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Characterizing the entanglement of symmetric many-particle spin-12 systems

John K. Stockton,* J. M. Geremia,† Andrew C. Doherty, and Hideo Mabuchi
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Analyzing the properties of entanglement in many-particle spin-1/2 systems is generally difficult because the
system’s Hilbert space grows exponentially with the number of constituent particles,N. Fortunately, it is still
possible to investigate a many-particle entanglement when the state of the system possesses sufficient symme-
try. In this paper, we present a practical method for efficiently computing various bipartite entanglement
measures for states in the symmetric subspace and perform these calculations forN;103. By considering all
possible bipartite splits, we construct a picture of the multiscale entanglement in large symmetric systems. In
particular, we characterize dynamically generated spin-squeezed states by comparing them to known reference
states~e.g., Greenberger-Horne-Zeilinger and Dicke states!, and families of states with near-maximal bipartite
entropy. We quantify the trade-off between the degree of entanglement and its robustness to particle loss,
emphasizing that substantial entanglement need not be fragile.
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I. INTRODUCTION

The structure of entanglement within multipartite qua
tum systems is a deep subject that has only begun to
explored. Since an ensemble’s Hilbert space grows expo
tially with the number of particles that comprise it, the num
ber of distinct ways in which these particles can beco
entangled and the number of reference states needed to
resent the various entanglement structures are immense@1#.
While exponential scaling in complexity is the reason th
multipartite entanglement is so rich, it is also the reason
the subject is so daunting.

Nonetheless, there is a motivation for characterizing
tanglement in many-particle systems such as atomic spin
sembles because of recent experimental progress in cre
and manipulating macroscopic quantum states. In particu
highly correlated atomic ensembles, such as spin-sque
states@2#, have been demonstrated@3–5# and advances ar
promised in atomic interferometry@6# and quantum commu
nication @7#. They also provide experimentally accessib
systems for studying quantum measurement, feedback,
control @8#.

Spin squeezing is intimately linked to the structure of t
entanglement between individual members of the ensem
@9,10#. However, without a complete microscopic picture
this entanglement, only limited claims about the structure
these correlated states can be made. In certain case
N-spin system can be characterized as either entangle
separable by measuring~computing! expectation values o
total ensemble operators@11,12#. For example, if the spin-
squeezing parameter for anN-spin state~with polarization
alongz and minimal variance alongx) is less than unity,

N^Jx
2&

^Jz&
2

,1, ~1!

*Electronic address: jks@Caltech.EDU
†Electronic address: jgeremia@Caltech.EDU
1050-2947/2003/67~2!/022112~17!/$20.00 67 0221
-
be
n-

-
e
ep-

t
at

-
n-
ing
r,
ed

nd

le

f
an
or

then the state is guaranteed to be inseparable. Howeve
this level, limited information~in detail! about internal en-
tanglement and its robustness to particle loss@13,14#, or
other types of decoherence@9,15,16#, is available. In other
words, entanglement tests using total ensemble opera
cannot completely characterize the trade-off between
available entanglement resources and the state’s fragility

Unlike several multipartite techniques that have been
troduced~e.g., theN-tangle@17#!, we approach the problem
of analyzing theN-particle entanglement using only biparti
measures. Although a single bipartite split of a large syst
is rarely sufficient to characterize multiparticle entangleme
combining the results from many different splits of the sy
tem paints a reconstructed picture of the many-particle
tanglement. Furthermore, by repeating the analysis after
moving particles from the system, it is possible
systematically characterize the entanglement across all
scales and its robustness to particle loss. Our approach
the advantage that it relies upon well-defined entanglem
measures that are both computable and physically motiva

Since substantial insight, and often a good starting po
for more rigorous analysis, can be gained from numeri
simulations, an efficient way of calculating entangleme
measures is desirable. Section III develops the necessary
chinery for calculating these measures in the symme
subspace—the set of thoseN-particle pure states that rema
unchanged by permutations of individual particl
@10,18,19#. The main result of this section is that it is po
sible to perform partial transposes, partial traces, a
Schmidt decompositions of symmetric states without res
ing to an exponentially large representation of the system

In Sec. IV, we characterize microscopic entanglement
its robustness to particle loss for several representative s
metric states, including the Greenberger-Horne-Zeilin
~GHZ! and Dicke ~e.g., W! states. Here, the advantage
exploiting symmetry is clear; we perform entanglement c
culations for systems withN;103. These numerical result
allow us to speculate on the large-N asymptotic scaling of
the above entanglement measures. In some cases, pa
larly for the entanglement of formation and the reduced
©2003 The American Physical Society12-1
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tropy, we analytically verify the observed scaling. We a
introduce a family of states that provides insight into t
scaling of bipartite entanglement in symmetric states
largeN.

With the context provided by the reference states and
boundaries of allowed entanglement structures, we can b
understand the entanglement generation abilities of cer
dynamical processes. Section V focuses on the entangle
produced by spin-squeezing Hamiltonians. We illustrate
intuitive and generic effect that small-scale correlations p
before ~and transform into! large-scale correlations. Again
the ability to simulate systems withN@1 permits us to de-
termine asymptotic behavior, both for large numbers of p
ticles and for long times.

A point we stress is thatsignificantly entangled state
need not be fragile. Robustness is critically important in ex
periments, where the system constantly exchanges a
with the surrounding environment. Moreover, we show t
spin-squeezed states provide a reasonable compromise i
trade-off; they are highly entangled, yet particularly robu

II. ENTANGLEMENT MEASURES

In this section, we review several common entanglem
measures as motivation for the symmetric state techniq
that are developed in Sec. III. In addition to recognizing
specific operations necessary for computing these entan
ment quantities, we also describe their strengths, we
nesses, and, where possible, physical motivation.

We begin by reviewing the commonly accepted set
properties that all the measures of entanglement sh
share. For a general density matrixr, which can be divided
into two or more subsystems, the quantityEX(r) ~the labelX
is used to denote a generic measure! qualifies as anentangle-
ment monotoneif it satisfies the following conditions@20–
22#.

~C1! EX(r)>0; EX(r)50 if r is separable;
EX(Bell state)51.

~C2! Local operations classical communication~LOCC!
and postselection do not increaseEX(r) on an average. Fo
example, with any stater, and partition$A,B%, local unitary
transformations,Û5ÛA^ ÛB , do not affectEX(r).

~C3! Entanglement is convex under discarding inform
tion, ( i piEX(r i)>EX(( i pir i). We define the generalize
Bell states as

uC6&5~ u1A0B&6u0A1B&)/A2, ~2!

uF6&5~ u1A1B&6u0A0B&)/A2 ~3!

for a partition$A,B% @52#. If the subsystemA has more than
one spin, 1A is interpreted as 11•••1NA

and similarly for 1B ,

0A , and 0B .

A. Entropy of entanglement

Given a pure stateuC&, and a partition for the system
$A,B%, the entropy of entanglement is defined as
02211
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E~ uC&,$A,B%)[S~rA!5S~rB!, ~4!

where the von Neumann entropy isS(r)52Tr(r log2 r) and
rA5TrB(uC&^Cu). Any entropy that results from performin
a partial trace on the system must be a consequence of in
entanglement provided that the initial state is pure. For pr
uct states,uC&5uC&A^ uC&B , the entropy is zero since th
single eigenvalue for each of the pure statesrA and rB is
one. The maximum entropy of entanglement gives a partit
with dimensions, dim(A)5dA and dim(B)5dB , with dA
<dB , is log2(dA). A state that achieves this maximum is

uC&5u0&A^ u0&B1u1&A^ u1&B1•••1udA21&A^ udA21&B .

~5!

The entropy of entanglement has an interesting fea
that it is straightforward to compute; it requires only pe
forming a partial trace,rA5TrB(r), then computing eigen-
values of the result. The drawback of the entropy is tha
only qualifies as an entanglement monotone for initially pu
states.

B. Entanglement of formation

The entanglement of formation@23# is defined as

EF~r,$A,B%![ min
$pi ,c i %

(
i

piE~ uc i&,$A,B%), ~6!

where $pi ,c i% satisfy the condition thatr5( i pi uc i&^c i u.
This quantity is difficult to compute for mixed states b
reduces to the entropy of entanglement for pure states.

In the special case of a mixed state of two spin-1/2 p
ticles, the entanglement of formation can be computed fr
the two-particle concurrence,C(r) @23,24#. Therefore, it is
generally possible to compute the entanglement of forma
between two spins$ i , j % removed from anN-spin stateuC&.
The entanglement of formation for such a reduced system
a strong measure of the robustness of that state’s entan
ment to particle loss. Explicitly, for the two-particle stater
5TrkÞ i , j uC&^Cu,

EF~r,$ i , j %!5h~ 1
2 @11A12C~r!2# !, ~7!

whereh(x)52x log2(x)2(12x)log2(12x) and

C~r![max~0,Al12Al22Al32Al4!, ~8!

in which l1 , . . . ,l4 are the eigenvalues ofr(sy
^ sy)r* (sy^ sy) in decreasing order andsy is a Pauli spin
matrix.

