Kinetic models for polyatomic molecules with phenomenological energy exchange

D. I. Pullin

Department of Mechanical Engineering, University of Melbourne, Parkville, Victoria, 3052, Australia
(Received 4 October 1976; final manuscript received 21 September 1977)

Models of the collision integral are developed for polyatomic structureless molecules subject to certain classes of phenomenological energy exchange between internal and translational energy modes in binary collisions. The exchange is described either by a model differential cross section for energy scattering or equivalently by a set of pair pseudo-internal coordinates which correlate pre- and post-collision values of the particle energies. Restrictions placed on admissible models of the exchange process are identified and one recently proposed special model is reformulated under these conditions. Chapman-Enskog type transport properties for this model are evaluated and its behavior in the context of the Monte-Carlo direct simulation method is discussed briefly.

I. INTRODUCTION

The kinetic theory of neutral polyatomic molecules (i.e., those with internal energy) is very complicated largely because of the complex processes by which molecules may exchange active internal and translational energy in inelastic collisions. While polyatomic kinetic equations for the dilute classical, \(^1\) semi-classical, \(^2\) and fully quantum-mechanical (Ref. 3, Chap. 11) gas are available, the formidable task of solving the binary inelastic collision problem required by the theory has severely limited their practical application.

For the calculation of highly nonequilibrium flow fields of a monatomic gas, one method that has been widely applied is Bird's \(^4\) direct simulation Monte-Carlo method, in which the full classical nonlinear Boltzmann equation is solved directly on a digital computer, by the calculated motion, including collisions, of several thousand sample particles taken to represent the distribution function. For the monatomic case, the elastic collision problem is straightforward and general spherical potential models such as inverse power (Ref. 3, p. 298) molecules are readily incorporated into the Bird simulator.

Efforts to extend the direct simulation method to polyatomic gases have focused largely on the relatively simple case of a rotationally active diatomic gas. Impulsive classical collision models have been successfully tested by Bird \(^5\) (rough spheres) and Melville \(^6\) (loaded spheres), but they are perhaps too artificial for use in general simulation studies. Macpherson \(^7\) has adapted Parker's \(^8\) more realistic classical soft potential rigid rotor model for strong normal shock wave simulations, calculating the complete molecular trajectories for each collision. Although exact, this is a very time consuming procedure that is presently out of the question for the treatment of complex flows.

Models based on approximate solutions to the inelastic collision problem have been developed by several authors. The present author \(^9\) has utilized a solution to the Parker model by classical perturbation methods, as a basis for a hybrid classical/phenomenological description of the exchange process. While good results were obtained with this scheme in several applications, \(^10,11\) it was found that due to violation of detailed balancing, a result of the large number of approximations used in the analysis, the Boltzmann distribution of rotational energy at equilibrium was not obtained. This problem has been largely overcome by Deiwort and Yoshikawa \(^12\) and Yoshikawa and Itakawa \(^3\) who utilize approximate solutions for a semi-classical model of rotational transition probabilities in inelastic collisions. However, reported execution times for these models appear to limit their general application at present.

Models in which the effects of internal degrees of freedom operate simply as a phenomenological internal-translational energy exchange superimposed upon the otherwise monatomic collision dynamics have been proposed by Borgnakke and Larsen \(^14,15\) Bird \(^16\) and Koura \(^17\). This approach is based on the assumption that for determining the macroscopic flow properties, the finer details of the collision process may be ignored. While this leads to a problem much simpler than that of the direction solution of the inelastic collision dynamics, the nontrivial difficulty still remains of constructing a model which properly satisfies detailed balancing. Koura's model for discrete internal states satisfies this condition as does the "statistical" model of Borgnakke and Larsen \(^14\). Their \(^15\) restricted exchange model based, on the concept of local equilibrium at the particle pair level, between partial degrees of freedom active during collision formally violates detailed balancing but with small error. This last scheme has been successfully employed by the present author in blunt body transition flow simulations. \(^18\)

The relative simplicity and flexibility of the phenomenological approach suggests that its generalization along lines similar to the analogous theory for gas-surface interactions \(^19\) may be worthwhile and this is one aim of the present paper. We consider a "kinetic theory" for structureless polyatomic molecules subject to a general class of phenomenological internal-translational energy exchange in binary collisions. Firstly, information theory principles are used to develop a contracted description of the gas in terms of a reduced distribution function \(f\). A kinetic equation is obtained for \(f\), and then
a simpler model kinetic equation is proposed by analogy, in which the energy exchange may be modeled heuristically. As examples of special models the restricted exchange scheme of Ref. 15 is modified into a form consistent with the present theory, and expressions for transport properties are evaluated as a means of determining disposable parameters. Finally, the behavior of these models in Monte-Carlo simulations is briefly discussed.

