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Analyzing the properties of entanglement in many-particle spin-1/2 systems is generally difficult because the
system’s Hilbert space grows exponentially with the number of constituent particl€rtunately, it is still
possible to investigate a many-particle entanglement when the state of the system possesses sufficient symme-
try. In this paper, we present a practical method for efficiently computing various bipartite entanglement
measures for states in the symmetric subspace and perform these calculatisnslioh By considering all
possible bipartite splits, we construct a picture of the multiscale entanglement in large symmetric systems. In
particular, we characterize dynamically generated spin-squeezed states by comparing them to known reference
states(e.g., Greenberger-Horne-Zeilinger and Dicke sjatsd families of states with near-maximal bipartite
entropy. We quantify the trade-off between the degree of entanglement and its robustness to particle loss,
emphasizing that substantial entanglement need not be fragile.
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I. INTRODUCTION then the state is guaranteed to be inseparable. However, at
this level, limited information(in detail) about internal en-
The structure of entanglement within multipartite quan-tanglement and its robustness to particle 10%8,14], or
tum systems is a deep subject that has only begun to bether types of decoheren¢®,15,14, is available. In other
explored. Since an ensemble’s Hilbert space grows exponemvords, entanglement tests using total ensemble operators
tially with the number of particles that comprise it, the num-cannot completely characterize the trade-off between the
ber of distinct ways in which these particles can becomeavailable entanglement resources and the state’s fragility.
entangled and the number of reference states needed to rep-Unlike several multipartite techniques that have been in-
resent the various entanglement structures are immédise troduced(e.g., theN-tangle[17]), we approach the problem
While exponential scaling in complexity is the reason thatof analyzing theN-particle entanglement using only bipartite
multipartite entanglement is so rich, it is also the reason thateasures. Although a single bipartite split of a large system
the subject is so daunting. is rarely sufficient to characterize multiparticle entanglement,
Nonetheless, there is a motivation for characterizing eneombining the results from many different splits of the sys-
tanglement in many-particle systems such as atomic spin elem paints a reconstructed picture of the many-particle en-
sembles because of recent experimental progress in creatifgnglement. Furthermore, by repeating the analysis after re-
and manipulating macroscopic quantum states. In particulamoving particles from the system, it is possible to
highly correlated atomic ensembles, such as spin-squeezegstematically characterize the entanglement across all size
states[2], have been demonstrat¢8-5] and advances are scales and its robustness to particle loss. Our approach has
promised in atomic interferometfs] and quantum commu- the advantage that it relies upon well-defined entanglement
nication [7]. They also provide experimentally accessiblemeasures that are both computable and physically motivated.
systems for studying quantum measurement, feedback, and Since substantial insight, and often a good starting point
control[8]. for more rigorous analysis, can be gained from numerical
Spin squeezing is intimately linked to the structure of thesimulations, an efficient way of calculating entanglement
entanglement between individual members of the ensemblmeasures is desirable. Section Il develops the necessary ma-
[9,10]. However, without a complete microscopic picture of chinery for calculating these measures in the symmetric
this entanglement, only limited claims about the structure obubspace—the set of thoBkeparticle pure states that remain
these correlated states can be made. In certain cases, anchanged by permutations of individual particles
N-spin system can be characterized as either entangled p10,18,19. The main result of this section is that it is pos-
separable by measuringomputing expectation values of sible to perform partial transposes, partial traces, and
total ensemble operatofd1,12. For example, if the spin- Schmidt decompositions of symmetric states without resort-
squeezing parameter for étspin state(with polarization ing to an exponentially large representation of the system.

alongz and minimal variance along) is less than unity, In Sec. IV, we characterize microscopic entanglement and
its robustness to particle loss for several representative sym-

N(J)Z( metric states, including the Greenberger-Horne-Zeilinger

1, (1) (GHZ2) and Dicke (e.g., W) states. Here, the advantage of

(3,)? exploiting symmetry is clear; we perform entanglement cal-

culations for systems with~10°. These numerical results

allow us to speculate on the largfe-asymptotic scaling of
*Electronic address: jks@Caltech.EDU the above entanglement measures. In some cases, particu-
Electronic address: jgeremia@Caltech.EDU larly for the entanglement of formation and the reduced en-
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tropy, we analytically verify the observed scaling. We also E(|W),{A,B))=S(pa)=S(ps), (4)
introduce a family of states that provides insight into the

scaling of bipartite entanglement in symmetric states fofwhere the von Neumann entropy3ép) = — Tr(p log, p) and
large N. pa=Trg(|¥){"¥|). Any entropy that results from performing

With the context provided by the reference states and tha partial trace on the system must be a consequence of initial
boundaries of allowed entanglement structures, we can bettehtanglement provided that the initial state is pure. For prod-
understand the entanglement generation abilities of certaigct states|W)=|¥),®|V¥)g, the entropy is zero since the
dynamical processes. Section V focuses on the entanglemesihgle eigenvalue for each of the pure statgsand pg is
produced by spin-squeezing Hamiltonians. We illustrate thene. The maximum entropy of entanglement gives a partition
intuitive and generic effect that small-scale correlations peakyith dimensions, dimf)=d, and dim@)=dg, with d,
before (and transform intp large-scale correlations. Again, <dj, is log,(d,). A state that achieves this maximum is
the ability to simulate systems wit>1 permits us to de-
termine asymptotic behavior, both for large numbers of par{¥)=|0),®|0)g+|1)a®|1)g+ - - - +|da— 1)a®|da—1)g.
ticles and for long times.

A point we stress is thasignificantly entangled states )
need not be fragileRobustness is critically important in ex- The entropy of entanglement has an interesting feature
periments, where the system constantly exchanges atontiat it is straightforward to compute; it requires only per-
with the surrounding environment. Moreover, we show thatforming a partial tracep,=Trg(p), then computing eigen-
spin-squeezed states provide a reasonable compromise in thiglues of the result. The drawback of the entropy is that it
trade-off; they are highly entangled, yet particularly robust. only qualifies as an entanglement monotone for initially pure

states.

II. ENTANGLEMENT MEASURES

. . . B. Entanglement of formation
In this section, we review several common entanglement

measures as motivation for the symmetric state techniques The entanglement of formatidi23] is defined as

that are developed in Sec. Ill. In addition to recognizing the
specific operations necessary for computing these entangle- Er(p.{A,B))= min E piE(|4).{A,BY), (6)
ment quantities, we also describe their strengths, weak- {pi i}

nesses, and, where possible, physical motivation.

We begin by reviewing the commonly accepted set ofwhere {p;,;} satisfy the condition thap==;p;| ¢ ){ .
properties that all the measures of entanglement shoultihis quantity is difficult to compute for mixed states but
share. For a general density matpix which can be divided reduces to the entropy of entanglement for pure states.

into two or more subsystems, the quantiy(p) (the labelX In the special case of a mixed state of two spin-1/2 par-
is used to denote a generic measupealifies as amntangle- ticles, the entanglement of formation can be computed from
ment monotonéf it satisfies the following condition§20—  the two-particle concurrenc€(p) [23,24. Therefore, it is

22]. generally possible to compute the entanglement of formation

_ . between two spingi,j} removed from arN-spin statd ¥).
(C1) Ex(p)=0; Ex(p)=0 if p is separable; The entanglement of formation for such a reduced system is
Ex(Bell state}=1. a strong measure of the robustness of that state’s entangle-

(C2 Local operations classical communicatitOCC)  ment to particle loss. Explicitly, for the two-particle state
and postselection do not increasg(p) on an average. For =Tr,; N2 4P

example, with any state, and partition{A,B}, local unitary

transformationsl) = U,® Ug, do not affectEx(p). Ec(p,di,ih=h(i[1+V1=C(p)?]), @)
(C3 Entanglement is convex under discarding informa-

tion, XipiEx(pi)=Ex(Zipipi). We define the generalized \hereh(x)=—xlog,(x)—(1—x)log,(1—X) and