C. Distillable entanglement and negativity

Given a mixed stater, and a partition$A,B%, the en-
tanglement of distillation is defined as

ED~r,$A,B%![ lim
n→`

m

n
, ~9!
2-2
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CHARACTERIZING THE ENTANGLEMENT OF . . . PHYSICAL REVIEW A 67, 022112 ~2003!
where m is the number of Bell states that can be distill
from n copies ofr via an optimal purification protocol with
LOCC @25,26#. For simplicity, we consider only the symme
ric Bell stateuF1& of Eq. ~3! as the output of the distillation
process throughout this paper. This state is also known a
Einstein-Podolsky-Rosen~EPR! pair, a GHZ state, or an
N-particle cat~macroscopic quantum interference! state. The
distillable entanglement is effectively a conversion e
ciency; however, since the purification protocol allows au
iliary separable states to be introduced into the original s
tem, it is possible, on an average, to extract more than
EPR pair from an initially entangled state. The distillab
entanglement for an EPR pair is one by definition.

The advantages of the distillable entanglement are th
is a monotone for mixed initial states and that it quantifi
entanglement as a practical resource. In this sense, the
tillable entanglement has a direct physical interpretation. U
fortunately, it is extremely difficult to compute unless th
initial state is pure, in which case it reduces to the entropy
entanglement. The entanglement of formation is an up
bound on the distillable entanglement~i.e., one cannot ex-
tract more EPR pairs than the number used to form the st!.

There exists another entanglement monotone, the lo
rithmic negativity, which, like the entanglement of form
tion, provides an upper bound on the distillable entanglem
but is alsocomputablefor mixed states@27#. The logarithmic
negativity is defined as

EN~r,$A,B%![ log2@2N~r,$A,B%!11#, ~10!

whereN(r,$A,B%) is the negativity of the stater. The nega-
tivity is defined as the absolute sum of the negative eig
values of the partial transpose with respect toA, rTA. So

N~r,$A,B%![(
i

ul i u2l i

2
, ~11!

wherel i are all of the eigenvalues.
The logarithmic negativity can be directly computed fro

the partial transpose. However, both the logarithmic nega
ity and the distillable entanglement are zero for those
tangled states with positive partial transposes~PPTs!. PPT
entangled states and perhaps some other entangled
@28,29# have zero distillable entanglement@30#. These states
are known asbound entangled states.

As with all monotones, the negativity may also disagr
with other monotones, such as the entanglement of for
tion, in which the state of two is more entangled@22#. This
ordering problem is a caveat which qualifies many sta
ments about entanglement, and is a reflection of the fact
any given entanglement measure refers only to its own l
ited physical context.

D. Schmidt decomposition

For a given partition$A,B% of the full ensemble’s Hilbert
space, it is possible to decompose the state as@31#

uC&5(
i PA

(
j PB

ci j u i &Au j &B , ~12!
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where the kets$u i &A ,u j &B% provide complete bases forA and
B, respectively. For separable pure states, the matrixc, which
is not necessarily square, is rank one,R(c)51. States where
R(c).1 are entangled because they cannot be expressed
single tensor product.

Generally, the Schmidt basis is taken to be diagonal inA.
It can be found from the matrix elementsci j by performing a
singular-value decomposition ofc,

c5ULV†, ~13!

whereL is diagonal and the rows ofU provide the Schmidt
basis@32#. There arer 5R(c) nonzero elements,l1 , . . . ,l r ,
along the diagonal ofL.

Several bipartite entanglement monotones can be defi
as functions of the Schmidt coefficients@33,34#, however we
present this formalism only because the Schmidt decom
sition provides an efficient procedure for computing the e
tropy of entanglement. Starting with a pure state, the redu
entropy for the partition$A,B% is given by

E~ uC&,$A,B%)52(
i 51

r

l i
2log2~l i

2!, ~14!

wherel i are the singular values from Eq.~13!.

III. SYMMETRIC STATES

The preceding section provided motivation for computi
partial traces, partial transposes, and Schmidt decomp
tions. However, for arbitraryN-particle spin-1/2 ensembles
these operations are exponentially difficult to compute
cause a general state of the ensemble resides in the s
C2

^ N and the dimensions of the density matrix scale asN

32N. Computational investigation of arbitrary ensemble e
tanglement is therefore impractical for all but the small
values ofN.

Fortunately, a large number of experimentally releva
states possess symmetry under particle exchange and
property allows us to significantly reduce the computatio
complexity. A large class ofN-particle states are invariant t
symmetry transformations of the permutation group

P i j rNP i j
† 5rN , ; P i j , ~15!

where theP i j are operators that exchange particlesi and j
within the ensemble. This is the most general class of st
that are exchange invariant; however, it is also possible
further restrict the space of accessible states to those tha
symmetric with respect to single-sided permutations

P i j rN5rN , ; P i j ~16!

of the individual spins. This symmetry further constrains t
diagonal terms of the density matrix. For the example o
two-spin system, single-sided symmetry requires^01uru01&
5^10uru01&, while the more general double-sided symme
does not.

The statesum,N& that respect this single-sided permut
tion symmetry compose the symmetric subspaceSN . The ket
2-3
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um,N& is defined as the unnormalizedN-particle symmetric
state withm excitations~spins up!,

um,N&[(
i

Pi~ u11,12 , . . . ,1m,0m11 , . . . ,0N&), ~17!

where$Pi% is the set of all (m
N) distinct permutations of the

spins. Although eachum,N& is an element ofC2
^ N , the per-

mutation symmetry enables it to be expressed as an ele
um̃& of a spaceSN that scales linearly, rather than expone
tially, with the number of particles. In short, all states inSN
can be represented inCN11.

The symmetric subspace therefore provides a conven
albeit idealized, computationally accessible class of s
states relevant to many experimental situations~such as spin
squeezing!. Completely symmetric systems are experime
tally interesting, largely because it is often easier to non
lectively address an entire ensemble of particles rather
individually address each member. Of course, there are
technical challenges in preservingperfectsymmetry among
the particles in an ensemble, such as maintaining the un
mity of magnetic and optical fields. Still, for a system
many particles, symmetrically manipulating the ensem
generally requires fewer resources than addressing indivi
members.

It is therefore interesting to consider computing vario
measures of entanglement and simulating the system’s
namics using symmetric states. However, analyzing
tanglement requires at least the operations of partial tra
and partial transposes. In order for these operations to
practical for largeN, it is essential to compute them in a
efficient manner, i.e., without having to work with represe
tations of states in the full spaceC2

^ N .
In this section, we derive relationships that allow us

work with arbitrary bipartite splits of the symmetric su
space. The ability to express a symmetric state in term
tensor products of smaller symmetric states is a critical p
requisite for efficiently computing bipartite entangleme
measures. In Sec. III A, we derive the necessary express
for expressing symmetric states in reduced dimensio
bases. These results lead to the operations of partial tra
partial transposes, and Schmidt decompositions on sym
ric states. In all of these cases, it is possible to manipu
symmetric states with a worst polynomial scaling of the
quired computational resources.

A. Symmetric change of basis and decomposition operators

When working with the symmetric subspace, it is nec
sary to convert between the largeC2

^ N and smallCN11 basis
representations of the state. In order to provide a system
means for changing bases, it is convenient to define a s
metry operator,SN :C2

^ N→CN11, whose action on the densit
operator in the 2N-dimensional basis,

r̃N5SNrNSN
† ~18!
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projects the state into SN expressed in an
(N11)-dimensional basis. We have adopted the notat
that r̃N is the symmetric density matrix represented inCN11.

SN is an @(N11)32N#-dimensional matrix that can b
expressed as

SN5 (
m50

N

CN,mum̃&^m,Nu, ~19!

where the coefficients are given by

CN,m5S N

mD 21/2

5F N!

m! ~N2m!! G
21/2

~20!

and CN,mum,N& is the normalized version of Eq.~17!. The
stateum̃& is physically the same as the 2N-dimensional state
um,N& ~both havem spins up!, except thatum̃& is normalized
and expressed in the (N11)-dimensional basis;

^m̃uñ&5dm,n , ~21!

SNCN,mum,N&5um̃&. ~22!

It should be noted thatSN is not a permutation operato
but rather a projector. Therefore, it is only appropriate
operate on symmetric states withSN as

SNSN
† 51sym, ~23!

SN
† SNÞ1full , ~24!

where 1sym is the identity in the (N11)-dimensional sym-
metric basis and1full is the identity in the 2N-dimensional full
basis. Consequently,SN

† SNrNSN
† SN5rN , only if rN is sym-

metric. Acting on a nonsymmetric state withSN andSN
† re-

sults in a loss of information, as the nonsymmetric comp
nents of that state are lost in the projection ontoSN .

