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Homogeneous anisotropic turbulence consisting of a collection of straight vortex structures is 
considered, each with a cylindrically unidirectional, but otherwise arbitrary, internal vorticity 
field. The orientations of the structures are given by a distribution P of appropriate Euler angles 
describing the transformation from laboratory to structure-fixed axes. One-dimensional spectra 
of the velocity components are calculated in terms of P, and the shell-summed energy spectrum. 
An exact kinematic relation is found in which volume-averaged Reynolds stresses are 
proportional to the turbulent kinetic energy of the vortex collection times a tensor moment of P. 
A class of large-eddy simulation models for nonhomogeneous turbulence is proposed based on 
application of the present results to the calculation of subgrid Reynolds stresses. These are 
illustrated by the development of a simplified model using a rapid-distortion-like approximation. 

I. INTRODUCTION 

It is well known that the statistical kinematics of iso- 
tropic turbulence, by which we refer to, for example, rela- 
tions between the shell-summed energy spectrum and the 
various one-dimensional spectra, can be developed in com- 
plete generality, without the need for specific information 
concerning the structure of the underlying vorticity field 
(e.g., Batchelor’). This is apparently not the case for an 
equivalent kinematic theory of homogeneous but aniso- 
tropic turbulence, where, in general, some properties of the 
vorticity structure must be known in order to derive kine- 
matic relations. 

In the present paper we study the kinematics of a 
model of homogeneous anisotropic turbulence based on the 
assumption that the small-scale vorticity consists of a su- 
perposition of vorticity fields or “structures,” each with the 
property that the vorticity is unidirectional, with no ex- 
plicit dependence of the vorticity magnitude on the coor- 
dinate parallel to vortex lines (Saffman and Pullin2). A 
typical realization is a locally rectilinear vortex with an 
arbitrary cross-sectional vorticity distribution embedded in 
a three-dimensional, spatially uniform velocity-gradient 
field (whose components may be time dependent), pro- 
duced by larger-scale structures. Such vortices may be 
characterized as “two dimensional,” although this term is 
misleading, as it suggests that no stretching or rotation of 
vortex lines by the large-scale field is allowed, which is not 
the case for the present model. Evidence that structures of 
this type are characteristic of the small scales of isotropic 
turbulence is provided by the numerical simulations of 
Kerr,3 Ashurst et a1.,4 Vincent and Meneguzzi,5 and oth- 
ers, based in part on the observed tendency for alignment 
between the vorticity vector and the eigenvector corre- 

sponding to the algebraically intermediate principal rate of 
strain. It has been shown by Lundgren6 that a statistically 
homogeneous field of strained spiral vortices that exhibit 
this property can have a k-5’3 inertial range, where 
k= [k 1 is the modulus of the wave number. Pullin and 
Saffman7 have shown that this model can be used to cal- 
culate the higher-order statistics of the velocity-gradient 
field. 

In Sec. II, we specify the required vortex structure in a 
general way and define the anisotropy in terms of proba- 
bility density functions (PDF) of the orientations of the 
structures relative to laboratory axes. An expression for the 
Reynolds stress tensor is obtained by intuitive argument in 
Sec. III. This result is used in Sec. IV in the formulation of 
a class of large-eddy simulation models based on the idea 
of local subgrid homogeneity for the unresolved subgrid 
scales, and on a model equation, giving the response of the 
orientation PDF to the fields of the velocity and the 
velocity-gradient tensor of the resolved, nonhomogeneous 
large-eddy flow. A feature of these models is that the vor- 
ticity distribution inside the subgrid structures need not be 
explicitly specified or calculated, provided one is prepared 
to invoke Kolmogorov scaling for the inertial/dissipation- 
range subgrid energy spectrum. When this is done, a model 
containing two numerical free parameters is obtained. 
These are the Kolmogorov constant and the skewness or 
dimensionless cubic velocity derivative. In Sec. V, relations 
for one-dimensional energy spectra in terms of the shell- 
summed energy spectrum are derived, and it is shown that 
from these, a formal proof of the Reynolds-stress result of 
Sec. III can be obtained. An alternative proof is given in 
Appendix A, while Appendix B demonstrates that the 
large-eddy simulation models discussed in Sec. IV should 
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reduce to the fully resolved Navier-Stokes equations when 
the local Kolmogorov length scale is larger than the local 
spatial resolution. 