Bell states as
Clp)=max 0,/ 1= VA= VA= V\g), ®

W) =(]1a08) =|0a18))/ 2, 2
in which \;,... A\, are the eigenvalues ofp(o,
|®*)=(]1415) =|0408))/ 2 (3) ®oy)p*(oy®0y) in decreasing order ang, is a Pauli spin
matrix.
for a partition{A,B} [52]. If the subsysten® has more than
one spin, } is interpreted as 4l - - 1y, and similarly for %, C. Distillable entanglement and negativity
O, and G Given a mixed statep, and a partition{A,B}, the en-
tanglement of distillation is defined as
A. Entropy of entanglement
Given a pure stat¢¥), and a partition for the system, Ep(p.{A,B})= IimT, (9)
{A,B}, the entropy of entanglement is defined as n—oo M
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wherem is the number of Bell states that can be distilledwhere the kets$|i)a,|j)g} provide complete bases férand
from n copies ofp via an optimal purification protocol with B, respectively. For separable pure states, the matrivhich
LOCC[25,26. For simplicity, we consider only the symmet- is not necessarily square, is rank oR¢c) = 1. States where
ric Bell state|®*) of Eq. (3) as the output of the distillation R(c)>1 are entangled because they cannot be expressed as a
process throughout this paper. This state is also known as aingle tensor product.
Einstein-Podolsky-RosefEPR) pair, a GHZ state, or an Generally, the Schmidt basis is taken to be diagond\.in
N-particle cat(macroscopic quantum interferenctate. The It can be found from the matrix elemerttg by performing a
distillable entanglement is effectively a conversion effi- singular-value decomposition of
ciency; however, since the purification protocol allows aux-
iliary separable states to be introduced into the original sys- c=UAVT, (13
tem, it is possible, on an average, to extract more than one o i i
EPR pair from an initially entangled state. The distillable WhereA is diagonal and the rows & provide the Schmidt
entanglement for an EPR pair is one by definition. basis[32]. There are =R(c) nonzero elements,;, ... A,

The advantages of the distillable entanglement are that #1ong the diagonal oA. _
is a monotone for mixed initial states and that it quantifies Several bipartite entanglement monotones can be defined
entanglement as a practical resource. In this sense, the dids functions of the Schmidt coefficieri&3,34, however we
tillable entanglement has a direct physical interpretation. UnPresent this formalism only because the Schmidt decompo-
fortunately, it is extremely difficult to compute unless the Sition provides an efficient procedure for computing the en-
initial state is pure, in which case it reduces to the entropy of’OPY of entanglement. Starting with a pure state, the reduced
entanglement. The entanglement of formation is an uppefntropy for the partitioqA,B} is given by
bound on the distillable entangleme(ie., one cannot ex- ;
tract more EPR pairs than the number used to form the)state __ 2 2

There exists another entanglement monotone, the loga- E(W){A.BD Z’l Ail0g2 (A7), 14
rithmic negativity, which, like the entanglement of forma-
tion, provides an upper bound on the distillable entanglemenwhere; are the singular values from E(L3).
but is alsocomputableor mixed state$27]. The logarithmic
negativity is defined as ll. SYMMETRIC STATES

E(p,{A,B})=log,[2M(p,{A,B}) +1], (10 The preceding section provided motivation for computing
partial traces, partial transposes, and Schmidt decomposi-
whereM(p,{A,B}) is the negativity of the state. The nega- tions. However, for arbitrariN-particle spin-1/2 ensembles,
tivity is defined as the absolute sum of the negative eigenthese operations are exponentially difficult to compute be-

values of the partial transpose with respecfip A, So cause a general state of the ensemble resides in the space
5N and the dimensions of the density matrix scale 8s 2
N(p,{A,B})EE [Nl , (11) x 2N, Compgtational inve_stigatio_n of arbitrary ensemble en-
i 2 tanglement is therefore impractical for all but the smallest
values ofN.
where\; are all of the eigenvalues. Fortunately, a large number of experimentally relevant

The logarithmic negativity can be directly computed from states possess symmetry under particle exchange and this
the partial transpose. However, both the logarithmic negativproperty allows us to significantly reduce the computational
ity and the distillable entanglement are zero for those encomplexity. A large class dfl-particle states are invariant to

tangled states with positive partial transpo$E®TS. PPT  symmetry transformations of the permutation group
entangled states and perhaps some other entangled states

[28,29 have zero distillable entanglemdi30]. These states HiijHiTj =pn, VI, (15
are known adound entangled states

As with all monotones, the negativity may also disagreewhere thell;; are operators that exchange partidleznd j
with other monotones, such as the entanglement of formawithin the ensemble. This is the most general class of states
tion, in which the state of two is more entanglg®?]. This  that are exchange invariant; however, it is also possible to
ordering problem is a caveat which qualifies many statefurther restrict the space of accessible states to those that are
ments about entanglement, and is a reflection of the fact th&ymmetric with respect to single-sided permutations
any given entanglement measure refers only to its own lim-
ited physical context. ijpn=pn, VI (16)

of the individual spins. This symmetry further constrains the
diagonal terms of the density matrix. For the example of a
For a given partitio A,B} of the full ensemble’s Hilbert two-spin system, single-sided symmetry requi¢63|p|01)

D. Schmidt decomposition

space, it is possible to decompose the statg8ak =(10/p|02), while the more general double-sided symmetry
does not.
_ T The stategm,N) that respect this single-sided permuta-
V)= Cij , 12 : ;
) EA ng . [Dalide (12 tion symmetry compose the symmetric subspgggeThe ket
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Im,N) is defined as the unnormalizédtparticle symmetric ~ projects the state into Sy expressed in an
state withm excitations(spins up, (N+1)-dimensional basis. We have adopted the notation
thatpy, is the symmetric density matrix representedjp. ;.
Sy is an[(N+1)x2N]-dimensional matrix that can be
17) expressed as

|m!N>EZI Pi(|111121 s vjmiom+lv s vQ\I>)a

N

Sy= 2 Crmmm.NI, (19
where{P;} is the set of all }}) distinct permutations of the
spins. Although eachm,N) is an element of 5™, the per- ~where the coefficients are given by
mutation symmetry enables it to be expressed as an element N - 12
|r~n> of a spaceby that scales linearly, rather than exponen- Cn m:( ) =
tially, with the number of particles. In short, all statesSjp ’ m
can be represented ity ;. . : .

The symmetric subspace therefore provides a Convenienil,nd C_’!vm|_m’N> '_S the normalized ver5|on_ of E(_ﬂ?)' The
albeit idealized, computationally accessible class of spiftatem) is physically the same as thé\‘-21|men3|onal state
states relevant to many experimental situatitsgh as spin  |m,N) (both havem spins up, except thatm) is normalized
squeezing Completely symmetric systems are experimen-and expressed in théN(+ 1)-dimensional basis;
tally interesting, largely because it is often easier to nonse-

N! —-1/2

m!(N—m)! (20)

lectively address an entire ensemble of particles rather than (m[ny= Omns (21
individually address each member. Of course, there are still 5
technical challenges in preservipgrfectsymmetry among SNCh,mlM,N)=|m). (22

the particles in an ensemble, such as maintaining the unifor-

mity of magnetic and optical fields. Still, for a system of It should be noted thasy is not a permutation operator,
many particles, symmetrically manipulating the ensembldut rather a projector. Therefore, it is only appropriate to
generally requires fewer resources than addressing individu@perate on symmetric states wigy as

members.

. . . . . . t_

It is therefore interesting to consider computing various SnSn= lsym: (23
measures of entanglement and simulating the system’s dy- +

namics using symmetric states. However, analyzing en- SnSn# L (24)

tanglement requires at least the operations of partial traces . . o . .
and partial transposes. In order for these operations to b¥N€"€lsym iS the identity in the N+ 1)-dimensional sym-
practical for largeN, it is essential to compute them in an MEtric basis andy |sTthe |derT1t|ty in the 2-dimensional full
efficient manner, i.e., without having to work with represen-Pasis. ConsequentiSypnSySy=pn, only if py is sym-
tations of states in the full spac§’™ . metric. Acting on a nonsymmetric state wiy and Sy, re-

In this section, we derive relationships that allow us toSults in a loss of information, as the nonsymmetric compo-
work with arbitrary bipartite splits of the symmetric sub- Nents of that state are lost in the projection oo
space. The ability to express a symmetric state in terms of For the purpose of making a bipartite spfid,B}, the
tensor products of smaller symmetric states is a critical pre€Ssential property of the symmetric subspace is that it can be
requisite for efficiently computing bipartite entanglementeXpressed as a tensor product of smaller symmetric spaces.
measures. In Sec. Ill A, we derive the necessary expressiofidowever, the tensor product of arbitrary symmetric states is
for expressing symmetric states in reduced dimensiondPOt necessarily symmetric,
bases. These results lead to the operations of partial traces, S CS @S 25
partial transposes, and Schmidt decompositions on symmet- NNk ke
ric states. In all of these cases, it is possible to manipulat
symmetric states with a worst polynomial scaling of the re
quired computational resources.

fuhere the partitiodA,B} has been denoted by the number of
“spins in each subsystedi\N—k,k}. Sy_®Sy is larger than
Sn. The structure of valid symmetric products is given by
the relation[19]

A. Symmetric change of basis and decomposition operators k
When working with the symmetric subspace, it is neces- ImN)= > [m—p,N—k)®|p,k) (26)
N ~ . p:0
sary to convert between the largg" and smaliCy ., basis

representations of the state. In order to provide a systematig terms of constituent symmetric states expressed in the
means for changing bases, it is convenient to define a symyrge pasis.

metry operatorSy : (5 —Cy 1, whose action on the density  Equations(25) and (26) raise the point that thi-particle

operator in the 2-dimensional basis, symmetric spacéy, is smaller than the product spacg,_
~ + ® Sy . Therefore, the entanglement of statesywill gener-
PN= SnPNSy (18 ally be more restricted than those in the tensor product space.