For the purpose of making a bipartite split$A,B%, the
essential property of the symmetric subspace is that it ca
expressed as a tensor product of smaller symmetric spa
However, the tensor product of arbitrary symmetric state
not necessarily symmetric,

SN,SN2k^ Sk , ~25!

where the partition$A,B% has been denoted by the number
spins in each subsystem,$N2k,k%. SN2k^ Sk is larger than
SN . The structure of valid symmetric products is given
the relation@19#

um,N&5 (
p50

k

um2p,N2k& ^ up,k& ~26!

in terms of constituent symmetric states expressed in
large basis.

Equations~25! and~26! raise the point that theN-particle
symmetric spaceSN is smaller than the product space,SN2k
^ Sk . Therefore, the entanglement of states inSN will gener-
ally be more restricted than those in the tensor product sp
2-4
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While, it is straightforward to identify the maximal entangl
ment bounds for states inSN2k^ Sk , the same is not true fo
SN . Therefore, it is convenient to use the product space
tanglement bounds as an upper limit,albeit an overestimate,
for the scaling of states inSN .

In order to exploit the tensor product structure in Eq.~26!,
motivated by our desire to consider bipartite entanglem
measures, it is beneficial to construct a new symmetry op
tor TN2k,k , that maps symmetric states into the tensor pr
uct structure imposed by the partition$N2k,k%. In order to
be useful for computations, bothSN2k and Sk must be ex-
pressed in their respective small bases. That is, we req
the mappingTN2k,k :CN11→CN2k11^ Ck11.

Constructon of the operatorTN2k,k can be accomplished
by decomposingSN according to Eq.~26!,

SN5 (
q50

N

CN,quq̃&F (
p50

k

^q2p,N2ku ^ ^p,kuG ~27!

and then operating on the expandedSN
† with both SN2k and

Sk ,

TN2k,k5 (
q50

N

(
p50

min(q,k)
CN,q

CN2k,q2pCk,p
uq2 p̃&N2k^ u p̃&k^q̃u

~28!

to produce the necessary mapping. Here,um̃&N2kPCN2k11

denotes symmetric states in the subsystemA and theuñ&k
PCk11 are symmetric states inB. Equation~28! has the in-
terpretation of taking anum̃&PSN , changing back to the larg
basis, extracting the tensor product structure, and then re
ing the dimensions of the subsystems down to their resp
tive small bases.

B. Partial traces in the symmetric subspace

In this section, we derive an expression for

r̃N2k5Trk@ r̃N# ~29!

that avoids expressing any of the density matrices~in any
intermediate step! in their large bases. The structure of th
operatorTN2k,k immediately indicates that this is possib
since symmetric states can be expressed as tensor produ
lower-dimensional symmetric states. Once the symme
system has been partitioned, the partial trace is immedia

Although the operatorTN2k,k can be directly applied to
r̃N , this approach condenses several intermediate steps
might be useful when performing calculations. Instead,
first convertr̃N back to the large basis

rN5SN
† r̃NSN , ~30!

rN5 (
m,n50

N
^m,NurNun,N&um,N&^n,Nu

CN,m
22 CN,n

22
, ~31!
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and then partition the symmetric states,um,N& and un,N&,
using Eq. ~26! with k51. Taking the partial trace of the
resulting expression leads to an (N21)-particle symmetric
state in the large basis

Tr1@rN#5 (
m,n51

N

CN,mCN,n^m,NurNun,N&@ um,N21&

3^n,N21u1um21,N21&^n21,N21u#,

~32!

which can be changed to the small basis using the opera
SN21 andSN21

† ,

^ãur̃N21ub̃&5CN21,a
21 CN21,b

21 @^ãur̃Nub̃&CN,aCN,b

1^a11̃ur̃Nub11̃&CN,a11CN,b11. ~33!

By induction, it can be shown that the result of tracingk
particles out of the system is

^ãur̃N2kub̃&5(
j 50

k

^a1 j̃ ur̃Nub1 j̃ &Ck, j
22 CN,a1 jCN,b1 j

CN2k,aCN2k,b
,

~34!

which resides withinCN2k11.

C. Partial transposes in the symmetric subspace

The structure ofTN2k,k demonstrates that the partia
transpose of symmetric states with respect tok particles,r̃N

Tk ,
resides in the spaceSN2k^ Sk

T , but not SN . Therefore, the
partial transpose involves matrices that belong toCk11

^ CN2k11, and computingr̃N
Tk scales quadratically inN.

As with the partial trace, the operatorTN2k,k can be di-
rectly employed to obtain the partial transpose; however,
approach hides several useful intermediate steps. Instea
more explicit derivation involves transformingr̃N back to
the big basis and employing Eq.~26!. The partial transpose

rN
Tk5 (

m,n50

N

(
p,q50

k

CN,mCN,n^m̃ur̃Nuñ&

3@ um2p,N2k&^n2q,N2ku ^ uq,k&^p,ku# ~35!

can be expressed as a tensor product

rN
Tk[ (

p,q50

k

AN2k
p,q

^ Bk
p,q , ~36!

where

AN2k
p,q 5 (

m,n50

N

CN,mCN,n^m̃ur̃Nuñ&um2p,N2k&^n2q,N2ku

~37!

and

Bk
p,q5uq,k&^p,ku. ~38!
2-5
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Return to the small basis is accomplished by evaluat
ÃN2k

p,q 5SN2kAN2k
p,q SN2k

† and B̃k
p,q5SkBk

p,qSk
† to give

^ãuÃN2k
p,q ub̃&5

CN,p1aCN,q1b

CN2k,aCN2k,b
^a1 p̃ur̃Nub1q̃&, ~39!

^c̃uB̃k
p,qud̃&5Ck,c

21Ck,d
21dq,cdp,d , ~40!

where

r̃N
Tk5 (

p,q50

k

ÃN2k
p,q

^ B̃k
p,q ~41!

shows that the dimension ofr̃N
Tk is, in fact, (k11)3(N2k

11).

D. Schmidt decomposition of the symmetric subspace

It is quite simple to perform the Schmidt decompositio
Eq. ~12!, of a symmetric state inSN , into the spaceSN2k

^ Sk . The coefficientsc in Eq. ~12! for the statesum̃& follow
directly from applying the operatorTN2k,k to um̃&, resulting
in the expression

TN2k,kum̃&5 (
i 50

N2k

(
j 50

k

dm,i 1 j

CN,m

CN2k,iCk, j
u ĩ &N2k^ u j̃ &k .

~42!

For the statesum̃& the Schmidt matrixc is sparse and the
singular-value decomposition, Eq.~13!, can be performed
analytically.

General symmetric states,uC̃&5(m50
N amum̃&, can be rep-

resented as

TN2k,kuC̃&5 (
m50

N

am(
i 50

N2k

(
j 50

k

dm,i 1 j

CN,m

CN2k,iCk, j
u ĩ &N2ku j̃ &k .

~43!

However, for these general symmetric states, the Schm
coefficient matrixc is not sparse.

E. Dynamics in the symmetric space

One of the objectives of this paper is to treat dynamica
generated entangled states, therefore, this section briefly
cusses the time evolution of symmetric states. It is straig
forward to show that acting on a symmetric state with ope
tors of the form

o5(
j 51

N

1(1)
^ •••o( j )

•••^ 1(N) ~44!

preserves the exchange symmetry in the large ba
@o,P i j #50, provided that theo( i ) are identical.

Using the symmetric state change of the basis operatoSN
elucidates the physical nature of the symmetric subspace
example, transforming any angular-momentum operato
the form in Eq.~44! to the small basis usingSN ,
02211
g,

,

dt

y
is-
t-
-

is,

or
of

J̃5SNJSN
† 5SNS (

i
j ( i )DSN

† ~45!

produces the (N11)-dimensional operator equivalent to th
angular momentum for a singlepseudospin(J5N/2) par-
ticle. This is because the symmetric subspace is compose
basis statesum̃& that correspond to the eigenstates ofJz with
J5N/2 ~e.g., for two spins, the symmetric subspace includ
the triplet, but not the singlet!.