II. VORTEX STRUCTURE 

A. Cylindrically unidirectional vorticity 

We take axes (r, ,r2,r3) with corresponding unit veo 
tors ( el ,e2,e3) fixed in space. The homogeneous turbulence 
consists of a superposition of velocity fields from a large 
collection of straight vortex structures. The orientation of a 
particular structure will be defined by unit vectors 
!e;,4,e;>, with ej parallel to the vorticity in the structure, 
i.e., 

m=m(r;,ri,t)e;, (1) 

where (r; ,ri,r;> are coordinates in vortex-fixed axes with 
r; ,r;, lying in the plane of the cross section in the direc- 
tions e{ ,e;. We shall refer to vorticity distributions like 
( 1) , which show no dependence on rj , as cylindrical& uni- 
directional. The function w (r; ,ri ,t) is arbitrary, but is as- 
sumed to be compact. Nonexclusive examples may include 
the Burgers’ vortex, or the Lundgren6 stretched spiral, or a 
distribution corresponding to some complex fractal set. It 
will later be seen that the precise details of w appear in the 
final result only through the shell-summed energy spec- 

trum. An essential assumption is that any interactions be- 
tween structures of different orientation, to be described 
subsequently, or between the large scales and the struc- 
tures maintains the cylindrical unidirectionality of ( 1). 
Thus, for example, vortex stretching, compression, or tilt- 
ing is allowed, but the twisting of vortex lines associated 
with axial flow internal to the structures is not. Otherwise 
w(r; ,r; ,t> may be supposed to locally satisfy the Navier- 
Stokes equations, although we note that the present results 
are essentially kinematic, and vortex/Navier-Stokes dy- 
namics of the fine scales will only enter our arguments in 
an implicit way. 

We denote by Eij the rotation matrix describing coor- 
dinate transformations between the (r, ,r2,r3) and the 
(r; ,r.$ ,rj> axes systems. This is defined, such that a vector 
Vi and a tensor T,j are transformed as VI = EijUf and Tij 
= EplTi4E4J, respectively. Except where otherwise speci- 
fied, the Einstein summation convention will be used. The 
components of Eij are expressible in terms of the Euler 
angles, a, p, and y, describing rotation of the (rl,r2,r3) 
axes to the (r; ,r; ,rj) axes, where a is colatitude (the angle 
between the r3 and rj axes), p is longitude, and y is spin 
about the r; axis (see, e.g., Jeffreys and Jeffreys’ Sec. 
4.034). These are 

cosacospcosy-sin/?siny cos a sin /3 cos yfcos fl sin y -sin a cos y 

R= -cosacosfisiny-sinflcosy -cosasinfisiny+cos/3cosy 

( 

sin a sin y 
sinacosfl sinasinfl cos a 1 

. (2) 

B. Probability density of the Euler angles 

We now utilize the the probability density function 
P( a,P,y) of the Euler angles introduced by Saffman and 
Pullin” and defined such that Psin a da dfl dy/S? is the 
probability that (e; ,e$ ,e;> lie in the range a to a + da, fi to 
p+dP, and y to y+dy. In general, P(a,p,y) is expected to 
be determined by the interaction between large scales and 
the vortex structures, and we will return to this problem in 
Sec. IV. The expectation of any function f (Eij) averaged 
over the orientations of the structures is 

x sin a da dfl dy. (3) 

The function P(a,&y) describes the anisotropy of the tur- 
bulence. I,f P= 1, the turbulence is isotropic. We will de- 
note by P(a,fl) the probability density function of the 
Euler angles in the special case when P is independent of y, 
and define the single angle bracket average over Euler an- 
gles as 
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(f(Eii))=$ s,” s,‘” J~rf(E,,)&Q) 
(4) Xsinadadfidy. 

Hi. REYNOLDS STRESSES 

It is our aim to calculate the Reynolds stress tensor 
UiUj at a point in the fluid, where Ui is the instantaneous 
velocity in a fixed reference frame in which the mean ve- 
locity is zero, and the double overbar denotes an ensemble 
average or a volume average over a large box containing 
the turbulence. We will use double angle brackets to denote 
averages over the orientations in the sense of (3) and a 
single overbar to denote an average over the r;-ri cross- 
sectional plane of a single structure. We make the identi- 
fication 

and assume that averages over the structure cross sections 
are independent of the Euler angles. 
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It is now assumed that P is independent of the spin 
angle y, that is, at fixed a$, which give the direction of the 
vorticity, all values of spin are equally likely. This is nat- 
ural physically since the vorticity within a structure will 
tend to impart rotation. With this restriction we give the 
following plausibility argument for the calculation of zzzzzzz 
UiUp Consider structures with ej in da dfi. In the primed 
axis system, the Reynolds stresses produced by these struc- 
tures, when averaged over the structure cross section and 
over the spin angle I’, must be given by 

(5) 

where 2, is a diagonal tensor with diagonal elements (i, 

LO). This is because the velocity field associated with the 
structures, with mean square velocity ( u;)~, must lie in the 
r; ,ri plane, and so when averaged over y, the off-diagonal 
components will vanish and the turbulence energy will be 
equally divided between the r; and r; directions. Upon 
transforming to (rl,r2,r3) axes and averaging over the re- 
maining Euler angles, we find 

-= ~=u~(EpizpqEqj), (6) 

where we note that the components of EpizpqEqj (i.e., be- 
fore integration over any of the Euler angles), 

a( 1 -sin2 a cos2 j?) -4 sin2 a sin 2fl 

E=*Z.E.z -jsin”asin2fi f( 1 -sin2 a sin2 /3) (7) 

-4 sin 2a cos p -$ sin 2a sin j? 