022112-4



CHARACTERIZING THE ENTANGLEMENT C-. .. PHYSICAL REVIEW A 67, 022112 (2003

While, it is straightforward to identify the maximal entangle- and then partition the symmetric statés),N) and |n,N),
ment bounds for states By,_,®Sy, the same is not true for using Eq.(26) with k=1. Taking the partial trace of the
Sy - Therefore, it is convenient to use the product space enresulting expression leads to aN < 1)-particle symmetric
tanglement bounds as an upper linailheit an overestimate state in the large basis

for the scaling of states ifiy .

In order to exploit the tensor product structure in E26),
motivated by oupr desire to conpsider bipartite enta%?ement Trl[pN]=m;:1 ChmCrin(m,N| [0, N)[[m,N— 1)
measures, it is beneficial to construct a new symmetry opera- ’
tor Ty_x k. that maps symmetric states into the tensor prod- X(n,N=1|+|m=1IN-1}n—1N-1[],
uct structure imposed by the partitigN —k,k}. In order to (32)
be useful for computations, botty_, and S, must be ex-
pressed in their respective small bases. That is, we requifghich can be changed to the small basis using the operators

N

the mappingTy -k Cn+ 1= On—k+1® Gyt 1. Sn-1andSj_;,
Constructon of the operatdry_y x can be accomplished . ~ o
by decomposingsy according to Eq(26), <5‘|PN71|b>:CrGE l,acﬁil|b[<a|pN|b>CN,aCN,b
N K +{a+1|pn|bF1)Char1Crpr1. (33

Sv=2, CnglG —p,N—k|®(p,k 2
" qzo nal®) pzo ta=p |©(pK @7 By induction, it can be shown that the result of tracikg

particles out of the system is

and then operating on the expandggwith both Sy_, and K c c
~~ -~ —~ e~ — N,a+j“~N,b+j
S @lpnidB) =3, @F{[onlBFT)C 2o M
j=0 N-k,aL“N-kb
5y <3‘”
T — ®
Nkl d=0 p=0 Cn-kq-pC |q Pk [P)(al which resides withirCy 1.
(28)

C. Partial transposes in the symmetric subspace
to produce the necessary mapping. Héne)y_, e Cy_ys1
denotes symmetric states in the subsyst#&rand the|ﬁ>k
e (41 are symmetric states iB. Equation(28) has the in-

terpretation of taking atm) e Sy, changing back to the large
. . ’ artial transpose mvolves matrices that belong Gg
basis, extracting the tensor product structure, and then redu 8 P 9 !

ing the dimensions of the subsystems down to their respeé@(‘N 1, and computings, scales quadratically iN. _
tive small bases. As with the partial trace, the operat®g,_y  can be di-

rectly employed to obtain the partial transpose; however, this
approach hides several useful intermediate steps. Instead, a

more explicit derivation involves transformingy back to

The structure ofTy_y  demonstrates that the partial
transpose of symmetric states with respedt prmrticlesELk,
resides in the spacg,_®S;, but notSy. Therefore, the

B. Partial traces in the symmetric subspace

In this section, we derive an expression for the big basis and employing E(R6). The partial transpose
rn—k=Trlpn] (29) N _—
PLK_ E E Cn,mCn,n{m|pnln)
m,n=0 p,q=0

that avoids expressing any of the density matriGasany

intermediate stepin their large bases. The structure of the X[|m—p,N—=k){(n—qg,N—k|®|q,k){p,k|] (35)

operatorTy_ x immediately indicates that this is possible

since symmetric states can be expressed as tensor productsc@h be expressed as a tensor product

lower-dimensional symmetric states. Once the symmetric

system has been partitioned, the partial trace is immediate. Tk 2 A
Although the operatoil_y  can be directly applied to

pn, this approach condenses several intermediate steps that
might be useful when performing calculations. Instead, wevhere

first convertpy back to the large basis

[%Ek@) BE'q , (36)

N
:m;:O CN,mCN,n<Fn|;N|ﬁ>|m_ p.N—k)(n—qg,N—k]|

pn=SkPNSN (30 (37)
N and
= S (m,N|pn|n,N)|m,N)(n,N]| (31
N_ — — H
m,n=0 CN,%nCN,% BR9=|q,k)(p.k|. (38
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Return to the small basis is accomplished by evaluating, - ) i) ot
ARd =5, ARY ST andBP9=SBPIS! to give J=ssl=sy| 2 VS| (45

(5|Kﬁ'ﬂk|5)zw(é¢ﬁ|zmm>, (390  produces theN+ 1)-dimensional operator equivalent to the
N-k.a>N-kb angular momentum for a singleseudospin(J=N/2) par-

~ =0 =1 ticle. This is because the symmetric subspace is composed of
(c[Bid)=CicChgda.c9p.a- (40 basis statefm) that correspond to the eigenstates)pfvith
where J=N/2 (e.g., for two spins, the symmetric subspace includes

the triplet, but not the singlet

k The dynamics of any symmetric state are confined to the
"[)Lk: > ARY, @B (41)  symmetric subspace, provided that the Hamiltonian can be
p.a=0 expressed as a function of operators all of the form as in Eq.

. e (44). Given a symmetry-preserving Hamiltonian, the dynam-
shows that the dimension @f is, in fact, K+1)X(N—=K ics can be completely simulated with the small symmetric
+1). basis. Explicitly, an infinitesimal step of evolution can be

written

D. Schmidt decomposition of the symmetric subspace

It is quite simple to perform the Schmidt decomposition, | (t+dt)y=Sy(1+iHdD)|[W (1))
Eq. (12), of a s'y|'”nmetr.|c state iy, into the s~pacéaN_k = Sy W () +idtSyH [ (1))
®Sy . The coefficients in Eq. (12) for the stategm) follow
directly from applying the operatdfy_  to |m), resulting =S| W (1)) +idtSyHSSV W (1))
in the expression

=T (1) +idtH| P (1)), (46)
N-k k
~ N,m ~ ~
TN*k’k|m>=Zf) ,z::o 5””“CN,k’iCk'jMN’k@“)k' where we have useff¥'(t))=Sy|¥(t)), H=SyHS],, and
(42 |W(1))=SSy|¥(t)) [because|¥(t)) is assumed to be

~ symmetrid.
For the stategm) the Schmidt matrixc is sparse and the For many experimentally motivateN-particle spin-1/2
singular-value decomposition, El3), can be performed systems, it is possible to express states using the symmetric

analytically. subspace and the dynamics using only symmetry-preserving
General symmetric stateldf)==N_ a/m), can be rep- operators. The only time this efficient representation fails to
resented as apply is when the symmetry is broken or the system is di-
vided (as we consider throughout the papdfor example,

N-k K Cnm the spontaneous local decay of any one spin is sufficient to

N
Thokd )= 2 an>, > 5m,i+jW|T>N_kIT)k. break the symmetry of Eq16). Depending on the form of
m=0 1=0j=0 N=kik] the decoherence, some symmetry may be retdiaay, the

(43 particle exchange symmetry of EL5)]. Other treatments
However, for these general symmetric states, the Schmidiave addressed the effect of such decoherence on parameters
coefficient matrixc is not sparse. related to entanglement, such as the degree of spin squeezing
[9,15,14.

E. Dynamics in the symmetric space
One of the objectives of this paper is to treat dynamically F'{YE'PEFL\';ASET";Y\EENT\:D;&EPTE;T'ESTESER
generated entangled states, therefore, this section briefly dis- S S cs S

cusses the time evolution of symmetric states. It is straight- Gjven the large number of possiblspin states, even
forward to show that acting on a symmetric state with operayhen restricted to the symmetric space, it is clear that a

tors of the form systematic, yet compact approach to characterize micro-
N scopic entanglement is necessary. Toward this end, we char-

0= 1Mg...00...g1MN 44 acterize a.set.of representative symmetric states with a lim-