The dynamics of any symmetric state are confined to
symmetric subspace, provided that the Hamiltonian can
expressed as a function of operators all of the form as in
~44!. Given a symmetry-preserving Hamiltonian, the dyna
ics can be completely simulated with the small symme
basis. Explicitly, an infinitesimal step of evolution can b
written

uC̃~ t1dt!&5SN~11 iHdt !uC~ t !&

5SNuC~ t !&1 idtSNHuC~ t !&

5SNuC~ t !&1 idtSNHSN
† SNuC~ t !&

5uC̃~ t !&1 idtH̃uC̃~ t !&, ~46!

where we have useduC̃(t)&5SNuC(t)&, H̃[SNHSN
† , and

uC(t)&5SN
† SNuC(t)& @becauseuC(t)& is assumed to be

symmetric#.
For many experimentally motivatedN-particle spin-1/2

systems, it is possible to express states using the symm
subspace and the dynamics using only symmetry-preser
operators. The only time this efficient representation fails
apply is when the symmetry is broken or the system is
vided ~as we consider throughout the paper!. For example,
the spontaneous local decay of any one spin is sufficien
break the symmetry of Eq.~16!. Depending on the form of
the decoherence, some symmetry may be retained@e.g., the
particle exchange symmetry of Eq.~15!#. Other treatments
have addressed the effect of such decoherence on param
related to entanglement, such as the degree of spin squee
@9,15,16#.

IV. ENTANGLEMENT PROPERTIES FOR
REPRESENTATIVE SYMMETRIC STATES

Given the large number of possibleN-spin states, even
when restricted to the symmetric space, it is clear tha
systematic, yet compact approach to characterize mi
scopic entanglement is necessary. Toward this end, we c
acterize a set of representative symmetric states with a
ited combination of measures, including the reduced s
entropy, the entanglement of formation, and the logarithm
negativity. The families~described in detail below! that we
have selected display diverse entanglement behavior—
differ in their degree of entanglement at different size sca
and in their robustness to particle loss. Naturally, any se
representative states will be incomplete in some aspect; h
ever, our goal is to provide a detailed picture of intern
2-6
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CHARACTERIZING THE ENTANGLEMENT OF . . . PHYSICAL REVIEW A 67, 022112 ~2003!
entanglement without an excessive number of represe
tives.

In this section, we address the relationship between
degree of entanglement and its robustness to particle
While it has been a longstanding conception that the m
entangled states are simultaneously the most fragile,
demonstrate that this is not necessarily true. Under cer
useful definitions of entanglement, it is possible to fi
heavily entangled symmetric states that are simultaneo
robust. Similarly, the most fragile states are not always
most entangled. We also demonstrate that restricting
analysis to the symmetric subspace does not preclude
potential for significant entanglement.

A. Symmetric reference states

We now briefly describe several families of representat
symmetric states using the notation introduced in Sec. III
addition to GHZ states and theW family, we introduce a
parametrized family, termed ‘‘comb states,’’ which prove im
portant in investigating the maximal boundary of certain e
tanglement measures.

In the rest of this paper, all states are assumed to be s
metric. In the interest of simpler notation, we will expre
symmetric states asr even when it is more efficient to com
pute entanglement measures using theirr̃ representation.
Tilde notation is used only for theum̃& states.

1. GHZ states

The well-known GHZ states@35# can be written

uGHZ&5~ u0̃&1uÑ&)/A2 ~47!

using the notation from Sec. III. The GHZ family is gene
ally considered to be the standard example of a highly
tangled state. In several different contexts, it has become
common unit of entanglement currency. For example, a
particular Bell state, the GHZ state is the desired produc
entanglement distillation protocols.

However, the GHZ family fails to maximize a number
monotones, including the entanglements of distillation a
formation for a given bipartite split. Unlike previous trea
ments@19#, we choose to work with these measures un
which the GHZ is not a maximally entangled state. Cert
other measures such as theN tanglecorrectly recognize the
GHZ as containing the most trueN-way entanglemen
@17,34,36#, but our focus will remain on notions of strictl
bipartite entanglement. Still, the most practical defining ch
acteristic of the GHZ state is its fragility to particle los
tracing out a single party destroysall of the internal en-
tanglement.

2. Dicke states

An important family of states with completely differen
character is the set of symmetric states with integerm exci-
tations~spins up!, um̃&, wherem50, . . . ,N. Of course, these
states are also known as the Dicke states or the eigensta
Jz , where the notationuJ,M & is used withJ5N/2 and M
02211
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5m2N/252N/2, . . . ,N/2. TheW state@37#, which is de-

fined as the symmetric state with one excitation,uW&[u1̃&, is
a particular member of this family. Notice thatum̃& and
uN2m̃& have the same entanglement properties because
is equal to the other if the quantization axis is revers
These states exhibit a high degree of entanglement fom
51, . . . ,N21, while the states ofm50,N are completely
separable. The defining characteristic of the Dicke state
tanglement is its remarkable robustness to particle loss. It
been proven thatu1̃& optimizes the concurrence when all b
two spins have been removed@38#, the extreme opposite o
the fragile GHZ behavior. It has also been proven that
single copies, the GHZ andW cannot be converted into eac
other with LOCC operations on the individual spins wi
certainty@37#, further emphasizing their difference. For a
ditional discussions of the conversion properties of entang
states, see@39–41#.

3. Comb states

A parametrized family of practical importance which w
call comb states is defined as

uC~s!&5A2s

N (
m52N/s

N/s

uN/21ms̃&. ~48!

In the um̃& basis, these states have a comblike structure w
m-independent weighting for the nonzero elements which
spaced bys excitations. Since the comb states nontrivia
explore the full support of the symmetric basis, they may
expected to access regions of entanglement space whereum̃&
states are forbidden. We find that particular comb states w
an optimized spacings turn out to contain near-maximal en
tanglement for bipartite splits of any symmetric ensemble
will be shown numerically and proven in the Appendix.

4. Random states

Another way to numerically explore the full symmetr
space is randomly. We define a randomly generated s
uR&5(mr mum̃&, where the coefficientsr m are complex
Gaussian random variables with averagesE@r m#50,
E@r mr n#50, andE@r m* r n#5dmn /(N11). Note that this dis-
tribution of states is independent of the basis, in terms
which we have chosen to define the random coefficientsr m .
If we write uR&5(mr m8 (Uum̃&) in a new basisUum̃&, where
U is an arbitrary unitary transformation, the new coefficien
r m8 have exactly the same Gaussian distribution as the c
ficients r m . As a result, this distribution determines a me
sure of~unnormalized! vectors inCN11 that is invariant un-
der unitary transformations. MoreoverE@^RuR&#51 so the
states are on an average normalized and, in fact, the d
bution of norms becomes very sharply peaked around 1
N→`. In this limit, we can regard the statesuR& as being
drawn from the natural unbiased distribution of pure stat
In practice, we randomly select these vectors for a fixed
nite N of interest and normalize.
2-7
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B. Pure state entropy of entanglement

For an initially pure,N-particle symmetric state, there a
bN/2c possible ways to partition the system into two par
With symmetric states we can replace the labeling of a p
ticular partition$A,B% with the number of spins in each pa
tition $NA5k,NB5N2k%, wherek51, . . . ,bN/2c. The en-
tropy can then be computed from either of the reduc
density matrices@23#, rN2k5TrkrN or rk5TrN2krN :

E~ uC&,$k,N2k%)5S~TrkuC&^Cu!5S~TrN2kuC&^Cu!.
~49!

It can be proved that the entropy is a monotonically incre
ing, concave down-function ofk in this range@42#. ~From

FIG. 1. Entropy of entanglement for representative symme
states~described in Sec. IV! with N550 particles as a function o
the dimension of the bipartite split,$k,N2k%, where k
51, . . . ,bN/2c. The unobtainable boundlog2(k11) is the entropy
that could be achieved by a nonsymmetric product of the two s
metric subsystems$A,B%. Several representative states nea
achieve this maximum.
02211
.
r-

d

-

this point on, we implicitly assume the rounding of nonint
ger numbers such thatbN/2c is implied by N/2 and
$ bN/2c,dN/2e% is implied by$N/2,N/2%.)

In Sec. III A, we emphasized that a symmetric state w
N particles can be represented on the product space of
symmetric spaces withN2k andk particles (SN2k^ Sk). For
all states within this space, the state of Eq.~5! ~with dA5k
11) maximizesE(uC&,$k,N2k%) at log2(k11). However,
this state isnot symmetric with respect to the exchange
any two particles across the split. We are interested in find
the upper bound for the states in the spaceSN , which are
only a subset of states inSN2k^ Sk . It has been proven tha
the additional restriction of overall symmetry constrains t
maximal entropy to be strictly less than log2(k11), except
for N52,3,4, and 6 where states that achieve this bound
be found@19#. Consequently, we refer to the bound log2(k
11) as theunobtainable boundfor any k.

Figure 1 shows a plot ofE(uC&,$k,N2k%) for several
reference states andN550. Despite the fact that all states a
forbidden from achieving the value log2(k11), some states
come close to achieving this unobtainable bound. These
clude most randomly generated states and the comb s
with s5A2N. This naturally leads us to the question: wh
exactly is the minimum upper bound for the split entropy
symmetric states and what states achieve this bound?