I 

are independent of y. 
Using the standard result for homogeneous turbulence, 

7 - = 2J,” E( k) dk, where E(k) is the shell-summed energy 
:l&3rum and k= 1 kl , we can now obtain 

=s 
UiUj = 2 m E(k)dkWp&qEqj)* 

0 

Equation (8) is our principal result. It is easily verified that - 
when P= 1, (8) gives UiUi = iz6ij, as required for isotro- 
pic turbul_ence. If the turbulence is decaying, then z, and 
perhaps P, will be functions of time. In Sec. V and in 
Appendix A, formal derivations of (8) are given and it is 
shown that this is an exact kinematic result for homoge- 
neous anisotropic turbulence with the vortex structure 
specihed in Sec. II. 

IV. A CLASS OF LARGE-EDDY SlMULATlON MODELS 

A. Equations for the resolved scales 

We consider the large-eddy simulation of the Navier- 
Stokes equations on a grid with typical cell size 0( Ax) and 
time step 0( At). While acknowledging the conceptual 
problems associated with the derivation of self-consistent 
equations for this purpose, and, in particular, terms in the 
form of “Leonard” stresses, which we have omitted (see 
Leonard” and German0 et al. l1 for a discussion of this 
problem), we nonetheless utilize the following large-eddy 
simulation equations: 

3fii -=o 
c3xi ’ (9) 

(10) 

where Ui(x,t) is the velocity, P is the pressure, Y is the 
kinematic viscosity, and 

Tij=G. (11) 

We remark that in ( 11) we have defined Tin with a positive 
sign on the right-hand side for later convenience in relating 
this quantity to the two-point velocity correlation tensor. 
Equations (9)-( 10) may be obtained heuristicaJly by first 
decomposing the velocity field as Vi( X,t) = Ui( X,t) + Ui 
(x,t:T), where the over-tilde, by definition, refers to super- 
grid or resolved scale quantities and Ui(x,t:r) are subgrid 
scale motions on the fast time scale r, and then by taking a 
volume-time average over a discretized region of x-t space 
of size O(Ax At). In ( 10) and ( 11 ), Tij are the subgrid 
Reynolds stresses arising from motions on scales smaller 
that Ax. We have used x to denote supergrid coordinates 
and will use r to denote cell-centered subgrid coordinates. 

6. Subgrid Reynolds stresses 

We now introduce a wave number cutoff k,=2r/h. 
The subgrid stresses are modeled by first assuming that the 
subgrid turbulence is locally homogeneous, so that T,, can 
be equated to the right-hand side of (8)) with the lower 
limit of integration replaced by k,, 

Tij=2 
s 

* E(k)dk(EpiZpqEqj)* 
kc 

The shell-summed energy spectrum E(k) can be estimated 
by invoking subgrid dynamics in the form of a model for 
( 1) [see (48) or (A8) of Appendix A], for example, the 
Lundgren6-stretched spiral vortex. The test of such a cal- 
culation would certainly be that it gives agreement with 
experiment, perhaps in the form of Kolmogorov and 
inertial-range scaling for E(k). Accepting this and noting 
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that the detailed vorticity distribution appears in ( 12) only 
through E(k), we can sidestep dynamical issues if we are 
prepared to assume first that k, lies in the inertial subrange, 
and second, that it is reasonable to use a Kohnogorov-type 
model for E(k) directly. Put another way, ( 12) gives a 
point of contact between Reynolds stresses produced by 
local anisotropy and the phenomenology of E(k) in the 
inertial and dissipation ranges. Thus, whatever w(r,O,t) is 
present in the vortex core, evolving according to local dy- 
namics, we tacitly assume that it will produce an E(k) [see 
(48) or (A8); note, in particular, that E(k) given by (48) 
is independent of pl, agreeing with experiment. We there- 
fore proceed by making a choice for E(k) based on Kol- 
mogorov scaling as 

E(k) =XOE2/3k-5/3e-Ck~, kc< k, (13) 

where X0 is the Kolmogorov prefactor, E is the local total 
dissipation, ~7 = (g/e) 1’4 is the local Kolmogorov length, 
and C is a constant. Other choices, as suggested by physical 
or numerical experiment or as calculated by subgrid dy- 
namics, would serve equally well, but we use (13) pres- 
ently for simplicity. 

Equation ( 13) contains parameters r0 and C, which 
can be related via the K&man-Howarth equation to the 
skewness S3 for isotropic turbulence using equation 
(7.5.15) of Batchelor’ as 

%=- ( 3cb/3:or(i)) -1’2 9 i 14) 

where I(* .) is the gamma function. The choice 
X,=2.0, C=6, gives S’s=-0.50. Using (13) in (12) 
gives 

Tij = 2@‘3*~%‘“&‘3~2’31’( --f,Ckcv) (E,,Z,qEqj), ( 15) 

where I&z) = J;LSL-‘e-” dv is the incomplete gamma 
function. 