While the present theory was developed with specific reference to the direct simulation method, there seems no reason why it could not be treated by other standard kinetic theory techniques such as the various moment-expansion methods.

II. MODEL KINETIC EQUATIONS

We shall consider a contracted description of the gas in which the dependence of the distribution function on the internal co-ordinates of the molecules reduces to dependence on the internal energy alone. The microscopic state of the gas is thus to be described by the distribution function $f(c, c, x, t)$ with the usual meaning where t, x, c, and ϵ are the time, position vector, particle velocity, and particle internal energy, respectively. Before developing our model kinetic equations we first obtain the appropriate entropy functional for our contracted description and relate f to the generalized single particle distribution function.

A. The entropy functional

Let each of q_1, $i = 1, \nu$ be either a generalized internal co-ordinate or momenta for a single particle, and assume that some canonical transformation can be found for which the single particle Hamiltonian is

$$\mathcal{H}_s = \frac{1}{2} \sum_{i=1}^{\nu} q_i \dot{q}_i^2. \tag{1}$$

The summed term in Eq. (1) is then just ϵ with ν internal degrees of freedom. Let $F(c, q)$ be the generalized single particle distribution function in (c, q) space where $q = (q_1, \ldots, q_{\nu})$. The entropy is then

$$S = - \int \int \cdots \int F(c, q) \ln F(c, q) \, dc \, dq. \tag{2}$$

To facilitate the transition from an F description to an f description, we introduce the transformation

$$\epsilon = \sum_{i=1}^{\nu} a_i q_i^2, \quad x_j = a_q q_j^2 / \sum_{i=1}^{\nu} a_i q_i^2, \quad j = 2 \ldots \nu \tag{3}$$

which will conveniently allow separate treatment of ϵ.

The Jacobian of Eqs. (3) is

$$J = \frac{\partial(q_1, \ldots, q_{\nu})}{\partial(c, x_2, \ldots, x_\nu)} = K \epsilon^{\nu-1} G(x), \tag{4}$$

where,

$$G(x) = \prod_{j=2}^{\nu} \left(\frac{1}{x_j^2}, \frac{x_j-1}{2} \right), \tag{5}$$

$$\beta(x | \mu_1, \mu_2) = \frac{1}{B(\mu_1, \mu_2)} 2^{-\mu_1-1}(1-x)^{\mu_1+1}, \tag{6}$$

$B(\mu_1, \mu_2)$ is the complete beta function and K is a constant.

The normalized distribution function in (c, c, x) space is

$$F_x(c, c, x) = f(c, x) \tag{7}$$

while under Eqs. (3), Eq. (2) becomes

$$s = \int \int \cdots \int F_x(c, c, x) \ln(F_x/c) \, dc \, dx \tag{9}$$

where s is the partial entropy with $dz = dx_2 dx_3 \ldots dx_{\nu}$.

Our reduced distribution function is

$$f(c, c) = \int \int \cdots \int F_x(c, c, x) \, dz. \tag{10}$$

If we have no information regarding the distribution of z, that is, we know f but not F_x, then interpreting s in Eq. (9) as Shannon’s measure of uncertainty or "randomness" for F_x, the most unbiased estimate of F_x may be obtained by maximizing s subject to the constraint Eq. (10). We thus choose F_x to be the most random possible distribution consistent with knowledge of $f(c, c)$.

This may be achieved using the standard variational method of Lagrange multipliers, the results for s, F_x being

$$s = - \int \int [f(c, c) \ln(f(c, c)/\epsilon^\nu z^{-1}) - \ln(k)] \, dc \, dx \tag{11}$$

$$F_x = f(c, c) G(z). \tag{12}$$

Substituting Eq. (11) into Eq. (8), and Eq. (12) into Eq. (7) and using Eq. (4), we obtain, respectively, the best estimates of s and F with knowledge only of f, viz.,

$$s = - \int \int [f(c, c) \ln(f(c, c)/\epsilon^\nu z^{-1})] dc \, dx + \text{const.} \tag{13}$$