1. Maximizing the even split entropy

Since the entropy is maximized by the most even s
(k5N/2), we henceforth consider only this partition. Fro
the above discussion, we know that forN>7, the entropy
obeys the inequalities

E~ uC&,$N/2,N/2%)<Emax~N!, log2~N/211!. ~50!

Analytically, locating the minimum upper boundEmax(N)
~or the states that achieve it! is difficult, but a simple numeric
approach turns out to shed some light on what we can

c

-

r of

f

fies
FIG. 2. ~a! Plot of the even split entropy of entanglement,E(r,$N/2,N/2%), for representative states as a function of the numbe
particles,N ~which is also equal to the entanglement of formation and distillation!. Note that the average entropy of 25 random states,uR&,
as well as the entropy ofuC(A2N)&, nearly attain theunobtainable boundlog2(bN/2c11). ~b! A plot of the two-particle entanglement o

formation,EF(r,$1,1%), as a function of the number of particles,N. TheW stateu1̃& maximizes this entanglement measure, which quanti
robustness to particle loss.
2-8
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pect. Figure 2~a! shows the entropy of the even split entro
as a function ofN for several families of states with th
unobtainable upper bound for reference. Most families
states do not keep up with the scaling of this upper boun

For example, if N@m, the states um̃& ~with m
51, . . . ,N/2) can be shown to have entropies of

E~ um̃&,$N/2,N/2%)'
log2~m!

2
11. ~51!

We also see that the largest of these scales
E(uN/2̃&,$N/2,N/2%)' log2(N)/2.

Due to the factor of 2, none of these states keep up w
the SN/2^ SN/2 bound. However, if we explore the simple
possible states accessing more of the symmetric Hil
space, we find something quite different. For largeN ~up to
600), the average entropies of random states, for exam
numerically scale as' log2(N/211)20.6. This indicates the
remarkable fact that the symmetry constraint on the ove
state does not limit thescalingof the maximal bipartite en-
tanglement compared to that of the more general spaceSN/2
^ SN/2 .

The comb states, optimized over the spacings, are even
more entangled. Numerically, we find that~for N up to 600)
their entropies scale as' log2(N/211)20.3, when s
'A2N. Encouraged by this evidence, we were able to pr
in the asymptotic limit of largeN that this family of comb
states uC(A2N)& does indeed scale as log2(N/211)2d,
whered is a constant of order unity~see the Appendix!. A
similar proof for the random state scaling is probably p
sible. The fact that random states, and the optimized co
state, seem to nearly maximize the$N/2,N/2% entropy indi-
cates that the set of states which scale similarly is of nonz
measure~i.e., this behavior is not atypical!.

Still we have not located the value of the true minimu
upper bound and the form of the states that achieve
bound. Given the above results, we expect it to have a s
lar scaling with a minimal offsetd for largeN.

C. Entanglement of formation: Extremal splits

For any bipartite entanglement measure, we can cons
even more possible splits if we choose~or are forced! to
ignore some of the particles. Suppose we start with a s
metric state ofN spinsuC& and trace out spins until onlyNr
remain. In this case, the new staterNr

5TrN2Nr
(uC&^Cu)

will be mixed butstill symmetric. We then have the possib
bipartite splits$k,Nr2k% with k50, . . . ,Nr /2 @53#.

For pure states, the entropy of entanglement for any
partite split is equal to both the entanglement of format
and distillation. Unfortunately, numerically calculating eith
of these monotones is much more difficult if given an in
tially mixed density matrix. For negativities, we showed
Sec. III C that we can numerically calculate all bipart
splits $k,Nr2k% for symmetric states, and we will demon
strate this ability in Sec. IV D. For now, we would like t
deal with the extreme case of all but two spins remov
(Nr52). In Sec. II B, we stated that the entropy of form
tion EF(uC&,$1,1%) is easily calculated for two spin mixe
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states through the concurrence. By discussing the relat
ship of the pair@EF(uC&,$1,1%),EF(uC&,$N/2,N/2%)], we
can start to get the meaning of the allowed relationship
entanglement across the extremes of size scales. We wi
fer to the splits$1,1% and$N/2,N/2% as theextremal splits.

Figure 2~b! displaysEF(uC&,$1,1%) for several reference
states. It has been proven that theW stateu1̃& maximizes the
concurrence, hence also the entanglement of formation~for
all symmetric states! with a value ofC(u1̃&)52/N @13,38#.
Wang and Mo” lmer @10# have shown that by using a simila
formalism, where the two-spin concurrences are calcula
from the moments of the entire state, analytic expressi
can be derived for the concurrences of several families
symmetric states. In particular, for the Dicke statesum̃&, and
M5m2N/2, the concurrence is

C~ uM1N/2̃&)5
1

2N~N21!
$N224M2

2A~N224M2!@~N22!224M2#%,

~52!

which gives the above result for theu1̃& state and also
C(uN/2̃&)51/(N21). In the large-N limit, these concur-
rences lead to the entanglements of formation

EF~ u1̃&,$1,1%)'
2 log2 N1 log2 e

N2
, ~53!

EF~ uN/2̃&,$1,1%)'
2 log2 2~N21!1 log2 e

@2~N21!#2
. ~54!

The 1/N2 scaling is due to the fact that the two-spin sta
is constrained to be reduced from a larger symmetric-N spin
state. In effect, one spin can only be so entangled with
other when it is constrained to have the same relations
with all other spins.

For many statesEF(uC&,$1,1%) is simply zero. The GHZ
state, the comb state, and practically all random states h
zero$1,1% entanglement and do not contain the same deg
of robust entanglement as theum̃& states. Furthermore, th
ordering of states shown in Figs. 2~a! and 2~b! is reversed
~with the exception of the GHZ!. This leads to the question
what is the nature of the trade-off between the small- a
large-scale entanglement of the extremal splits?

Figure 3 shows each state as a point in the space
@EF(uC&,$1,1%),EF(uC&,$N/2,N/2%)] for N550. The line
betweenu0̃& andu1̃& represents states which are a linear co
bination of these two states. The curve extending from
uN/2̃& state to the vertical axis and up that axis to the co
state represents linear combinations of those two states.
forbidden regions of this space for symmetric states are
known but we strongly suspect several properties of
boundaries. We conjecture that there are two regions wh
no states are allowed to exist. First, in region I, beneath
u0̃&↔u1̃& line, no states are found, nor likely to exist. Th
2-9
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reason for this is that to have any$1,1% entanglement, there
must exist some degree of$N/2,N/2% entanglement. How-
ever, there must also be a region in the upper right of reg
II, where no states exist. It appears that there exists a fu
mental trade-off between small- and large-scale entan
ment: as the large-scale entanglement of a state incre
~and is above 1), the maximum allowable small-scale
tanglement, will decrease. In addition, there is likely a cr
cal value of the$N/2,N/2% entanglement above which th
$1,1% entanglement must be zero.

D. Negativities: Extension to all splits

Now that we have a better idea of the relationship
tween the entanglement of the extremal splits, we can m
confidently approach the problem of understanding the la
number of remaining splits. ForNr spins remaining, there ar
Nr /2 splits of the form$k,Nr2k% with k51, . . . ,Nr /2. If
Nr,N and the initial state is nonseparable, the reduced s
is mixed and one of the few computable entanglement m
sures available is the negativity. Even though it is a comp
able monotone, the negativity is not an entanglement m
sure with as much physical justification as the entanglem
of formation or distillation. However, the logarithmic neg
tivity is an upper bound for the distillable entanglement@27#.
With this in mind, we move forward and work with the loga
rithmic negativities as an indicator ofpotential entangle-
ment.

1. Negativity of all even splits

Before computing the negativities, we can use the pr
erties of monotones to notice a few relationships between
bipartite monotones of different splits. Tracing out a sing
spin is an operation that falls under LOCC, and any mo
tone X, including the negativity, can only decrease und
such an operation, therefore,

FIG. 3. Plot of accessible entangled states in a space that re
the trade-off between the degree of entanglem
@EF(r,$N/2,N/2%)# and its robustness to particle los
@EF(r,$1,1%)#. The degree of entanglement for the large split
also equal to the distillable entanglement.
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EX~ uC&,$k21,Nr2k%)<EX~ uC&,$k,Nr2k%),

EX~ uC&,$k,Nr2k21%)<EX~ uC&,$k,Nr2k%).

For pure states, the most even split$N/2,N/2% gives the
maximal entropy of entanglement@43#. We observe that this
is also true for the most even splits of a reduced mixed s
with Nr particles remaining$Nr /2,Nr /2%. These observations
motivate us to reduce the number of splits considered to o
the even splits of a givenNr . Figure 4 displays the quantity
EN(uC&,$Nr /2,Nr /2%) as a function ofNr for several refer-
ence states. The end points of this plot give similar inform
tion about the extremal splits as the previous description
entanglement of formation. Unlike the entanglement of f
mation, we can easily plot the intermediate splits for t
logarithmic negativity.