C. Response of the subgrid scales 

To obtain closure we must now relate E and P(a,,@ to 
the supergrid velocity field I and velocity gradient 
tensor aU,/ax, . Since kc lies in the inertial range, then the 
local flux of turbulent energy to scales smaller than 2?r/k, 
should be independent of wave number and determined by 
local production. It is then reasonable to assume that the 
difference between E and the super-grid viscous dissipation 
is in balance with the local supergrid turbulent energy pro- 
duction, which is the rate of working of the supergrid 
strain against the subgrid Reynolds stresses, 

E=2V(Fij)2-SijTij, (16) 

where ~ij=~(a~i/axi+auj/axi) is the supergrid rate-of- 
strain tensor. Using ( 15) then gives 

E=2Y(S,)2-2c2/39irgE2/3r12’3r( -$,C’kcq) 

X @piZpqEq/)gij * i17) 
In the limit y-+0 with E fixed, (15) becomes 

Tij=F (EpiZpqEqj), 

and ( 16) then has the solution 

273-‘-i 
E=T i - (EpJpqEQi)Sij) 3* 

c 

(18) 

(19) 

Thus 

27X; 
T[j=T. ( (E$&‘m,)S,,) 2(EpiZpqEqj> 9 (20) 

c 

from which it follows that Tij scales as Ax’. An alternative 
route to (20) is found by putting C=O, in ( 13). 

In order to obtain an equation for P(a,P;x,t), we need 
to address the central problem of the interaction between 
the large scales, represented here by the supergrid field, 
and the subgrid vortex structures. We suppose that the 
szbgrid structures are convected by the supergrid velocity 
U, and at the same time are subject to, in a frame of ref- 
erence moving with the local supergrid velocity, rotation 
and stretching (or-compression) by the supergrid velocity- 
gradient tensor aU,/ax,. Since we would expect that any 
viable dynamical or phenomenological model for E(k), 
k> kc must already have included, either explicitly in a 
dynamical model or implicitly for a phenomenological 
model, the process of vortex stretching by the larger scales 
k < k, [for example, the inertial range present in ( 13) re- 
quires the implicit assumption that E is independent of Y, 
which, in turn, implies stretching of the fine scales], then 
we need only consider convection and rotation effects of 
the supergrid field. We may then write 

a$ - aF 
J$+“i~+&~ ( V, sin aP) + 

I 
&j iQ3h=O, 

(21) 

wher_e 6,) ua are the projections of the local supergrid field 
rj aU,/ax, onto the unit sphere. The third and fourth 
t:rms of (2 1) give the_contribution to the rate of change of 
P from rotationA by a Ui/axj . When appropriate boundary 
conditions for P are specified, (2 1) gives closure. The re- 
sultant model is not of the eddy-viscosity type. It is per- 
haps too complicated for the purposes of computation 
(since P is a function of five independent variables plus 
time), but is presented for completeness and as a possible 
starting point for further work on the class of models dis- 
cussed here. 

While it may be possible to construct from (2 1) suit- 
able transport equations for the required (EpZppEgj) mo- 
ments of P, we propose as an alternative a very simple 
model that does not use (2 1) directly, but is motivated by 
a rapid-distortion approximation based on the idea that the 
subgrid structures respond on a fast time scale to the su- 
pergrid strain. If it is assumed that the rotation terms of 
(21) are dominant over the convection term, then it is easy 
to show that asymptotically, for large time, vortices will 
become aligned with the directions in space corresponding 
to-the-orientation of the attracting critical points of the 
( U,,U,) vector field on the unit sphere. These directions 
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may be found from an an$ysis12 of the 3 x 3 eigensystem 
corresponding to the c3Ui/dxj tensor, We simplify the 
problem by considering only the sym-metric part of 
aUi/c3x,. Let the local eigenvectors of Si, be (ei,e”,,e”,), 
with corresponding eigenvalues or principal rates of strain 
(A1,/22,/23), such that dl+A.2+A.3=0, and ordered as 
;1i <& <L3. When the eigenvalues are distinct, the critical 
points associated with (eS;,eS,,e;) are a source-like node, a 
saddle point, and a sink-like node, respectively. If we esti- 
mate that the fraction of time that a structure spends in the 
neighborhood of ei before moving toward e: is 
max{0,/22}/jill I, then we can approximate that, in our 
rapid distortion model, the fraction of local subgrid struc- 
tures tending to become aligned with ei is 
/13/(max{0,d2)+~3), and with e: is max{0,i12)/ 
(max{0,i12)+A3). This says that, on the average, the sub- 
grid structures will become aligned with the directions of 
the local extensional principal rates of strain of the super- 
grid field. When calculated in the frame of reference de- 
fined by the unit vectors (es,e”,es) (the superscript s refers 
to this frame), the moments (~pizpizg~~j) are then 

/$ 0 o\ 

uq&Jl?qj) = A3 

maxCO,&] +A3 O 

i i 

f 0 

0 0 0 

l 

1 z 
max-9~23 o 

+max{O,A,)+A, 
0 

0 0 
00, 

1 
(22) 