$$F = (1/K) f(c, c)/\epsilon^\nu z^{-1}. \tag{14}$$

B. Equation for $f(c, c)$

Chapman and Cowling\(^1\) obtain the generalized Boltzmann equation for f. For an elemental volume $dc_1 dc_2 dx$ of the $(6 + \nu)$ dimensional phase space of particle 1, in the absence of external forces, this may be written as

$$\left(\frac{\partial f}{\partial t} + c_1 \frac{\partial f}{\partial x} + c_2 \frac{\partial f}{\partial q_1} + \cdots + c_n \frac{\partial f}{\partial q_n} \right) dc_1 dc_2 dx = L(f, f) dc_1 dc_2 dx, \tag{15}$$

where

$$L(f, f) = \int dz_1 dz_2 \cdots \int d^3 F \int d^3 F' F' F - F, \tag{16}$$

is the collision integral representing the gain into $dc_1 dc_2 dx$ due to collisions with particles labeled 2, $\delta = \theta(g_1, q_1, u_1, x, \theta)$ is the cross section for scattering into $d\theta' = \sin x d\theta$ and the other quantities have the usual meaning. In Eq. (16) the two-particle Liouville theorem\(^1\)

$$g^2 d\theta' d\theta dc_1 dc_2 dq_1 dq_2 d^3 F dc_1 dc_2 dq_1 dq_2 \tag{17}$$

has been utilized (the primed quantities refer to the post collision set), but the existence of inverse collisions has not been assumed.
Substituting Eq. (14) into Eqs. (15) and (16), utilizing Eqs. (3) and (4), dividing by \(\delta c_1 \delta e_1 \delta x\) and integrating the resultant equation over all \(z_1, j = 2 \ldots \nu\) in \((0, 1)\) yields an equation for \(f(c, x)\)

\[
\frac{\partial (n f)}{\partial t} + c_1 \cdot \frac{\partial (n f)}{\partial x} = Q(f, f),
\]

(18)

where

\[
Q(f, f) = n^2 \int \cdots \int \left[f f f f - f_j f f \right] q \cdot d e' d c_2 \delta e_2 \delta z,
\]

(19)

\(q = (e_1 + e_2 + e^\prime_1 + e^\prime_2)^{-1}\) with \(l = \nu/2\) and \(d Z = G(z_1)G(z_2) d z_1 d z_2\).

The internal energy term on the left-hand side has vanished due to

\[
\frac{\partial}{\partial t} \frac{\partial (n F)}{\partial \epsilon_1} = \frac{\partial (n F)}{\partial \epsilon_1} \frac{d \epsilon_1}{dt} = 0
\]

since \(\epsilon\) is constant between collisions. Using Eqs. (3) and (4) in Eq. (17) together with \(d c_1 d c_2 = 2 \pi \sigma^2 d \theta d \phi\), where \(\theta = \epsilon_1 + c_2/2\) leads to

\[
\frac{\partial g^2}{\partial z} \frac{\partial g}{\partial \epsilon_1} \frac{\epsilon_1 c_1}{\epsilon_1 c_1 + \epsilon_2} \frac{d \epsilon_1 d \epsilon_2 d Z}{\epsilon_1 d \epsilon_2 d Z} = \frac{\partial g^3}{\partial z} \frac{\partial g^2}{\partial \epsilon_1} \frac{\epsilon_1 c_1}{\epsilon_1 c_1 + \epsilon_2} \frac{d \epsilon_1 d \epsilon_2 d Z'}{\epsilon_1 d \epsilon_2 d Z'},
\]

(20)

Equation (19) may be rewritten by putting

\[
I(\epsilon | \epsilon') d \epsilon' = \int \frac{\partial g}{\partial \epsilon_1} d \epsilon, \quad I(\epsilon | \epsilon) d \epsilon = \int \frac{\partial g}{\partial \epsilon_1} d \epsilon',
\]

(21)

where \(\epsilon = (\epsilon_1, \epsilon_2, \epsilon_1', \epsilon_2')\), \(\epsilon_1 = m g^2/4\) is the relative translational energy in the pair mass center, and \(d \epsilon_1 d \epsilon_2 d \epsilon_1' d \epsilon_2'\), \(I(\epsilon | \epsilon') d \epsilon'\), \(I(\epsilon | \epsilon) d \epsilon\), a function of the polar deflection angles \((x, \theta)\) is the probability for energy transition into \(\epsilon'\) and scattering into \(\epsilon\). \(\Sigma\) is the projection onto \(z_1, z_2\) space of a volume \(\Gamma\) of two-particle phase space and \(\Sigma'\) is the projection of \(\Gamma'\) onto \(z_1', z_2'\) space. \(\Gamma\) and \(\Gamma'\) are of a rather complex shape which need not concern us here, but they are mutually transformed into each other by the dynamical equations of motion for the inelastic collision if inverse collisions exist. Substituting the first of Eqs. (21) into Eq. (19) one obtains

\[
Q(f, f) = n^2 \int \cdots \int \left[f f f f - f_j f f \right] g \cdot d e' d c_2 \delta e_2 \delta z.
\]