By the above inequalities, we know that each cur
monotonically increases withNr . For reference we have in
cluded the plot of log2(Nr/211) which, of course, cannot b
achieved, because each reduced state withNr spins remain-
ing is constrained by the symmetry of the initial pure sta
The space between this maximum and the space of all ac
curves represents the entanglement ‘‘cost’’ of initial symm
trization. An unanswered question is for a givenNr and N:
what pure stateuC& maximizesEN(uC&,$Nr /2,Nr /2%)? What
is this maximum as a function ofNr andN? These questions
for both the negativities and other bipartite monotones
extensions of the problems encountered for the extre
splits. Again, we plot only the reference states and set a
the problem of fully characterizing the space of interest.

First, consider the GHZ stateu0̃&1uÑ&. As expected, this
state is maximally fragile, starting at unity and dropping
zero as soon as one spin is removed. In direct contrast, thW

state u1̃& starts at unity, but only slowly decays to zero
spins are removed and its logarithmic negativity remains
nite for evenNr52. The stateuN/2̃& is, in some sense, a

cts
t

FIG. 4. Plot of the even split negativity,EN(r,$Nr /2,Nr /2%), for
representative symmetric states withN550, as a function of the
number of particles remaining,Nr , in the system. The inset plo
highlights the particular robustness of theuN/2̃& Dicke state as mea
sured by the negativity. This contrasts a similar analysis using

entanglement of formation, whereu1̃& is most robust.
2-10



e
a

a
Z

e
se
n
ls

n
ng
e-

f

su
th

ie
re

in

th

s

an
n-

ster
are

tita-
le-
n be
e en-
is
tion
re-

tion
n-
ed

rge-
zing

tes

sig-

s all
from
ent
er-
led
the
ci-

able

ul-
by
of

n
-
e-
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optimal trade-off between total entanglement and robust
tanglement; in that it starts reasonably high above unity
Nr5N, but appears to have maximal negativity belowNr

'N/2. The comb states~and random states!, which have
near-maximal total entanglement, are also a reasonable tr
off, especially compared to the extreme fragility of the GH
state.

The comb state and most random states still attain z
negativity ~no negative eigenvalues of the partial transpo!
below a criticalNr . Since the logarithmic negativity is a
upper bound on the distillable entanglement, this must a
be zero at these points. The size of this criticalNr for a given
state is another indicator of fragility of the entanglement~for
the GHZ state it is the extremeN21). For the optimal comb
state, the size of this critical value appears to scale o
logarithmically in N. Thus, the comb states, despite havi
near-maximal $N/2,N/2% entanglement, contain entangl
ment that can withstand a huge amount of particle loss.

2. Ordering of Dicke states

Given the fact thatu1̃& optimizes the entanglement o
formation of the$1,1% split, it may seem odd thatuN/2̃&
maximizes the negativity. Indeed, there is an ordering is
here and the two monotones disagree on which of
reduced states is more entangled. See Ref.@22# for a more
complete discussion of ordering problems with entrop
and entanglement measures for two-spin systems. Figu
displays the ordering problem betweenEN(um̃&,$1,1%) and
EF(um̃&,$1,1%) for N550. For N/2> j >1, EF(u j̃ &,$1,1%)
.EF(u j 11̃&,$1,1%), whereas EN(u j̃ &,$1,1%),EN(u j 11̃&,
$1,1%), so the quantities are, respectively, decreas
and increasing with j. In fact, the two curves will
always cross because EF(u1̃&,$1,1%).EN(u1̃&,$1,1%)
and EF(uN/2̃&,$1,1%),EN(uN/2̃&,$1,1%). For large

FIG. 5. ~a! Plot of the inconsistent ordering of the reduced e
tanglement of formation, (EF(r,$1,1%), and the reduced logarith
mic negativity,EN ,$1,1%), for Dicke states. The shaded region r
flects the possible values for the distillable entanglement.~b! The

large-N scaling of the entanglement measures in~a! for the u1̃& ~i.e.,
W) state.
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N, N2EF(uN/2̃&,$1,1%)' log2(N)/2,N2EN(uN/2̃&,$1,1%)
'Nlog2(e), where the approximations can be shown bo
analytically and numerically.

For N@m, N2EN(um̃&,$1,1%) flattens out to a constant a
a function ofN, while N2EF(um̃&,$1,1%) continues to grow
logarithmically, as shown if Fig. 5~b! for u1̃&. In this case,
the entanglement of formation is significantly greater th
the logarithmic negativity and hence also the distillable e
tanglement. So, for the stateu1̃&, we can show

ED~ u1̃&,$1,1%)<EN~ u1̃&,$1,1%)'
3

N2

,EF~ u1̃&,$1,1%)'
2log2N1 log2e

N2
. ~55!

All measures monotonically decrease withN, but the distill-
able entanglement decreases at least logarithmically fa
than the entanglement of formation. Similar statements
possible about anyum̃&, with N@m.

V. ENTANGLEMENT IN SYMMETRIC DYNAMICALLY
GENERATED STATES

Characterizing the reference states enabled us to quan
tively identify the trade-off between the degree of entang
ment and robustness to particle loss. This relationship ca
expressed as boundaries in the space expressed by th
tanglements of formation for the extremal splits. With th
relationship in hand, we are now able to address the ques
of where various dynamically generated states lie with
spect to all accessible symmetric states.

For any given generation process, an important ques
involves exactly how entanglement forms within an e
semble@44#. In this section, we characterize spin-squeez
states, the most common experimental example of la
scale entanglement. It has been shown that spin squee
@Eq. ~1!# is a sufficient condition for anN-particle system to
be entangled@11# and the squeezing parameter also indica
in some sense the depth of entanglement@12#. It has also
been demonstrated that spin-squeezed systems contain
nificant pairwise entanglement@9,10#. However, little is
known about the entanglement of squeezed states acros
size scales or how they compare to the reference states
Sec. IV. Describing such states in terms of entanglem
measures is intrinsically important, but also useful for und
standing the more general class of symmetric entang
states. At the end of this section, we also briefly discuss
problem of efficiently creating desirable states; given spe
fied resources, allowable processes, and initially separ
states.

A. Spin-squeezed states

The collective angular-momentum operators of any m
tipartite spin state must satisfy the inequalities imposed
their commutation relations. Let us assume, without loss
generality, that all subsequent states satisfy^Jx&5^Jy&50

-

2-11
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and ^Jx
2&5minu(^Ju

2&), such thatx is the direction of the
smallest variance perpendicular to the mean which point
the z direction. In this case, we use the uncertainty relati
ship

^Jx
2&^Jy

2&>
^Jz&

2

4
. ~56!

The characteristic feature of spin-squeezed states is tha
ternal correlations between spins~i.e., entanglement! con-
spire to reduce the noise in one angular-momentum com
nent ~x! at the expense of increasing the uncertainty
another (y). In particular, spin-squeezed states satisfy
inequality

j2[
N^Jx

2&

^Jz&
2

,1. ~57!

States with a minimal squeezing parameterj2 are useful for
reducing noise in many interferometric applications~e.g.,
atomic clocks!. Using Eq.~56! and the fact that̂ Jy

2&,J2,
one can show that

j2.
1

N
, ~58!

where 1/N is the Heisenberg limit.

1. Squeezing and entanglement

We choose to generate near-optimally spin-squee
states uCj& by applying the countertwisting Hamiltonia
Hct5(J1

2 2J2
2 )/ i to an initially polarized sampleuC0&

5u0̃& ~with j251) for the length of timetN needed to mini-
mize j2 @2#. This process does not produce optima
squeezed states~see Ref.@12#!, but in the large-N limit, it
creates states which very nearly obtain the minimal value
j2. The time it takes to reach the minimum ofj2}1/N for
largeN is tN'0.2 log2(N)/N @16#. Henceforth, time is scaled
such that the optimal spin-squeezing timetN51. We will
ignore the small difference between the achieved and o
mum spin squeezing, so that we may examine the produc
of entanglement as the state evolves in the most simple w
Interestingly, an effective countertwisting Hamiltonian c
be experimentally realized through the QND detection a
feedback rotation scheme of Ref.@8#.

Figure 6 shows this evolution for a state withN550
spins. Thex and y means remain zero for the entire evol
tion, while ^Jz& decays from completely polarized throug
zero. For small numbers of spins, the state will quickly
cohere and become completely polarized~separable!. For
large numbers of spins, the dynamics become highly di
dered after the mean decays through zero, and the reco
ence time grows much longer. After becoming maxima
squeezed, the internal entanglement continues to grow,
the spin squeezing rapidly gets worse because of the re
tion in the mean. The entanglement of formation for the la
est and smallest even splits@EF(r(t),$N/2,N/2%) and
02211
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EF(r(t),$1,1%)] are also shown normalized by their own in
tial local maximum.