0 f 
axes can be calcu- from which the (EpJ&qj) in the fixed 

lated. In particular, from-( 22) and ,$j=diag[/21 J2J3], the 
contraction (Ep~~qEq~>Sij in ( 17) IS given by 

1 max{0,A2)2+A2: 
- ( EPizPA7./‘gU=~ ( maxCO,/Zz) ) 7 (23) 

and is positive. This guarantees that E is positive in the 
model. It is shown in Appendix B that the above model 
reverts to the Navier-Stokes equations at the supergrid 
resolution when 7 is large compared to the cell size Ax. It 
is straightforward to construct alternative rapid-distortion 
models based on the eigensystem corresponding to the full 
aUi/axj tensor, but these are more complex than (22)- 
(231. 

V. ONE-DIMENSIONAL SPECTRA 

A. Kinematics 

We calculate one-dimensional velocity spectra in terms 
of k,, the component of k in the three-direction. We begin 
with the two-point velocity and vorticity correlation ten- 
sors for homogeneous anisotropic turbulence, 

(24) 

(25) 

where p is the separation. These are related to the energy 
and vorticity spectrum tensors through 

Rij(p) = S_m_ S_ma JI, Qij(k)efk’Pdkl dk2 dk3, (26) 

Wijip) = C” C” C” flij(k)e’k’Pdkl dk2 dk,, (27) 
J--m J-m J--m 

and 

@ijik)=$ S_mm JI, J:, Rijip)e-‘k’pdP1 dPzdP3, 
(28) 

=$ [mm Jmm S_mm Wijip)e-‘k’Pdp~dp2dp3. 
(29) 

The one-dimensional spectrum tensor is defined by 

@ijik3> =& JI Rij(0,0,p3)Cik’P’ dp3, (30) 
m 

which, using (26) and (28), may be shown to be equal to 

Oij(k,)= O” 
I s 

m Qu(k)dkl dkz. (31) 
--oo -02 

The Reynolds-stress tensor Rij(O) is given by 

R;](O) = 
s 

m O,(k,)dk, 

= i: S_m_ s_S, @ij(k)dkl dk2 dk3. (32) 

From (3 1) and the relation between Qij(p) and flzu(p), 

n,(k)=~,(k)(k2Sij-kikj)-kklcPji(k), (33) 

where k2=kf+ kz+e may be obtained, 

@ijik3>= s_“, JS, i [ fiZ,(k) ( aij--$) 

-i?sji(k) dkl dk2. 1 (34) 

Using ( 1) to express the vorticity in (rl ,r2,r3) coordi- 
nates as 

*i (m)(r,t) =E3,a (mi(r;,ri,t), 

we may write, for W,(p), 

(35) 

Wijip) =$ z L s_S, J1_“, J: JiT j;= 
X ~3~~) (r; ,r;,t) o’“‘(r;+P;,r~+pa,t)E3iE,j 

x P( a,P,y) dr; dr; sin a da dP dy, (36) 

where the sum is over all structures, denoted individually 
by the superscript (m), which are in the box of volume L3 
containing the turbulence at time t, 1, is the instantaneous 
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length of a structure, and (pi ,pi) is the projection of p on 
the (r;+$) plane. Introducing the sectional Fourier trans- 
forms, 

-co m 
J s 

(37) 
o(m)(r;,ri,O= --m C@) (K1 ,Kz) --m 

xeiK~ri+iKzri dK, dK2, 

(36) may be expressed in the form (see Saffman and 

Pullin’ and Pullin and Satfman,7 Appendix B, for an anal- 
ysis of this procedure) 

W,(P) =&T ; Ll j-y* J-:m JoV Jir JIT 

X 1 dm) (KI,K~,~) 1 2e- iw; -‘“2P;E3&jP(a,&r) 

X dK1 dK2 sin a da d/3 dy. (38) 

Using 

KlP;+K2P;=b%&+E2f12)Pq, (39) 

in (38), and substituting this equation into (29) and the 
result into (34)) gives 

@fj(k3)=&~ cl,sm SW Irn srn Im sm Im r J2r s,‘” I~(m)(K~,K~,f) I2 m --a) -m ---co -m -03 -IxI -co 0 0 
kikj 
F-Ej$jj e-ick9+ElP+E2bc2)P9P(a,~,yjdkl dk2 dpl dp2 dp3 dK1 dK2 sin a da dfl dy, (40) 

where we have used E3&q= 1. The summation over q in 
the exponential of (40) is noted. 