(22)

Integrating Eq. (20) over \(\Gamma\) on the left-hand side and \(\Gamma'\) on the right-hand side and using Eqs. (21) leads to a detailed balancing relation on \(I\), if inverse collisions exist as

\[
\epsilon_1 c_1 \delta e_1 I(\epsilon | \epsilon') = \epsilon_1 c_1 \delta e_1 I(\epsilon' | \epsilon).
\]

(23)

Note that except for the \(\delta\) factor in the emission term, Eq. (22) is rather similar in form to the Wang–Chang–Uhlenbeck\(^{2}\) equation for the semi-quantum mechanical gas.

C. Model collision integral

Equation (18) with \(Q\) given by Eq. (22) was obtained by applying the information theory principle and then integrating over a constant \(\epsilon\) surface in \(q\) space. While simpler than Eq. (15), its solution would still require treatment of the inelastic collision problem to enable determination of \(I\) through Eqs. (21). Instead of dealing with this case, we consider a simpler model by writing

\[
I(\epsilon | \epsilon') = R(\epsilon | \epsilon') c(\chi),
\]

(24)

where \(c\) is the cross section for some spherical scattering process and \(R(\epsilon | \epsilon') d \epsilon'\) is the probability of scattering into \(\epsilon'\), \(R\) being the energy scattering kernel. Substituting Eq. (24) into Eq. (22) yields a model \(Q\) for which the monatomic (spherical) geometrical scattering properties in collisions are retained and the effects of polyatomicity as internal-translation thermal energy exchange are described phenomenologically by a suitable choice of \(R\). Generally, \(R\) will represent some stochastic model for the post collision \(\epsilon'\) distribution, for given \(\epsilon\). The choice \(R(\epsilon | \epsilon') = \delta(\epsilon - \epsilon')\) will clearly recover the monatomic inelastic case.

For \(c\), we restrict our attention to inverse power molecules with the intermolecular potential \(V = a/r^n\), where \(r\) is the particle separation, \(a\) is the potential exponent, and \(a\) is a constant. Since here \(g\) and \(a\) is a function only of the impact parameter \(\omega = b(m g^2/2 \alpha)^{1/2} b\), being the miss distance, then assuming \(\omega = \omega_0\) is equivalent to \(g^2 a = g a\). Substituting this result and Eq. (24) into Eq. (23) leads to a detailed balancing or micro-reversibility condition on \(R(\epsilon | \epsilon')\)

\[
\epsilon_1 \delta I(\epsilon | \epsilon') = \epsilon_1 \delta I(\epsilon' | \epsilon),
\]

(25)

where \(\eta = 2 - 2/a\). In addition, \(R(\epsilon | \epsilon')\) must satisfy the following conditions:

1. Energy conservation \(\epsilon_0 = \epsilon_1 + \epsilon_2 + \epsilon_1' + \epsilon_2 = \epsilon_0\) which insures energy and linear momentum conservation in collisions.

2. Nonnegativity \(R > 0\) since \(R\) is a probability density.

3. Normalization \(\int R(\epsilon | \epsilon') d \epsilon' = 1\) for all \(\epsilon\) since some \(\epsilon'\) must result from an encounter.

In the present theory \(R\) plays the same role and satisfies essentially the same properties as does the surface scattering kernel \(P(\epsilon | c')\) in gas–surface phenomenology\(^{19}\).

D. s vector formulation

Here, we develop an alternative formulation which will allow consideration of exchange models for which direct construction of \(R(\epsilon | \epsilon')\) would be rather difficult. We introduce an \(l\) dimensional random "vector" \(s = (s_1, s_2, \ldots s_l)\) with probability density \(h(s) = h(s_1, s_2, \ldots s_l)\) such that \(\int h(s) d s = 1\), where \(d s = d s_1 d s_2 \ldots d s_l\). Forming the composite vectors \(\epsilon, s\) representing a pre-collision state and \(\epsilon', s'\), a post collision state we assume the existence of a one-to-one mapping \(\mathcal{L}(\epsilon, s) = (\epsilon', s')\) from unprimed to primed coordinates where \(\mathcal{L}\) is some operator which satisfies a self-invertable property

\[
\mathcal{L}[\mathcal{L}(\epsilon, s)] = (\epsilon, s).
\]

(26)

Equation (26) means that two serial applications of \(\mathcal{L}\) recovers \((\epsilon, s)\). In addition, we require that \(\mathcal{L}\) must conserve energy \(\epsilon_1 + \epsilon_2 = \epsilon_1 + \epsilon_2 + \epsilon_1' = \epsilon_0\).