,—2‘1 4 ited combination of measures, including the reduced state

entropy, the entanglement of formation, and the logarithmic
preserves the exchange symmetry in the large basisiegativity. The familiegdescribed in detail belowthat we
[0,IT;;]=0, provided that the") are identical. have selected display diverse entanglement behavior—they
Using the symmetric state change of the basis ope&tor differ in their degree of entanglement at different size scales
elucidates the physical nature of the symmetric subspace. Fand in their robustness to particle loss. Naturally, any set of
example, transforming any angular-momentum operator ofepresentative states will be incomplete in some aspect; how-
the form in Eq.(44) to the small basis usingy, ever, our goal is to provide a detailed picture of internal
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entanglement without an excessive number of representa=m—N/2=—N/2, ... N/2. TheW state[37], which is de-

tives. . . : o T
In this section, we address the relationship between thgned a_s the symmetric statg with o_ne eXC|'Fat||NM)=~|1>, 'S
degree of entanglement and its robustness to particle los& Particular member of this family. Notice tham) and
While it has been a longstanding conception that the modtN—m) have the same entanglement properties because one
entangled states are simultaneously the most fragile, wis equal to the other if the quantization axis is reversed.
demonstrate that this is not necessarily true. Under certaifhese states exhibit a high degree of entanglementrfor
useful definitions of entanglement, it is possible to find=1,... N—1, while the states om=0N are completely
heavily entangled symmetric states that are simultaneousi§eparable. The defining characteristic of the Dicke state en-
robust. Similarly, the most fragile states are not always thdanglement is its ~remarkable robustness to particle loss. It has
most entangled. We also demonstrate that restricting ouseen proven thdtl) optimizes the concurrence when all but

analysis to the symmetric subspace does not preclude the/o spins have been remov¢88], the extreme opposite of

potential for significant entanglement. the fragile GHZ behavior. It has also been proven that for
single copies, the GHZ and/ cannot be converted into each
A. Symmetric reference states other with LOCC operations on the individual spins with

certainty[37], further emphasizing their difference. For ad-

We now briefly describe several families of representativgjiional discussions of the conversion properties of entangled
symmetric states using the notation introduced in Sec. Ill. Ing;5teg sef39—41].

addition to GHZ states and thé/ family, we introduce a

parametrized family, termed “comb states,” which prove im-

portant in investigating the maximal boundary of certain en-

tanglement measures. A parametrized family of practical importance which we
In the rest of this paper, all states are assumed to be syngall comb states is defined as

metric. In the interest of simpler notation, we will express

symmetric states gs even when it is more efficient to com- N/s

s —
pute entanglement measures using theirepresentation. [C(s))= Wm:EN/s IN/2+ms). (48)
Tilde notation is used only for thim) states.

3. Comb states

1. GHZ states In the |r~n> basis, these states have a comblike structure with
mrindependent weighting for the nonzero elements which are
spaced bys excitations. Since the comb states nontrivially

explore the full support of the symmetric basis, they may be

|GHZ)=(0) +| N>)/‘/§ (47 expected to access regions of entanglement space Wh}are
states are forbidden. We find that particular comb states with
an optimized spacing turn out to contain near-maximal en-
tanglement for bipartite splits of any symmetric ensemble as
ill be shown numerically and proven in the Appendix.

The well-known GHZ statef35] can be written

using the notation from Sec. Ill. The GHZ family is gener-
ally considered to be the standard example of a highly en
tangled state. In several different contexts, it has become t
common unit of entanglement currency. For example, as a
particular Bell state, the GHZ state is the desired product of
entanglement distillation protocols.

However, the GHZ family fails to maximize a number of ~ Another way to numerically explore the full symmetric
monotones, including the entanglements of distillation andspace is randomly. We define a randomly generated state
formation for a given bipartite split. Unlike previous treat- |R>=Emrm|r~n), where the coefficients,, are complex
ments[19], we choose to work with these measures undeaussian random variables with averag&r,,]=0,
which the GHZ is not a maximally entangled state. Certaing[r r =0, andE[r%r 1= 6mn/(N+1). Note that this dis-

other measures such as tNetanglecorrectly recognize the  yipytion of states is independent of the basis, in terms of

G1';23 4a§ ck())ntaininfg the r_r|1|ost truél-way _entang}Iem_enlt which we have chosen to define the random coefficieqts
[17,34,38, but our focus will remain on notions of strictly ¢ "\ . IR)=S,,r/(U|f)) in a new basi4J|fm), where

bipartite entanglement. Still, the most practical defining char—U is an arbitrary unitary transformation. the new coefficients
acteristic of the GHZ state is its fragility to particle loss; y Y '

tracing out a single party destroysl of the internal en- r.,’n. have exactly the same.Ga_uss.ian.distributior? as the coef-
tanglement. ficientsr,. As a r_esult, this dl_strlbutlon dt_ate_rmln(_es a mea-
sure of(unnormalizedl vectors inCy, ; that is invariant un-
der unitary transformations. Moreov&f(R|R)]=1 so the
states are on an average normalized and, in fact, the distri-
An important family of states with completely different pytion of norms becomes very sharply peaked around 1 as
character is the set of symmetric states with integesxci-  N_,«. In this limit, we can regard the staté®) as being
tations(spins up, |m), wherem=0, . .. N. Of course, these drawn from the natural unbiased distribution of pure states.
states are also known as the Dicke states or the eigenstateslnfpractice, we randomly select these vectors for a fixed fi-
J,, where the notationd,M) is used withJ=N/2 andM nite N of interest and normalize.

4. Random states

2. Dicke states

022112-7



STOCKTONet al. PHYSICAL REVIEW A 67, 022112 (2003

5 g y y Y this point on, we implicitly assume the rounding of noninte-
ger numbers such thatN/2| is implied by N/2 and
{IN/2],[N/2]} is implied by{N/2,N/2}.)

In Sec. Ill A, we emphasized that a symmetric state with
N particles can be represented on the product space of two
symmetric spaces witN —k andk particles Ey_®Sy). For
all states within this space, the state of E5). (with dy=k
+1) maximizesE(|¥),{k,N—k}) at log(k+1). However,
this state isnot symmetric with respect to the exchange of
o any two particles across the split. We are interested in finding
100+ IN) the upper bound for the states in the spége which are
7 only a subset of states i, ®S. It has been proven that

I the additional restriction of overall symmetry constrains the

maximal entropy to be strictly less than ldi+1), except
for N=2,3,4, and 6 where states that achieve this bound can
be found[19]. Consequently, we refer to the bound J@g

FIG. 1. Entropy of entanglement for representative symmetrict+1) as theunobtainable boundor any k.
states(described in Sec. IVwith N=50 particles as a function of Figure 1 shows a plot oE(|¥),{k,N—k}) for several
the dimension of the bipartite split{k,N—k}, where k  reference states amt=50. Despite the fact that all states are
=1,...|N/2]. The unobtainable boundog,(k+1) is the entropy  forbidden from achieving the value lg+1), some states
that could be achieved by a nonsymmetric product of the two symgome close to achieving this unobtainable bound. These in-
metric subsystemgA,B}. Several representative states nearly cjyde most randomly generated states and the comb states
achieve this maximum. with s=/2N. This naturally leads us to the question: what
exactly is the minimum upper bound for the split entropy of
symmetric states and what states achieve this bound?

E(F), (k,N-K})

0 5 10 15 20 25
Partition Size (k)

B. Pure state entropy of entanglement

For an initially pure N-particle symmetric state, there are
[N/2| possible ways to partition the system into two parts. 1. Maximizing the even split entropy
With symmetric states we can replace the labeling of a par-  gjce the entropy is maximized by the most even split
ticular partition{A, B} with the number of spins in each par-  _\;2) "we henceforth consider only this partition. From

tition {NA=k,Ng=N—k}, wherek=1,...|N/2]. The en- o 41que discussion, we know that ie7, the entropy
tropy can then be computed from either of the reduce beys the inequalities

density matrice$23], py—k=TrvPn OF px=TIN—kPN

E(|W).{k,.N=Kk})=S(Tr| W )(¥|)= S(TrN7k|\I,><\I’|)(-49)

E(|W),{N2N/2}) <Emad N)<logy(N/2+1).  (50)

Analytically, locating the minimum upper bourkg, ,,(N)
It can be proved that the entropy is a monotonically increas¢or the states that achieve is difficult, but a simple numeric
ing, concave down-function df in this range[42]. (From  approach turns out to shed some light on what we can ex-

; A IC(2N)) 18} B
. 14}
g 5] =
Z =
o =
=3 310
2 (IS
= a3t &
fin < 6l
1 / N wizy””
N+ i 2r 6 + N C(v/2N)
‘ . . |0>.+ IN) I0>+IN>\ |R>a‘,e\l (V2N \
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Number of Particles (N) Number of Particles (N}

FIG. 2. (a) Plot of the even split entropy of entanglemeB(p,{N/2,N/2}), for representative states as a function of the number of
particles,N (which is also equal to the entanglement of formation and distillatiNnte that the average entropy of 25 random stdis,
as well as the entropy dC(\/m», nearly attain theinobtainable boundog,(N/2]+1). (b) A plot of the two-particle entanglement of
formation,Er(p,{1,1}), as a function of the number of particled;,TheWstateﬁ) maximizes this entanglement measure, which quantifies
robustness to particle loss.
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pect. Figure £a) shows the entropy of the even split entropy states through the concurrence. By discussing the relation-
as a function ofN for several families of states with the ship of the pair[Eg(|V),{1,1}),E-(|¥),{N/2N/2})], we

unobtainable upper bound for reference. Most families ofcan start to get the meaning of the allowed relationship of
states do not keep up with the scaling of this upper bound.entanglement across the extremes of size scales. We will re-

For example, if N>m, the states|ﬁw> (with m  fer to the splits{1,1} and{N/2,N/2} as theextremal splits

=1, ... N/2) can be shown to have entropies of Figure 2b) displaysEr(|¥),{1,1}) for several reference
log,(m) states. It has been proven that testate|1) maximizes the
~ 0g,(m i
(M), {N/2N/2}) ~ O 1 (51) concurrencg, hence a'lso the entangIeTent of formdtimm
2 all symmetric stateswith a value ofC(|1))=2/N [13,3§.