The integrations with respect to pl, p2, and p3 may be 
performed by making use of 

1 m 
G- --m s 

e-i(kl+K)P1 dpl=S(kl+K), etc., (41) 

giving factors of the form s(k,+E,#,+E,bc,) for 
q= 1,2,3. This then allows integration with respect to kl ,k, 
to give 

XP(a,fl,y)dK1 dK2 sin a da dfi dy, (42) 

where 

k~+Em+&K2=0, k,+&K,+&K2=0. (43) 

B. Independence of the spin angle y 

A significant simplification results when P is indepen- 
dent of the spin angle y. In this case the integral with 
respect to y can be performed by using the relation2 
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(4.4) 

where f(xo) =O. This gives 

s_m_ JL I= &%+E~K, +&$z) 
X&q&Y)& dK2 dy 

=jl &Y 
2iT m 

x J-s F(K COS f&K Sill t$&)K dir d& 

0 1 k3/sin a 1 (?-@/sin2 a)1’2 ’ 

(45) 

where yt and y2=27r- (2&+Y1) are the two roots of 

k3/sin a=K ~S(~,+&), (46) 

in the range of integration, and where we have put 
KI=~ cos tjk, K2=fcsin ok. We note that from (43), (46) 
and (2) we may obtain the useful simplifying result I%?=K~, 

independent of the Euler angles. 
The six independent components of Oi/ may now be 

calculated by using (43) and (45)-(46) in (42) and by 
making use of (2) for the components of Eij . We give an 
intermediate result for only one case, i-j = 3 for which we 
obtain, after some lengthy algebra requiring care in evalu- 
ating the sum over the roots of (46), the longitudinal one- 
dimensional energy spectrum in the form 
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@33(k) =f ; 4n s,‘” s,’ s,‘” j-,*lhina, ; %W 

x 1 dm’(K COS tjk,K Sh f&t) 1 ‘( K2-$-)“2 

X 13 sin2 a d& da dfl dK. (47) 

Using the result for the shell-summed energy spectrum,6 

= -$ J; s,‘” I,,,sin,, fy ( K2-&) II2 
Xjsin2acosfldadfidK, (53) 

WW 

E(K) =$ 2 1, 
m 

(K COS 6$,K Sh ok,,t) 1 2 dek, 

(48) 

this may be expressed as 

@3&W =$ J+ Jb’” j-,;3,sha, y 

X(f?-&)*‘2~sin2adadBdx. (49) 

An essential part of the argument is the observation that 
E(K) given by (48) is independent of P (Refs. 2,6, and 7). 

Results for the other components of the symmetrical 
tensor Oij(k3> are 

@u(k,) =z;;” ’ s,” s,‘” S,,ni.., ~ [cos2a 
xcos’8(&--)1’2 
+sin’P& (~-~!)-“2]~dadfidK, 

(50) 

@&d =$ J: s,‘” J,,,sina, y [ cos2 a 

xsin2p(2-&)1’2 

-l-cos28& (2-f$--)-1’2]@dadadK, 

(51) 

@dW =G 
’ s,” 1” .I[,,, al y 

X[cos2a(2--$--)1’2 

--& (~--&)-IR]~sin2~dadfidq 

(52) 

Xj sin 2a sin p da dfi dK. (54) 

The components Oll(k3), O,(k,) give the lateral one- 
dimensional energy spectra in the 1 and 2 directions, re- 
spectively, while the off-diagonal components give the 
spectra of the cross-components of velocity. 

Equations (49)-( 24) cannot be further reduced with- 
out information on P(a,P) and E(K). Isotropy corre- 
sponds to P= 1, and it is then clear that fi integration gives 
Oij(k3) =0, i#j. For this case the a integration in the 
diagonal components can be performed by first introducing 
the transformation u = k,/sin a followed by an exchange of 
the limits of integration in the K-U plane (see Saffman and 
Pullin Appendix B, for further details). This gives 

@ll(k3)=022(k3)=; J; T (,+$)dK, (55) 

O,,(k,j=i Jl F (I-$)dK, (56) 

as required (see Batchelor,’ Sec. 3.4). 
The Reynolds-stress tensor for arbitrary ?(a$) may 

be obtained by substitution of (49)-(54) into the first of 
(32). The k3 integration can be performed by exchanging 
the limits of integration in the k+ plane, and by making 
the substitution k3=(~ sin a in the k3 integral. On per- 
forming the c integrations, the resulting integrands as func- 
tions of a, p for i= 1,2,3; j = 1,2,3 are found to be propor- 
tional to the corresponding components of (7), and so, 
noting that P is independent of y, the final expression for 
the Reynolds stresses may be written in tensor form as 

Rij(O)=GJij=2 
-s 

* E(K)dK(EpJ&qj), (57) 
0 

which agrees with (8). In Appendix A, an alternative der- 
ivation of (57) is given. 
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C. Some example calculations where L is the length scale of the large eddies. When (58) 

If E(K) exhibits power-law behavior in some range of is used in (49)-( 54)) the K integrations can be reduced to 

wave numbers, (49)-(54) can be expressed in more com- scaling numbers by the transformation ~=qk,/sin a, and 

pact form. We assume that there exists an inertial range in it is found that 

which E takes the standard form, from ( 13)) - 

E(K) =XO~/~K-~‘~, ; (K+, (58) Oij(k3) =3YoP3k,5/3 

A = sin213 

( 2T~~,;, Aij) 9 (59) 