We now seek conditions on \(h(s)\) for which we may write \(R(\epsilon | \epsilon')\), \(R(\epsilon' | \epsilon)\) as

\[
R(\epsilon | \epsilon') d \epsilon' = \int \mathcal{L}(s) h(s) d s, \quad R(\epsilon' | \epsilon) d \epsilon = \int \mathcal{L}(s') h(s') d s',
\]

(27)

where \(V\) is the projection into \(s\) space of a region \(\chi\) of
function ϕ space defined by a slice $d\phi$ and bounded by hyper-
surfaces of constant ϵ_1, $\epsilon_1' + d\epsilon_1'$, $i = 1, 2$; ϵ_1, $\epsilon_1' + d\epsilon_1'$ (de-

defined through ϕ). V' is the projection onto s' space of ϕ' in (ϵ', s') space into which ϕ is mapped by L, and we note that the interpretation of R as in Eqs. (27) requires that L also maps $\phi' - \phi$; hence, L must satisfy Eq. (26). Multiplying Eq. (25) by $d\epsilon'$, using Eqs. (27), and let-
ting $V - ds$, $V' - ds'$ yields the required condition on $h(s)$ under L

$$
\epsilon_1^{\omega_1} \epsilon_1'^{\omega_1'} \epsilon_2^{\omega_2} \epsilon_2'^{\omega_2'} h(s) ds d\epsilon = \epsilon_1^{\omega_1} \epsilon_1'^{\omega_1'} \epsilon_2^{\omega_2} \epsilon_2'^{\omega_2'} h(s') ds' d\epsilon'.
$$

Equations (26)–(28) simply mean that if we can find some L satisfying Eq. (26) and energy conservation, and some $h(s)$ satisfying Eq. (28) under L, then R as in Eqs. (27) necessarily satisfies non-negativity, [since $h(s) \geq 0$], normalization [since $\int h(s) ds = 1$] and detailed balancing, by virtue of Eq. (28). Substituting Eqs. (27) into Eq. (24), the result into Eq. (22), and extending the integration over ϵ' to that over s yields

$$
\bar{Q}(f_1, f_2) = \nu^2 \int \cdots \int \left[g_2 f_1 g_2 f_2 \right] \frac{\sigma d\epsilon' h(s) ds d\epsilon_2 d\epsilon_2}{d\epsilon_1}.
$$

which may be used in Eq. (18) to give our model kinetic equation.

Equation (29) may be viewed merely as an alternative to the R formulation. However, a more physical inter-
pretation is possible. In the real case, the energy exchange is determined through the dynamical equations of motion with some (usually) asymmetric intermolecular potential. A logical consequence of these equations is the two-particle Liouville theorem, which allows $Q(f_1, f_2)$ to be written as in Eq. (19). In the present model the exchange mechanism is modeled by some statistical process whereby ϵ_1, ϵ_2, and ϵ_4 may change their values by an amount determined by the properties of $R(\epsilon, \epsilon')$ or equivalently by those of L and $h(s)$. Since for the model L will not be determined by dynamical con-

considerations, it is necessary that $h(s)$ satisfy Eq. (28) in imitation of the Liouville theorem, so that one may write our averaged $Q(f_1, f_2)$ as in Eq. (29), retaining the Boltzmann-like form. In this sense s plays the role of a kind of pseudo-internal coordinate set for the colliding pair and the self-inverse property of L imitates the inverse collision property of some classical collision models.

For r separate energy modes with degrees of freedom n_1, n_2, \ldots, n_r and $f = f(\epsilon_1, \epsilon_2, \ldots, \epsilon_r, x, t)$, Eq. (25) may be generalized as

$$
Q(f_1, f_2) = \nu^2 \int \cdots \int \left[f_1 f_2 \prod_{i=1}^{n_r} \frac{g_i d\epsilon_1 d\epsilon_2 d\epsilon_2'^d \epsilon_1 d\epsilon_2 d\epsilon_2'}{d\epsilon_1} \right]^{n_r}
$$

together with a corresponding generalization of Eqs. (26) and (28).