W | that the | ¢ of th | Wang and Mémer [10] have shown that by using a similar
€_aiso see a € largest 0 ese scales a1%rma|ism, where the two-spin concurrences are calculated
E(IN72) {N/2N/2}) ~logx(N)/2. from the moments of the entire state, analytic expressions

Due to the factor of 2, none of these states keep up withan he derived for the concurrences of several families of

the Sy2® Sy bound. However, if we explore the simplest . . . ~
possible states accessing more of the symmetric Hilber ymmetric states. In partlcular,_ for the Dicke stdtey, and
=m—N/2, the concurrence is

space, we find something quite different. For lahgéup to
600), the average entropies of random states, for example,

numerically scale as-log,(N/2+1)—0.6. This indicates the C(IM+N2)) = m{N2—4M2

remarkable fact that the symmetry constraint on the overall

state does not limit thecaling of the maximal bipartite en- — J(NZ=4aM?)[(N-2)2=4aMZ2]},
tanglement compared to that of the more general spgge (52
®Sny2-

The comb states, optimized over the spacnare even ) ) ~
more entangled. Numerically, we find th@r N up to 600) ~ Which gives the above result for thd) state and also
their entropies scale as<logy,(N/2+1)—0.3, whens C(IN/2))=1/(N—1). In the largeN limit, these concur-
~ \2N. Encouraged by this evidence, we were able to provéences lead to the entanglements of formation
in the asymptotic limit of largeN that this family of comb
states|C(y2N)) does indeed scale as kfhy/2+1)— 6, ~ 2log, N+log, e
where § is a constant of order unitysee the Appendjx A Ee(11),{1.3)~ N2 '
similar proof for the random state scaling is probably pos-
sible. The fact that random states, and the optimized comb
state, seem to nearly maximize tfi/2,N/2} entropy indi- EF(|’I\72>,{1,1})%2 log, 2(N— 1)“0928. (54)
cates that the set of states which scale similarly is of nonzero [2(N-1)]?
measurd(i.e., this behavior is not atypical

Still we have not located the value of the true minimum  The 1N? scaling is due to the fact that the two-spin state
upper bound and the form of the states that achieve thig constrained to be reduced from a larger symmerispin
bound. Given the above results, we expect it to have a simistate. In effect, one spin can only be so entangled with an-

(53

lar scaling with a minimal offseb for largeN. other when it is constrained to have the same relationship
with all other spins.
C. Entanglement of formation: Extremal splits For many state&q(|V),{1,1}) is simply zero. The GHZ

For any bipartite entanglement measure, we can construéfate’ the comb state, and practically all Ta”dom states have
even more possible splits if we chooger are forced to zero{1,1} entanglement and d.? not contain the same degree
ignore some of the particles. Suppose we start with a synf robust entanglement as then) states. Furthermore, the
metric state oN spins|¥) and trace out spins until only, ~ ordering of states shown in Figs(a and 2b) is reversed
remain. In this case, the new statg = Try_n (|¥)(W|)  (With the exception of the GHZ This leads to the question:

r r

will be mixed butstill symmetric. We then have the possible what is the nature of the trade-off between _ths small- and
bipartite splits{k,N, —k} with k=0, . .. N,/2 [53]. large-scale entanglement of the extremal splits?

For pure states, the entropy of entanglement for any bi- Figure 3 shows each state as a point in the space of
partite split is equal to both the entanglement of formatio Er (W), {1,2),Er(V),{N/2N/2})] for N=50. The line

and distillation. Unfortunately, numerically calculating either betweer|0) and|1) represents states which are a linear com-
of these monotones is much more difficult if given an ini- bination of these two states. The curve extending from the

tially mixed density matrix. For negativities, we showed in [N72) state to the vertical axis and up that axis to the comb

Sec. Il C that we can numerically calculate all bipartite State represents linear combinations of those two states. The
splits {k,N,—k} for symmetric states, and we will demon- forbidden regions of this space for symmetric states are un-
strate this ability in Sec. IV D. For now, we would like to known but we strongly suspect several properties of the

deal with the extreme case of all but two spins removedPoundaries. We conjecture that there are two regions where
(erz)_ In Sec. Il B, we stated that the entropy of forma- O states are allowed to exist. First, in region [, beneath the

tion Ex(|¥),{1,1}) is easily calculated for two spin mixed |0)«|1) line, no states are found, nor likely to exist. The
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FIG. 3. Plot of accessible entangled states in a space that reflects FIG. 4. F_’Iot of the even split negatlvnEN(p,{NF/Z,Nr_/Z}), for
the trade-off between the degree of entanglememrepresentatlve symmetric states wikh=50, as a function of the

[Ec(p{N/2N/2))] and its robustness to particle loss humber of particles remainingy, , in the system. The inset plot
[Eq(p,{1,1)]. The degree of entanglement for the large split is highlights the particular robustness of {i\/2) Dicke state as mea-
also equal to the distillable entanglement. sured by the negativity. This contrasts a similar analysis using the

entanglement of formation, whef&) is most robust.

reason for this is that to have af¥,1} entanglement, there _ ) < _
must exist some degree §N/2,N/2} entanglement. How- Ex() k= LN =KD <Ex([), (kN =k},
ever, there must also be a region in the upper right of region Ex(|W),{k,N,—Kk—1}) <Ex(|¥),{k,N, —k}).
II, where no states exist. It appears that there exists a funda-
mental trade-off between small- and large-scale entangle- For pure states, the most even spht/2,N/2} gives the
ment: as the large-scale entanglement of a state increasegmximal entropy of entanglemef#3]. We observe that this
(and is above 1), the maximum allowable small-scale enis also true for the most even splits of a reduced mixed state
tanglement, will decrease. In addition, there is likely a criti-with N, particles remainingN,/2N,/2}. These observations
cal value of the{N/2N/2} entanglement above which the motivate us to reduce the number of splits considered to only
{1,1} entanglement must be zero. the even splits of a giveN, . Figure 4 displays the quantity
ExM|¥),{N,/2N,/2}) as a function ofN, for several refer-
ence states. The end points of this plot give similar informa-
D. Negativities: Extension to all splits tion about the extremal splits as the previous description of
Now that we have a better idea of the relationship pe£ntanglement of formation. Unlike the entanglement of for-
tween the entanglement of the extremal splits, we can mor@ation, we can easily plot the intermediate splits for the
confidently approach the problem of understanding the largéP9arithmic negativity.
number of remaining splits. Fot, spins remaining, there are ~ BY the above inequalities, we know that each curve
N,/2 splits of the form{k,N,—k} with k=1, ... N,/2. If monotonically increases witN, . Fpr reference we have in-
N, <N and the initial state is nonseparable, the reduced statguded the plot of logN,/2+1) which, of course, cannot be
is mixed and one of the few computable entanglement meg@chieved, because each reduced state Wjtlspins remain-
sures available is the negativity. Even though it is a computind iS constrained by the symmetry of the initial pure state.
able monotone, the negativity is not an entanglement mealhe space between this maximum and the space of all actual
sure with as much physical justification as the entanglemerffurves represents the entanglement “cost” of initial symme-
of formation or distillation. However, the logarithmic nega- {rization. An unanswered question is for a givip and N:
tivity is an upper bound for the distillable entanglemgz]. ~ What pure state¥) maximizese \(|W¥),{N:/2N,/2})? What
With this in mind, we move forward and work with the loga- IS this maximum as a function ®, andN? These questions

rithmic negativities as an indicator qfotential entangle- ~for both the negativities and other bipartite monotones are
ment. extensions of the problems encountered for the extremal

splits. Again, we plot only the reference states and set aside
1. Negativity of all even splits the problem of fully characterizing the space of interest.

Before computing the negativities, we can use the prop- First, consider the GHZ stat®) +|N). As expected, this

erties of monotones to notice a few relationships between thetate is maximally fragile, starting at unity and dropping to
bipartite monotones of different splits. Tracing out a singleZ€rC as soon as one spin is removed. In direct contrastthe

spin is an operation that falls under LOCC, and any monoStE_lte|1> starts at unity, but only slowly decays to zero as
tone X, including the negativity, can only decrease underspins are removed and its logarithmic negativity remains fi-
such an operation, therefore, nite for evenN,=2. The statdN/2) is, in some sense, an
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N, N2E((|N72),{1,1}) ~logy(N)/2< N?E \(|N72) {1,1})
~Nlog,(€), where the approximations can be shown both
analytically and numerically.