The small-scale entanglement$1,1% reaches its peak be
fore the large-scale entanglement$N/2,N/2% does. If we ana-
lyze the relative rate of growth of the different scales
entanglement at early times, we see an intuitive order
Figure 7 shows the small-time logarithmic negativities~for
all even splits! and the entropy of formation~for the extremal
splits! normalized by their respective maxima over that
terval. As the state becomes squeezed, the$1,1% correlations
form first, followed by the$1,2%, then the$2,2%, and so on,
up to $N/2,N/2%. This observation suggests that small-sc
correlations typically peak earlier than larger-scale corre
tions when evolving under quadratic Hamiltonians.

Another observation is that for small times, the state g
progressively more entangled in the sense of majoriza
@45#. In other words, the eigenvalues of Trk@r(t1dt)# are
more disordered than the eigenvalues of Trk@r(t)# for all k
<N/2 and smallt. Thus, despite certain ordering difficultie
with various entropies, the entanglement of any split
strictly increasing initially.

It is also important to quantitatively compare the e
tanglement measures for spin-squeezed states and the
metric reference states. Figure 8~a! shows the even split en
tropy EF(uCj&,$N/2,N/2%) of the optimally squeezed state a
a function ofN. From a numerical fit, we find that

EF~ uCj&,$N/2,N/2%)'0.46 log2~N!2 log2~e!. ~59!

For smaller-scale entanglement, Fig. 8~b! displays the two-
spin entropyEF(uCj&,$1,1%). The values approach but neve
exceed the curve foruN/2̃&. Indeed, it can be shown that i
the large-N limit, the two-spin concurrence scales identica

FIG. 6. Spin-squeezing evolution for a system ofN550 spin-
1/2 particles evolving by the countertwisting Hamiltonian as m
sured by the squeezing parameterj2. The time is scaled such tha
maximal spin squeezing occurs att51. The meanJz and the en-
tanglements of formation are all independently normalized by th
own maximum in the time period shown. Notice that the sma
scale correlationsEF(r,$1,1%) peak before the large-scale correl
tions EF(r,$N/2,N/2%), as the squeezing evolves.
2-12
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for the two states:C(uN/2̃&)'C(uCj&)'1/N, thus the en-
tanglements of formation must also converge.

For a specified number of particles (N550), the family of
states generated by applying the countertwisting Hamilton
to a polarized sample are displayed in t
@EF(r(t),$N/2,N/2%),EF(r(t),$1,1%)# space of Fig. 8~c!.
Again the small-scale entanglement grows faster than
large-scale entanglement, but eventually decays to zer

FIG. 7. Entanglement measures for a system ofN550 spin-1/2
particles evolving under the influence of a countertwisting sp
squeezing Hamiltonian. The time is scaled such that the squee
parameter achieves its minimum att51 ~the small-time evolution
is depicted! and all entanglement measures are independently
malized by their own maximum in the time period shown. T
entropy of formation,EF(r,$A,B%) is shown for the extremal bi-
partite splits$1,1% and$N/2,N/2%, while the logarithmic negativity
EN(r,$A,B%), is depicted for the partitions $1,1%,$1,2%,
$2,2%, . . . ,$N/221,N/2%,$N/2,N/2%. It can be seen that small-sca
correlations tend to peak before their large-scale counterparts
entanglement measures are strictly ordered according to the nu
of particles remainingNr .
02211
n

e
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the large scale entanglement takes over. The disordered
ture of the countertwisting Hamiltonian dominates at lo
times as the value of the large-scale entanglement diffu
and the small-scale entanglement remains near zero. In
trast, the application of a twisting HamiltonianHt5Jx

2

~which, unlike the countertwisting Hamiltonian, creat
squeezed states with a rotating axis of squeezing! is seen to
be much more periodic. The states it generates are simila
the countertwisting states initially, but they eventually co
verge to the GHZ state and then return along the same
jectory.

The entropies of extremal splits ($1,1% and $N/2,N/2%)
capture much of the character of a many-particle entang
state, but there are, of course, a large number of other bi
tite splits to consider. The introduction of the informatio
contained in all other splits potentially brings up more inte
esting entanglement characteristics. As in Fig. 4, we can
ficiently calculate all even split bipartite logarithmic neg
tivities for large number states as they become s
squeezed. The characteristic of early small-scale entan
ment being transformed into subsequent large-scale entan
ment during the course of evolution is again apparent. No
theless, for this particular case, the intermediate splits do
provide a considerable amount of additional insight co
pared to that from the extremal splits.

2. Squeezing under particle loss

We now address how the spin-squeezing parameter
haves under particle loss. Given the expectation values
set of operators on a symmetric density matrix, it is simple
determine the moments of the same state with a certain n
ber of particles removed. IfrN is symmetric, so are all of its
reduced density matricesrNr

, where 1<Nr<N. Given

single-particle operatorsoi , we know that

TrN~oi•••ojrN!5TrN21~oi•••ojrN21! ~60!

-
ng

r-

he
ber
t

FIG. 8. ~a! A plot of the even split entanglement of formation~and entropy!, EF(r,$N/2,N/2%), for a system ofN spin-1/2 particles
evolved under a countertwisting spin-squeezing Hamiltonian. The stateuCj& minimizes the squeezing parameter,j2. ~b! A similar plot using
the scaled entanglement of formation,N2EF(r,$1,1%), for a system with all but two particles removed.~c! The time evolution of states
evolving under both the countertwisting Hamiltonian@Hct5(J1

2 2J2
2 )/ i # and twisting Hamiltonian (Ht5Jx

2) in the space of extremal spli
entanglement.
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assuming the indices of the operators are not the ones tr
out. With this observation and the fact that for symmet
states

^Jz&N5NTrN~ j z,irN! ~61!

and

^Jz&N215~N21!TrN21~ j z,irN21!, ~62!

we find

^Jz&N215
N21

N
^Jz&N . ~63!

Similarly, it is easy to show

^Jx
2&N215

N22

N
^Jx

2&N1
1

4
. ~64!

Using these relations and taking the large-N limit, we find
that the spin-squeezing parameter of a state withNr spins
remaining (jNr

2 ) is dependent on the initial squeezing para

eter (jN
2 ) and polarization of the state with all spins rema

ing in the following way:

jNr

2 5j1
21~jN

2 2j1
2!

Nr21

N21
~65!

wherej1
2[N2/(4^Jz&N

2 ).
The inset of Fig. 9 shows the spin-squeezing behavior

N5300 as a function of time. Considering only the tim
when the state of all the spins is maximally squeezedt
51), we plot the spin squeezing parameter as a function
number remaining in Fig. 9, which behaves according to

FIG. 9. Spin-squeezing reduction due to particle loss for a s
tem initially containingN5300 spin-1/2 particles. The lower righ
corner of the plot reflects the minimum value of the squeez
parameterj2 achieved via a countertwisting Hamiltonian. As pa
ticles are removed from the optimally squeezed system, the valu
jNr

2 moves up and left along the plotted line, eventually cross
unity for finite number systems. The inset shows the time evolu
of j2 for different numbers of remaining particles,Nr .
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~65!. For this finite number case, the spin-squeezing is
after some fraction of the spins are removed. AsN goes to
infinity though,^Jz&N→N/2 (j1→1) andjN→0, so all spins
need to be removed for the state to completely lose its s
squeezed character.

In a similar analysis, Simon and Kempe@15# have shown
that spin-squeezed states remain squeezed until more
29% of the particles havedepolarized. Thus spin-squeezed
states are robust to both particle loss and dephasing
constantN. ~See Refs.@9,16# for a more complete treatmen
of how the spin-squeezing parameter behaves under con
ous generation and decoherence.! However, robustness to
particle loss and dephasing do not necessarily imply on e
other because the GHZ states are remarkably robust to l
depolarization@15#, but, obviously, maximally fragile unde
particle loss. The complete relationship between robustn
to particle loss and dephasing is an interesting direction
further research.

B. Generating entangled states

Instead of characterizing what states a particular proc
produces, consider the reverse problem of determining
process necessary to generate a desired state from an ini
separable state. The completely polarized initial state (u0̃& or
uÑ&) is usually chosen, both because it is completely se
rable at all levels and it is easily prepared in the lab~e.g. via
optical pumping!.

It can be shown that given such a state and acces
Hamiltonians of the formJx , Jy , Jz , andJx

2 , i.e., the gen-
erators are all rotations plus a single nonlinearity, one
produceany symmetric state by an algorithm that switch
between the Hamiltonians in time@46#. Unfortunately, prov-
ing this statement does not necessarily lead to the most
cient way to create a particular state. Knowing which sta
are prohibitively expensive to produce is an important e
perimental question. An interesting, but difficult, way
characterize a state is by quantifying the resources neede
create that state, given a certain set of generators. For
ample, one could define a cost metric which is a function
how many times the Hamiltonians must be switched and
length of time necessary to produce a particular state.