:OS2 a Cos2 fl+$ sin2 p -;($-Cos2p)sin 2p -iSin2acosp 

-t($COS” &sin 2p COS2 a Sin2 p+$ cos2 p -f sin 2a sin p , 

-$ sin 2a cos j? -$sin2asinj? sin2 a 
I 

(60) 

where the angle bracket in (59) refers to (4). We remark 
that the kFsj3 form of (59) depends on the pure K-~‘~ 

power law in (58). When j= 1 the bracket in (59) may be 
calculated, and is found to be diagonal with elements ($, 
11 “) 55955 2 as required for the one-dimensional longitudinal and 
lateral spectra of isotropic turbulence. This may be verified 
by using (58) in (55)-(56). 

While we emphasize that in the large-eddy simulation 
models discussed in Sec. IV, P(a,P) is determined by the 
action of large scales, we nevertheless show, for the puz- 
poses of illustration, a calculation for a special choice of P. 
We take, as an example, a distribution of Euler angles 
uniform on the half-cone a=aP=?r/4, 3?r/2<p < 2~, 0</3 
<r/2. This corresponds to a P given by 

(61) 

This choice is perhaps typical of the legs of lambda vortices 
in a turbulent boundary-layer flow for which the mean flow 
is in the r3 direction with rl normal to the wall (which lies 
in the r2-r3 plane) and r2 in the spanwise direction. The 
angle bracket in (59) can then easily be calculated to be 

( ,J&, 4) 

= 

L&4/3 0 - ( 1/T)2-1’3 

0 92 -‘t/3 0 

- ( lh)2-“3 0 z-4/3 I 3 (62) 

while, from (4) and (7) and (8), the Reynolds-stress ten- 
sor is 

I 2 8 0 -1/27r \ 

- 
Rij(O)=UmUm O i O 

I I 
(63) 

\ 
-1/27r 0 t 

I 
From (63), the ratio m/u,u, = - 1/2~ z -0.159. It 
is well known that this ratio is approximately constant over 
much of a zero-pressure gradient boundary layer with a 
value (Hinze,13 Figs. 7-22) of near -0.16. If in place of 
(6 1) we assume that all vortex structures are aligned with 
a=?r/4, p=O, then this ratio is presently calculated as 
-0.25. 

VI. CONCLUDING REMARKS 

We have considered a vortex model of homogeneous 
turbulence that allows for statistically anisotropic proper- 
tics -of the flow. The model is based on the assumption of 
vortex structures, with general properties like those of the 
Lundgren-Townsend models, the anisotropy being incor- 
porated by the probability density functions of the orien- 
tations of the structures relative to axes fixed in space. A 
simple result is obtained when the structures have circu- 
larly symmetric statistics, that is, the probability distribu- 
tion of the Euler angles is independent of the spin angle y, 
which relates the Reynolds stresses (i.e., the covariances of 
perpendicular velocity components) to the turbulent ki- 
netic energy and averages of the vortex orientation. This 
allows identifying the contributions to the Reynolds stress 
from different scales and suggests a subgrid Reynolds- 
stress model for the evolution of large scales. An illustra- 
tive example that may be appropriate for boundary-layer 
turbulence strained by a simple shear predicts values of the 
ratio of Reynolds stress to mean turbulent kinetic energy, 
in reasonable accord with experimental data. 

It is also shown that the formulation leads to integral 
expressions for the one-dimensional velocity covariance 
spectra in terms of the probability density functions and 
the shell-summed energy spectrum. Comparison with ex- 
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perimental data, when it becomes available, would allow 
inferences to be made about the anisotropic nature of the 
vortex structures. 
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I 

&j(O) = l(jn L ', 3 g-"_ J-1, J;, J:, s_ba J:w J:- J:, Jr s,'" s,'" l~(m)(K1~K29~)12 

Xi (Sij*$-,,,)' -~k~+E~bc~+E~dcz)PqP(a,~,~)sina dkl dk2dk3dpl dp2dp3dK1 dK2dadpdy. 

C-41) 

The integrations with respect to pl, p2, and p3 may be 
performed by making use of (41), giving factors 
S(kq+E,~l+E2&, q= 1,2,3. After integration with re- 
spect to k,, k2, and k3, and following some algebra, we 
obtain 

Rlj(O) =Qdij-Ql (b%%j) > -Q2( (El&‘lj)) 
-Q3((El~2j+E2iEI/))-Qe4((EziEzi)), (A21 

Qo=Q,=$ %s,m f f; m 

xCOS2 okdekdi, 

Q3=$ 2 z, s,” i f2rr 1 d+)(K COS &,K Sin &,t) 1 2 
m 0 

xSh~ ekCOS &d&dK, 

Q4=$ c z, fin ’ f2r Idicm’(K COS f&K Sin t&t) I2 
m o K o 

XSh2 &dKd&, (A3) 

where K~ = K cos ek and K~ =K sin tjk . The integrals may be 
treated using a method developed by Lundgrer? (Sec. 
III B) for calculation of the energy spectrum. Briefly, a 
transformation to polar coordinates in the (r; - ri) plane is 
made with r; = r’ cos 8, Jz = r’ sin 8, and the first of (37) is 
written as 1 ‘m 2a 

@%Wd =G o J s o 

x&d (r’,e,J)e-‘“” COS(e-ek)f dr’ de. 