14 For N>m, N2E,(|m),{1,1}) flattens out to a constant as
a function ofN, while N?Ex(|m),{1,1}) continues to grow

logarithmically, as shown if Fig. () for |1>. In this case,
the entanglement of formation is significantly greater than
the logarithmic negativity and hence also the distillable en-

tanglement. So, for the staf#), we can show

B IN2EI TI, 1,1'
. o r(11.{1.1) |4g

Er(IM),{1,1})

/

N

Qs

103 Ex(Im).{1,1)

Ex(Im){1,1)

o

NZE - (1T241,19)

|-

2

~ ~ 3
Ep((DALH<EMID{1.1)~ =
11y 13y 5 0 100 200 300 N

Dicke State Number of Particles (N)
2logyN+log,e

NG (55)

FIG. 5. (@) Plot of the inconsistent ordering of the reduced en- <Er(]1),{1,1)~
tanglement of formation,Eg(p,{1,1}), and the reduced logarith-
mic negativity,E-,{1,1}), for Dicke states. The shaded region re-
flects the possible values for the distillable entanglem@mtThe
largeN scaling of the entanglement measuregairfor the|1) (i.e.,

W) state.

All measures monotonically decrease withbut the distill-
able entanglement decreases at least logarithmically faster
than the entanglement of formation. Similar statements are

possible about anym), with N>m.

optimal trade-off between total entanglement and robust en-
tanglement; in that it starts reasonably high above unity at
N,=N, but appears to have maximal negativity beldly
~N/2. The comb stategsand random statgswhich have Characterizing the reference states enabled us to quantita-
near-maximal total entanglement, are also a reasonable tradécely identify the trade-off between the degree of entangle-
off, especially compared to the extreme fragility of the GHz ment and robustness to pa_rt|cle loss. This relationship can be
state. expressed as boundaries in the space expressed by the en-
The comb state and most random states still attain zerfnglements of formation for the extremal splits. With this
negativity (no negative eigenvalues of the partial transpose'€lationship in hand, we are now able to address the question
below a criticalN, . Since the logarithmic negativity is an of where various dynamically generated states lie with re-

upper bound on the distillable entanglement, this must alsgPect to all a_ccessmle symmetric states. .
be zero at these points. The size of this critidalfor a given For any given generation process, an important question

state is another indicator of fragility of the entanglemiat involves exactly .hOW entanglement fom."s W't.h'_n an en-
the GHZ state it is the extremé—1). For the optimal comb semble[44]. In this section, we characterize spin-squeezed

) - I : P states, the most common experimental example of large-
state, the size of this critical value appears to scale onl cale entanglement, It has been shown that spin squeezing
logarithmically inN. Thus, the comb states, despite having ; L . o
near-maximal {N/2N/2} entanglement, contain entangle- [Eg. (1)] is a sufficient condition for aiN-particle system to

X . be entangled11] and the squeezing parameter also indicates
ment that can withstand a huge amount of particle loss. in some sense the depth of entanglerfdi®. It has also

been demonstrated that spin-squeezed systems contain sig-
2. Ordering of Dicke states nificant pairwise entanglemeri9,10]. However, little is

. ~ . known about the entanglement of squeezed states across all

G'V?n the fact thaf 1)_op_t|m|zes the entanglem/irlt of size scales or how they compare to the reference states from
formation of the{1,1} split, it may seem odd thaiN/2)  gec |v. Describing such states in terms of entanglement
maximizes the negativity. Indeed, there is an ordering iSSUgeasures is intrinsically important, but also useful for under-
here and the two monotones disagree on which of th@ianding the more general class of symmetric entangled
reduced states is more entangled. See R} for a more  giates At the end of this section, we also briefly discuss the
complete discussion of ordering problems with entropies, gpiem of efficiently creating desirable states; given speci-
and entanglement measures for two-spin systems. Figure fa resources, allowable processes, and initially separable
displays the ordering problem betwe&n{(|m),{1,1}) and states.
Er(|m),{1,1}) for N=50. For N/2=j=1, Eg([]).{1,1})
>Eg(/]+1){1,1), whereas Ex([]).{1,13)<Ej+1), A. Spin-squeezed states

{LL), so the quantities are, respectively, decreasing The collective angular-momentum operators of any mul-
and increasing withj. In fact, the two curves will {inartite spin state must satisfy the inequalities imposed by
always cross because Eg(|1),{1,1)>Ex(|1),{1,1})  their commutation relations. Let us assume, without loss of
and Er(N72),{1,1)<E(IN/2),{1,1}). For large generality, that all subsequent states satigly) =(Jy)=0

V. ENTANGLEMENT IN SYMMETRIC DYNAMICALLY
GENERATED STATES
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and (J2)=min,((J%), such thatx is the direction of the
smallest variance perpendicular to the mean which points in
the z direction. In this case, we use the uncertainty relation-
ship

EF(p.{1.1})
1z \ Er(p.{N/2,N/2})

-

(=22 56

o
o
T

The characteristic feature of spin-squeezed states is that in-
ternal correlations between spiriise., entanglementcon-
spire to reduce the noise in one angular-momentum compo-
nent (x) at the expense of increasing the uncertainty in
another §). In particular, spin-squeezed states satisfy the . . )
inequality 0 0.5 1 15 2 2.5
Squeezing Evolution Time (arb. units)

Normalized |(Jz)| and EF(p,{A.B})

2
gzz N<JX><1 (57) FIG. 6. Spin-squeezing evolution for a systemNof 50 spin-

<‘]z>2 ' 1/2 particles evolving by the countertwisting Hamiltonian as mea-
sured by the squeezing parame#ér The time is scaled such that

States with a minimal squeezing paramef@are useful for ~Maximal spin squeezing occurstat 1. The mean), and the en-
reducing noise in many interferometric applicatiofesg. tanglements of formation are all independently normalized by their

atomic clocks. Usina Eq.(56) and the fact thatJ2 <J2, own maximum in the time period shown. Notice that the small-
one can ShO\i that 9 Eq.(56) ( y> scale correlation&g(p,{1,1}) peak before the large-scale correla-

tions Ex(p,{N/2N/2}), as the squeezing evolves.

§2>%, (58 Er(p(t),{1,1)] are also shown normalized by their own ini-
tial local maximum.

The small-scale entanglemefit,1} reaches its peak be-
fore the large-scale entangleméht/2,N/2} does. If we ana-
lyze the relative rate of growth of the different scales of
entanglement at early times, we see an intuitive ordering.

We choose to generate near-optimally spin-squeezeBigure 7 shows the small-time logarithmic negativitiésr
states|¥,) by applying the countertwisting Hamiltonian all even splitsand the entropy of formatioffor the extremal
Hct=(Ji—J2_)/i to an initially polarized sampld¥ ) splits) normalized by their respective maxima over that in-
—[0) (with £2=1) for the length of timety needed to mini-  terval. As the state becomes squeezed{1h& correlations
mize ¢2 [2]. This process does not produce optimally form first, followed by the{l,z},. then the{2,2}, and so on,
squeezed statesee Ref[12]), but in the largeN limit, it  UP to{N/2N/2}. This observation suggests that small-scale
creates states which very nearly obtain the minimal value of°rrelations typically peak earlier than larger-scale correla-
£2. The time it takes to reach the minimum &t 1/N for tions when evolvmg_under guadratic Har_nHtomans.
large N is ty~0.2 log(N)/N [16]. Henceforth, time is scaled Anoth(_er observation is that fgr small times, the s.tat_e ggts
such that the optimal spin-squeezing time=1. We will progressively more entang'led in the sense of majorization
ignore the small difference between the achieved and opti4S- In other words, the eigenvalues of [Is(t+dt)] are
mum spin squeezing, so that we may examine the productioffiore disordered than the eigenvalues qf A(t)] for all k-
of entanglement as the state evolves in the most simple way: /2 and smalkt. Thus, despite certain ordering difficulties
Interestingly, an effective countertwisting Hamiltonian canWith various entropies, the entanglement of any split is

be experimentally realized through the QND detection andtriCtly increasing initially. o
feedback rotation scheme of RE8]. It is also important to quantitatively compare the en-

Figure 6 shows this evolution for a state with="50 tanglement measures for spin-squeezed states and the sym-
spins. Thex andy means remain zero for the entire evolu- Metric reference states. FiguréaBshows the even split en-
tion, while (J,) decays from completely polarized through roPY Er(I¥¢),{N/2N/2}) of the optimally squeezed state as
zero. For small numbers of spins, the state will quickly re-a function ofN. From a numerical fit, we find that
cohere and become completely polarizestparablg For
large numbers of spins, the dynamics become highly disor- Ec(|W,),{N/2,N/2})~0.46 log(N) —log,(e).  (59)
dered after the mean decays through zero, and the recoher-
ence time grows much longer. After becoming maximally
squeezed, the internal entanglement continues to grow, blior smaller-scale entanglement, Figbgdisplays the two-
the spin squeezing rapidly gets worse because of the reduspin entropyEr(| ¥ ),{1,1}). The values approach but never
tion in the mean. The entanglement of formation for the larg-exceed the curve fer). Indeed, it can be shown that in
est and smallest even splitBE-(p(t),{N/2N/2}) and the largeN limit, the two-spin concurrence scales identically

where 1N is the Heisenberg limit.