Of course, all these issues are context specific, but we
summarize certain results. Simply observing what the ap
cation of a particular Hamiltonian produces is a first ste
The countertwisting Hamiltonian presented earlier produ
optimal squeezing but does not produce any recogniza
reference state~since the dynamics for largeN becomes
highly disordered for long times!. A one-axis twisting Hamil-
tonian ofJx

2 produces some squeezing which does not sc
optimally @2#. However, the time dependence of the e
tanglement produced by this Hamiltonian is much more
riodic and ordered than the countertwisting version. In fac
produces the GHZ state halfway through its period as is
dicated in Fig. 8~c!. Mo” lmer and So”rensen@47# have pro-
posed a robust scheme for generating the GHZ state of m
hot ions taking advantage of this effect.

Unanyanet al. have shown that by using adiabatic pa
sage and energy-level navigation methods one can prod
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the GHZ state and allum̃& states@48#. However, it remains
unclear what the most efficient method is to generate th
states, or the bipartite entropy maximizing states prese
here, in the asymptotic limit of largeN.

VI. CONCLUSION

In this paper, we analyzed the microscopic structure
entanglement and its robustness to particle-loss for ma
particle symmetric states. Our approach proceeded by c
paring the features of dynamically generated squeezed s
to a collection of symmetric representative states, includ
the GHZ and Dicke states, as well as random states a
family that we define. In order to perform the analysis,
selected several bipartite entanglement measures: the
duced entropy of entanglement, the entanglement of for
tion, and the logarithmic negativity. By computing these
partite measures for all possible reductions and partition
the systems, we were able to construct a picture of multis
entanglement.

Our analysis benefitted from simulations of many-parti
systems. The computational results helped to bolster phys
insight and provide a starting point for analytically treati
the asymptotic scaling of various entanglement measure
order to circumvent the exponential scaling of the dens
matrix for arbitraryN-particle states, we restricted our anal
sis to the symmetric subspace. In Sec. III, we develo
machinery for computing the above entanglement monoto
for symmetric states in a computationally efficient mann
As a result, our simulations were capable of handling s
tems withN;103 particles without making any dynamica
approximations.

In Sec. IV, we characterized the entanglement of the r
resentative states in detail, focusing on the trade-off betw
those states that maximize the entanglement measures
those that are robust under particle loss. We also analy
several important ordering issues between the different m
sures. A key point we stress is that fragility is not necessa
a property of highly entangled states. With the analysis
Sec. IV, it was possible to address the evolution of mic
scopic entanglement in dynamically generated spin-sque
states. Hopefully, this work helps to clarify the otherwi
vague statement that ‘‘spin-squeezed states are massivel
tangled.’’

From this work, we anticipate several future direction
First, we plan to consider less restrictive symmetry clas
particularly the symmetry of Eq.~15!. This symmetry is pre-
served during the unconditional evolution of an ensem
under a uniform symmetry-preserving Hamiltonian and lo
dephasing. For certain cases, where the emission from
particles does not physically distinguish different particl
the symmetry may also be preserved under conditional e
lution. In order to perform such an analysis, it will be ne
essary to exploit the commutant algebra and representa
theory of the permutation group@49#. A preliminary investi-
gation suggests that it will be possible to treat the full p
mutation group in a manner that scales polynomially, rat
than exponentially, with the number of particles.

A more straightforward objective is to generalize t
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treatment of this paper to particles with more than two leve
For example, we would like to describe the entanglem
within an ensemble of cesium atoms, where each atom
occupy the nine magnetic sublevels of theF54 ground
state.

Regarding dynamically generated states, it is possible
further simplify the description of entanglement at sm
times. For any initially polarized state experiencing a qu
dratic Hamiltonian, the state and relevant entanglement m
sures can be described in terms of the Gaussian mom
alone for short times. Deriving the exact form of this low
dimensional parametrization of entanglement measures
experimental interest.

Finally, an important challenge is to develop techniqu
for efficiently generating the reference states discussed
this paper, including those with near-maximal entangleme
such as the comb states. Here, we hope to stress that
retical treatments of many-particle spin systems are m
beneficial when they adopt methods that can be experim
tally implemented.
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APPENDIX: SYMMETRIC STATE ENTROPY SCALING

Proposition 1. There exists a lower bound for the max
mum attainable symmetric state entropy that asymptotic
scales as the maximum entropy for states inSN/2^ SN/2 ,

'uC&PSN ,d.0,N* .0:;N.N* ,

log2~N/211!2E~ uC&,$A,B%),d. ~A1!

Proof. The proof proceeds by constructing a symmet
state, whose even split reduced entropyE(uC&,$N/2,N/2%)
can be expressed as the asymptotic series, log2(N/211)
1d. In order to obtain this series, we express the entropy
terms of the Schmidt coefficients from Eq.~42! by employ-
ing Stirling’s formula. Computing the residuals that are i
curred by Stirling’s approximation, we obtain a bound ford
and demonstrate that it is asymptotically constant inN, i.e.,
d;O(1).

Consider the family ofuC(s)& states, defined in Sec
IV A 3, whose Schmidt decomposition, according to E
~42!, is given by

uC~s!&5A (
m52N/s

N/s

(
i 50

N2k

(
j 50

k CN,mdN
2 1ms,i 1 j

CN2k,iCk, j
u ĩ &N2ku j̃ &k ,

~A2!
2-15
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where A5A2s/N. We wish to choose the value ofs in
uC(s)& such that the matrixc becomes block diagonal in th
large-N limit, which will happen provided that theum̃& con-
tributing to uC(s)& are sufficiently separated. For an orthog
nal Schmidt matrix, Eq.~13! can be solved in a closed form
and the total entropy is a weighted sum of the entrop
contributed by each participating,um̃&.

The required separation between nonzeroum̃& in uC(s)&
as well as their contributing entropies can be found by c
sideringcm( i ), theci j matrix elements as a function ofi for
a given value ofm. This leads to the distribution

cm~ i !5!S N2k

i D S k

m2 i D
S N

mD , ~A3!

which can be approximated using Stirling’s formula,

ln n! 5n ln n2n1A2pn1
1

12n
1O~n22!, ~A4!

to obtain the expression

cm
2 ~ i !522(m11/2)expF i 22 i 1m1m2

12i 2m212im2G i 2( i 11/2)mm11/2

3~m2 i ! i 2m21/2p21/21O~m22! ~A5!

for cm
2 ( i ) asN→`. The residual terms are of orderm22.

Unfortunately, it is not known how to evaluate the entro
of Eq. ~A5! because the discrete sum

S~m!52(
i 50

`

cm
2 ~ i !log2 cm

2 ~ i ! ~A6!

cannot be expressed in closed form. However, the mom
of cm( i ) can be computed analytically:

ī 5^ i &5
m

2
, ~A7!

s25^ i 2&2^ i &25 1
12 m~m12!, ~A8!

and it can be seen that all higher cumulants vanish in
large-N limit.
ev

.
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The entropy contributed by eachum̃& in uC(s)& whenm is
large can be computed by approximating thecm

2 ( i ) as Gauss-
ian,

cm
2 ~ i !5A 1

mp
expF21

4m
2

A3~ i 2m/2!2

Am~m12!
G1O~m22!,

~A9!

and transforming the summation in Eq.~A6! into an integral

Sm2e52E
0

`

cm
2 ~ i !log2 cm

2 ~ i !di1E O~m22!di,

~A10!

where the error terme must be obtained using the Abe
Plana procedure@50# for computing the difference between
discrete sum and its corresponding integral. An upper bo
for the integral over the residualO(m22) terms can be found
to converge to«5A2pm22exp(2m2)/128, by considering
the asymptotic series of theG function @51#.

The resulting entropy, in the large-m limit, with the Abel-
Plana corrections and the error bounds from higher-or
Stirling terms can be shown to have the form

Sm5
e21/4mm1/4~21m!3/4

31/4A2m~21m!ln 2
1q3~0,m21/2e21/4m!

2
1

2
q4~0,1/Ap!1«, ~A11!

whereqn(u,v) is the elliptic theta function of ordern @51#.
Computing the entropy of the full state requires evaluat
the discrete sum overm. We chose the comb spacing to b
s5A2N based on Eq.~A8!. Performing the final sum lead
to

E~ uC&,$N/2,N/2%)5S 11
1

2AN
D log2 N1O~Ne2AN!1«,

~A12!

where the first residual term reflects the finite overlap of
cm

2 ( i ), i.e., corrections that arise becausec is not perfectly
block diagonal.

Finally, it is possible to express the reduced entropy as
asymptotic series

E~ uC&,$N/2,N/2%)→ log2~N/211!2O~1!, ~A13!

which completes the proof.
n,
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