the uncertainty) correspond to breaks, the remainder to dips.

1Present address: Michigan State University, East Lansing, Michigan.
2Present address: Jet Propulsion Laboratory, Pasadena, California.
3Present address: Hughes Aircraft Corporation, Los Angeles, California.
4Present address: Lockheed Missiles and Space Corporation, Sunnyvale, California.
5C. Bromberg et al., Nucl. Phys. B (to be published).
11C. Bromberg et al. (paper in preparation).
15L. Jones, Rev. Mod. Phys. 52, 545 (1980).