1. Squeezing and entanglement
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the large scale entanglement takes over. The disordered na-
ture of the countertwisting Hamiltonian dominates at long
times as the value of the large-scale entanglement diffuses
and the small-scale entanglement remains near zero. In con-
trast, the application of a twisting HamiltoniaHt=J)2(
(which, unlike the countertwisting Hamiltonian, creates
squeezed states with a rotating axis of squegzmgeen to

be much more periodic. The states it generates are similar to
the countertwisting states initially, but they eventually con-
verge to the GHZ state and then return along the same tra-
jectory.

The entropies of extremal split{1,1} and {N/2,N/2})
capture much of the character of a many-particle entangled
_ ) — state, but there are, of course, a large number of other bipar-

Spin Squeezing Evolution Time tite splits to consider. The introduction of the information

FIG. 7. Entanglement measures for a systerNef50 spin-1/2  contained in all other splits potentially brings up more inter-
particles evolving under the influence of a countertwisting spin-€Sting entanglement characteristics. As in Fig. 4, we can ef-
squeezing Hamiltonian. The time is scaled such that the squeezirfigiently calculate all even split bipartite logarithmic nega-
parameter achieves its minimumtat 1 (the small-time evolution tivities for large number states as they become spin
is depicted and all entanglement measures are independently nosqueezed. The characteristic of early small-scale entangle-
malized by their own maximum in the time period shown. The ment being transformed into subsequent large-scale entangle-
entropy of formationEq(p,{A,B}) is shown for the extremal bi- ment during the course of evolution is again apparent. None-
partite splits{1,1} and{N/2,N/2}, while the logarithmic negativity theless, for this particular case, the intermediate splits do not
Exp.{AB}), is depicted for the partitions{1,1},{1,2}, provide a considerable amount of additional insight com-
12,2, ... {N/2—1N/2},{N/2N/2}. It can be seen that small-scale pared to that from the extremal splits.
correlations tend to peak before their large-scale counterparts; the
entanglement measures are strictly ordered according to the number 2. Squeezing under particle loss
of particles remaining\, .

Er(p.{1,1})

o
o0

Epp.{1,1)

<
=

<
'

Normalized Ey, (arb. units)

EA(p.AN/2,N/2})

<
[

Er(p.{N/2,N/2})
0 0.1 0.2 03 0.4 05

We now address how the spin-squeezing parameter be-
~= haves under particle loss. Given the expectation values of a
IOL tlhemtv:z Stﬁefriqt'i\”??n” Ct(ml'f» ~ K/N ’ thus the en- oo of operators on a symmetric density matrix, it is simple to
a é]e ents ?(_ g a 8 fus ?.Sl?ego 5; gfh' family of determine the moments of the same state with a certain num-

or a specified number of particle € 50), the family o ber of particles removed. fy is symmetric, so are all of its

states generated by applying the countertwisting Hamiltoniarpeduced density matrices where =N.<N. Given
to a polarized sample are displayed in the Ny ro

[Ex(p(t),IN/2N/2}), Ex(p(t),{1,1})] space of Fig. &). single-particle operators;, we know that
Again the small-scale entanglement grows faster than the

large-scale entanglement, but eventually decays to zero as Trn(0;- - -0jpn) = Try-1(0; - - - OjpN-1) (60)
4} [N72) . C
ST} N sr L
Z 3l 2 :
g° Io0/2) N=50 |
E; [ ar Twisting i
% 2t Counter-Twisting !
wof & 3} q :

. g3 IN72) |
Q '
z, |
=57 K- % 2 :
- [TH \ . 1
| Y L i
S 4 10) + INy !
L F )
(\Il'zu 3 L o 0 = L
I ] 10)
B
0 50 100 150 200 250 300 0 1 2 3 4 5x 103
Number of Particles (N) EF{(p,{1,1})

FIG. 8. (a) A plot of the even split entanglement of formatiéand entropy, E-(p,{N/2,N/2}), for a system ofN spin-1/2 particles
evolved under a countertwisting spin-squeezing Hamiltonian. The|stajeminimizes the squeezing parametér, (b) A similar plot using
the scaled entanglement of formatidW?Er(p,{1,1}), for a system with all but two particles removed) The time evolution of states
evolving under both the countertwisting Hamiltonigie,= (J2 —J?)/i] and twisting Hamiltonian lﬂt=J§) in the space of extremal split
entanglement.
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2r (65). For this finite number case, the spin-squeezing is lost
after some fraction of the spins are removed.Mgoes to
infinity though,(J,)y—N/2 (§,— 1) andéy—0, so all spins
need to be removed for the state to completely lose its spin
squeezed character.
In a similar analysis, Simon and KempE5] have shown
that spin-squeezed states remain squeezed until more than
29% of the particles havdepolarized Thus spin-squeezed
states are robust to both particle loss and dephasing with
constantN. (See Refs[9,16] for a more complete treatment
of how the spin-squeezing parameter behaves under continu-
ous generation and decoherenceowever, robustness to
particle loss and dephasing do not necessarily imply on each
other because the GHZ states are remarkably robust to local
depolarization 15], but, obviously, maximally fragile under
particle loss. The complete relationship between robustness
FIG. 9. Spin-squeezing reduction due to particle loss for a systo particle loss and dephasing is an interesting direction for
tem initially containingN=300 spin-1/2 particles. The lower right fyrther research.
corner of the plot reflects the minimum value of the squeezing
parameterg? achieved via a countertwisting Hamiltonian. As par-
ticles are removed from the optimally squeezed system, the value of
gﬁr moves up and left along the plotted line, eventually crossing Instead of characterizing what states a particular process

unity for finite number systems. The inset shows the time evolutiorproduces, consider the reverse problem of determining the

2

4—&1

2

Squeezing Parameter (éNr )
2
g

-

N =300

0 ' 100 ' 200 ' 300

Number Remaining (Nr)

B. Generating entangled states

of £ for different numbers of remaining particley, .

assuming the indices of the operators are not the ones trac
out. With this observation and the fact that for symmetric

states
(IIN=NTrN(jzipn) (61)
and
(n-1=(N=D)Try—1(jzipn-1)s (62
we find
(1= (3w 69
Similarly, it is easy to show
(1= (@t 7 (64
N 4

Using these relations and taking the lafddimit, we find
that the spin-squeezing parameter of a state Withspins

process necessary to generate a desired state from an initially
separable state. The completely polarized initial stkf]éa or

m)) is usually chosen, both because it is completely sepa-
rable at all levels and it is easily prepared in the (aly. via
optical pumping.

It can be shown that given such a state and access to
Hamiltonians of the form,, J,, J,, andJi, i.e., the gen-
erators are all rotations plus a single nonlinearity, one can
produceany symmetric state by an algorithm that switches
between the Hamiltonians in timjd6]. Unfortunately, prov-
ing this statement does not necessarily lead to the most effi-
cient way to create a particular state. Knowing which states
are prohibitively expensive to produce is an important ex-
perimental question. An interesting, but difficult, way to
characterize a state is by quantifying the resources needed to
create that state, given a certain set of generators. For ex-
ample, one could define a cost metric which is a function of
how many times the Hamiltonians must be switched and the
length of time necessary to produce a particular state.

Of course, all these issues are context specific, but we can
summarize certain results. Simply observing what the appli-
cation of a particular Hamiltonian produces is a first step.
The countertwisting Hamiltonian presented earlier produces

remaining € ) is dependent on the initial squeezing param-gntima| squeezing but does not produce any recognizable
eter (gﬁ,) and polarization of the state with all spins remain-reference statdsince the dynamics for larghl becomes

ing in the following way:

N,—1
Q=6+ &y (65

where£2=N?/(4(J,)3).

highly disordered for long timesA one-axis twisting Hamil-
tonian ofJi produces some squeezing which does not scale
optimally [2]. However, the time dependence of the en-
tanglement produced by this Hamiltonian is much more pe-
riodic and ordered than the countertwisting version. In fact, it
produces the GHZ state halfway through its period as is in-

The inset of Fig. 9 shows the spin-squeezing behavior fodicated in Fig. &). Mélmer and 3oensen[47] have pro-
N=300 as a function of time. Considering only the time posed a robust scheme for generating the GHZ state of many
when the state of all the spins is maximally squeezed (hot ions taking advantage of this effect.
=1), we plot the spin squeezing parameter as a function of Unanyanet al. have shown that by using adiabatic pas-
number remaining in Fig. 9, which behaves according to Eqsage and energy-level navigation methods one can produce
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the GHZ state and alm) states[48]. However, it remains treatment of this paper to particles with more than two levels.
unclear what the most efficient method is to generate thesg0!r €xample, we would like to describe the entanglement

states, or the bipartite entropy maximizing states presentefithin an ensemble of cesium atoms, where each atom can
here, in the asymptotic limit of larg. occupy the nine magnetic sublevels of the=4 ground

state.