(A4) 
Next, u(m) (r’,&t) is exp anded as a Fourier series, 

I 

co(qry,t) = i ep(r’,t)eine. (A5) 
--m 

When (A5) is substituted into (A4) and use is made of the 
result 

s 

277 
eine-iKr’ COS(e-ek) de= ( -i)n2TJe(Krl)einek, C-46) 

0 

where J, is the Bessel function, the integrations with re- 
spect to both 8 and ok in (A18) can be performed, and it 
is found that 

Qo=Ql=2 j=om 8(K)& 

Q,= c E(K)dK- SomF(K)dK, 

Q3= fom G(K)& Q4= fom E(K)&+ fern F(K)& 

(A7) 

where 

E(K) =s c zm( I$%) 12+ il I~:“‘(d I’), m 
F(K) =s c z, i? ~[~;%dl;?)z*(K) I, (A81 m ?l=--00 
G(K) =-&q c z,,j f ~[~;“‘(K)~;!?&d], m ll=-* 

and 

Icm)(K) = n 
s 

m J,(KI~)w~~)(~',~)~ dr', (A9) 
0 

where E(K) is the shell-summed energy spectrum and * 
denotes the complex conjugate. An expression for Rij(O) is 
obtained when (A7) and (A8) is substituted into (A2). 

When P is independent of the spin angle y, we can 
replace the double angle brackets in (A2) by single angle 
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brackets in the sense of (3)-(4). The integrals 
(El$Ij-E2&2j) and (ElJ2j+E2Jlj), which arise when 
(A7) are used in (A2) are then zero, and we obtain 

&ii(O) =2 Jam E(K)dK (ai,-f (El&l/+E$2j 

+2E3,&j) . 
> 

(AlO) 

Note that there is now no dependency on F(K) and G(K). 
The expression inside the angle brackets in (AlO) may be 
shown to be equal to EpizpqEqj, and we tinally have 

Rij(0) =-=2 
--.I 

co E(K)dK(EpZ,p&fqj>, (All) 
0 

which agrees with (8) and with (57). 

APPENDIX B: ANALYSIS OF THE SUBGRID 
STRESSES 

Here we investigate the behavior of the model given by 
(15), (17), and (22)-(23) in the limits where 7 is both 
small and large compared with AX. For simplicity, we con- 
sider the case when only L3 is positive. Using (23) (with /2, 
replaced by zero) in ( 17) gives 

E=2V(n~+n;+n:) +e’3.Y&2v1’2a3 

xI’( -$,Ckc(vh)“4), (Bl) 

where we have replaced 17 by ( v~/E) 1’4. With C, X0, and 
v given, kc fixed by the cell size AX, and (;ll,i12,il,) given 
by the instantaneous supergrid flow, (B 1) can be solved for 
E in each cell, which then defines the local Kolmogorov 
length 17 = (d/e) “4. Our interest is the behavior of the 
model when k,q(l, and kc+l, respectively. We first 
make the transformations to dimensionless variables, 

%e 
X=7, Y=kcrl, (I321 

3 

under which (B 1) becomes 

~2/3-2~~4/3_~2/3~0~1/3~2/3r( -+,cy) =o, 

where 

(B3) 

(B4) 

En what follows it is assumed that B is of order unity. 
We tirst consider Y-0, i.e., r](hx. Since for CY<l we 

have 

-2 i 1 3 
r 3’CY ‘2cp5 Y-2’3+o(1), 

then it is clear that the solution to (B3) is given to leading 
order by a balance between the first and third terms, giving 

WI 

which is equivalent to ( 19). From (15>, it follows that the 
ratio 

--?=0’3, II Tijll 
vIlsijll ( 1 ev 

(B7) 

where II * * * II refers to the component of maximum magni- 
tude and j13/ev is the effective supergrid cell Reynolds 
number. When this quantity is large (B7) shows that the 
subgrid stresses are dominant. 

Next, consider Y large, i.e., +A.x. The incomplete 
gamma function is then 

I-y-$,CY>-(CY>- 5/3e-cY 
9 038) 

and the leading-order solution to (B3) is determined by a 
balance between the first and second terms. Thus 

Xw3==2Bp/3 or ~=2v(L~+~~+d:), (B9) 

so that the dissipation is dominated by the supergrid 
stresses. A short calculation then shows that 

II Tijll ---==--=O(($-)““-p[ -& (-$-)m”2]), 4lQll 
@lo) 

which is small when 13/ev is small. Therefore the model 
reverts to the fully resolved Navier-Stokes equations in 
this limit. 
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