Regarding dynamically generated states, it is possible to
further simplify the description of entanglement at small

In this paper, we analyzed the microscopic structure ofimes. For any initially polarized state experiencing a qua-
entanglement and its robustness to particle-loss for manydratic Hamiltonian, the state and relevant entanglement mea-
particle symmetric states. Our approach proceeded by con$ures can be described in terms of the Gaussian moments
paring the features of dynamically generated squeezed stat@one for short times. Deriving the exact form of this low-
to a collection of symmetric representative states, includinglimensional parametrization of entanglement measures is of
the GHZ and Dicke states, as well as random states and @Perimental interest. _ _
family that we define. In order to perform the analysis, we__Finally, an important challenge is to develop techniques
selected several bipartite entanglement measures: the ri&r efficiently generating the reference states discussed in
duced entropy of entanglement, the entanglement of formdhis paper, including those with near-maximal entanglement,
tion, and the logarithmic negativity. By computing these bi_suph as the comb states. Here, we ho_pe to stress that theo-
partite measures for all possible reductions and partitions dietical treatments of many-particle spin systems are most
the systems, we were able to construct a picture of multiscal@eneficial when they adopt methods that can be experimen-

VI. CONCLUSION

entanglement. tally implemented.
Our analysis benefitted from simulations of many-particle
systems. The computational results helped to bolster physical ACKNOWLEDGMENTS

insight and provide a starting point for analytically treating Th h K led b i tant di
the asymptotic scaling of various entanglement measures. In € a#] (gr?f acvndovlv eD ge aBnum er Od 'S"Fio.ran |:C;icus-
order to circumvent the exponential scaling of the densitySlons wi uiiré Vidal, Dave bacon, and Fatrick rayden.

matrix for arbitraryN-particle states, we restricted our analy- Tlh's wotjk.was. tsu}gported hml F.’t"?‘ri. by bhsl DoD MUIt'd';C"
sis to the symmetric subspace. In Sec. lll, we develope(ﬁ)Inary niversity Research InitiativeMURI) program ad-

machinery for computing the above entanglement monoton X'Aséirg%ob{ ér;e;frmyé tRhesgarlfh ﬂflcf-tutnd?r GranttNo.
for symmetric states in a computationally efficient manner. ou-L and the Caltech Institute for Quantum

As a result, our simulations were capable of handling Sys1m‘ormat|on sponsored by the National Science Foundation

tems withN~ 10°® particles without making any dynamical u_ntljer Grar:tho. EIAEOOFSGO%&{‘]'K'S' acknowledges finan-
approximations. cial support from Hertz Foundation.

In Sec. IV, we characterized the entanglement of the rep-
resentative states in detail, focusing on the trade-off between APPENDIX: SYMMETRIC STATE ENTROPY SCALING
{hose that are robust Under parile Iogs. We also.analyzeg. "'°POSHion 1 There exits a fower bound for the max:
several important ordering issues betweellﬂ the different mea- um attainable sy_mmetrlc state entropy {h_at asymptotically
. . S & ales as the maximum entropy for stateSyp® Syyz,
sures. A key point we stress is that fragility is not necessarily

a property of highly entangled states. With the analysis in 3| W) e Sy, 8>0N*>0:VN>N*
Sec. IV, it was possible to address the evolution of micro- N ’ '
scopic entanglement in dynamically generated spin-squeezed logo(N/2+1)— E(| W), {A,Bl)< & (A1)

states. Hopefully, this work helps to clarify the otherwise
vague statement that “spin-squeezed states are massively eN-proof. The proof proceeds by constructing a symmetric

tangled.” . - o state, whose even split reduced entrdpffV),{N/2,N/2})
From this work, we anticipate several future dlrectlons.Can be expressed as the asymptotic series,(Négj+1)

First, we plan to consider less restrictive symmetry classes, 6. In order to obtain this series, we express the entropy in

particularly the symmetry of Eq15). This symmetry is pre- terms of the Schmidt coefficients from E@2) by employ-

served during the unconditional evolution of an ensemblqng Stirling’s formula. Computing the residuals that are in-

under a uniform symmetry-preserving Hamiltonian and Iocalcurred by Stirling’s approximation, we obtain a bound &r

dephasing. For certain cases, where the emission from thaqﬁd demonstrate that it is asymptotically constanijri.e.
particles does not physically distinguish different particles,5~o(1) '

the symmetry may also be preserved under conditional evo- Consider the family of|C(s)) states, defined in Sec.

lution. In order to perform such an analysis, it will be nec- VA3 whose Schmidt decomposition. according to E
essary to exploit the commutant algebra and representatio(ﬂz) is’ given by P ' 9 q-

theory of the permutation groy@9]. A preliminary investi-

gation suggests that it will be possible to treat the full per- Nis N—k k Cp oN. .

i i H N,m +msi+j _ -
mutation group in a manner that scales polynomially, rather IC(s))=A >SS z B
than exponentially, with the number of particles. m=—N/s i=0 =0 Cn-k,iCk N=kld/k:

A more straightforward objective is to generalize the (A2)
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where A=+2s/N. We wish to choose the value & in

PHYSICAL REVIEW A 67, 022112 (2003

The entropy contributed by ea¢m) in |C(s)) whenmis

|C(s)) such that the matrie becomes block diagonal in the large can be computed by approximating dﬁ;ei) as Gauss-

largeN limit, which will happen provided that thgm) con-
tributing to|C(s)) are sufficiently separated. For an orthogo-
nal Schmidt matrix, Eq(13) can be solved in a closed form
and the total entropy is a weighted sum of the entropies

contributed by each participatintfh).
The required separation between nonzle?t) in |C(s))

ian,
+0(m™?),

21y /L p[_l V3(i—m2?
D= Nz am ™ Jmimr2)
(A9)

and transforming the summation in E&6) into an integral

as well as their contributing entropies can be found by con-

sideringcy(i), thec;; matrix elements as a function ofor

a given value ofm. This leads to the distribution

(A3)

which can be approximated using Stirling’s formula,
1
Inn!=nlnn—n+\2m7n+ ot o(n7?), (A4

to obtain the expression

P2 2
i“—i+m+m :
201y — o~ (m+1/2) = (i 12)mt 172
cr(i)=2 ex - . i m
" F{12|2m—12|m2
X(m—i)' =M V27121 0(m?) (A5)

for cZ(i) asN—o. The residual terms are of order 2.

Unfortunately, it is not known how to evaluate the entropy

of EqQ. (A5) because the discrete sum

o

S(m)=— 20 c2(i)log, c2 (i) (A6)

cannot be expressed in closed form. However, the moments

of c,(i) can be computed analytically:

— m
i=()=>, (A7)
a?=(i%)—(i)?=5m(m+2), (A8)

and it can be seen that all higher cumulants vanish in the

largeN limit.

Sm—ez—J':C,Zn(i)logzcrzn(i)di"‘f O(m~?)di,
(A10)

where the error terme must be obtained using the Abel-
Plana procedurfs0] for computing the difference between a
discrete sum and its corresponding integral. An upper bound
for the integral over the residu@l(m?) terms can be found
to converge tos=\2rm™2exp(—n?)/128, by considering
the asymptotic series of tHe function [51].

The resulting entropy, in the large-imit, with the Abel-
Plana corrections and the error bounds from higher-order
Stirling terms can be shown to have the form

e~ l/4mml/4( 2+ m) 3/4

SN 3 o2 E m)in 2

1
—5194(0,1/G)+s,

+ 193( O,m_ 1/29_ l/M)

(A1)

where9,(u,v) is the elliptic theta function of order [51].
Computing the entropy of the full state requires evaluating
the discrete sum ovan. We chose the comb spacing to be
s= 2N based on Eq(A8). Performing the final sum leads
to

E(|W),{N/2N/2})=

1 _
1+ ——|log, N+ O(Ne N + ¢,
Zm) (o7} ( ) €
(A12)

where the first residual term reflects the finite overlap of the
cﬁq(i), i.e., corrections that arise becausé not perfectly
block diagonal.

Finally, it is possible to express the reduced entropy as an

asymptotic series
E(|¥),{N/2N/2})—logy(N/2+1)~O(1), (AL3)

which completes the proof.
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