E. H theorem and equilibrium

Identifying the H function with $-s$ in Eq. (13) readily leads to an H theorem for our model Q. The detailed balancing condition Eq. (25) together with $\omega = \omega'$ and the use of the monatomic scattering law is sufficient to de-

velop the appropriate integral transformations from which an H theorem may be obtained along standard lines.

The equilibrium f follows in the usual way from the fact that at equilibrium $\ln(f/e^{-1})$ must be a linear sum of the collisional invariants. If these are just the com-
ponents of linear momentum and ϵ_0, then applying the temperature, momentum, and normalization constraints yields

$$
f_0(\epsilon, \epsilon') = \left(\frac{m}{2nKT} \right)^{\nu/2} \exp \left[-\frac{m}{2K^2 T} (\epsilon - \epsilon')^2 \right] \Gamma(\nu/2)(kT)^{\nu/2} \epsilon^{\nu/2 - 1} \exp(-\epsilon/kT),
$$

where T is the total temperature.

III. SPECIAL MODELS OF THE EXCHANGE PROCESS

There remains the problem of obtaining special mod-

els of the exchange process. A special model is defined by specifying L together with the form of $h(s)$ or equiva-

tently by defining $R(\epsilon, \epsilon')$. In either description, it will contain one or several disposable parameters which must be determined empirically or otherwise, specifying the extent to which ϵ and ϵ' are correlated through the statistical exchange process. The detailed balancing relations Eq. (25) or equivalently Eq. (28), together with the respective conservation conditions however, impose severe restrictions on admissible model forms. Borgnakke and Larsen have presented a two-class elastic/inelastic exchange model analogous to the Maxwell model in gas-surface theory, which satisfies these requirements. An extension in which a constant fraction of the energy for each mode active during collision undergoes an elastic exchange process (restricted exchange) unfortunately does not properly satisfy either detailed balancing or the less restrictive integrated form of this condition. As an example of a class of exchange models conforming to the present theory, we now re-

formulate and generalize the restricted exchange scheme so as to overcome these difficulties.

A. Partial exchange models: A particular case

We develop a particular case for $r = 1$ in Eq. (30).

Firstly, however, it is convenient to state a useful re-

sult from statistical distribution theory. Let x be independently distributed gamma (γ) and beta (β) vari-

odes, respectively, with joint distribution

$$
d\Gamma(x, z) = \gamma(x | \mu_1, \mu_2) \beta(x | \mu_1, \mu_2) dx dz,
$$

where

$$
\gamma(x | \mu) = (1 / \Gamma(\mu)) x^{\mu-1} e^{-x}
$$

is the normalized probability density for the γ distribution in x, with index (degrees of freedom) $\mu > 0$; $\beta(x | \mu_1, \mu_2)$ is the normalized density for the β distribution in x with indices $\mu_1 > 0$, $\mu_2 > 0$, defined by Eq. (6), and here F is the cumulative distribution function (in the statistical theory sense, not to be confused with the distribution function concept in the kinetic theory sense). Then, the transformation

$$
\gamma(x | \mu) = (1 / \Gamma(\mu)) x^{\mu-1} e^{-x}.
$$
applied to Eq. (32) yields
\[
dF(x_1, x_2) = \gamma(x_1 | \mu_1) \gamma(x_2 | \mu_2) dx_1 dx_2.
\]
That is, a \(y \) variable \(x \) with index \(\mu = \mu_1 + \mu_2 \) can be decomposed into independent \(y \) variables \(x_1, x_2 \) (such that \(x = x_1 + x_2 \)) with indices \(\mu_1, \mu_2 \) through Eqs. (33) and the introduction of the \(\beta \) variable \(z \). Conversely, the sum of two independent \(y \) variables with indices \(\mu_1, \mu_2 \) is also a \(y \) variable with index \(\mu_1 + \mu_2 \). From Eqs. (32) and (34) it follows that the Jacobian of Eqs. (33) must satisfy
\[
\frac{\partial(x_1, x_2)}{\partial(x, z)} = \gamma(x_1 | \mu_1 + \mu_2) \beta(x | \mu_1, \mu_2) \gamma(x_2 | \mu_2).
\]

We now develop a "partial exchange" model based on Eqs. (32)–(35). For brevity, in what follows we use \(\{x, \gamma(x | \mu)\} \) to denote "the random variable \(x \) with probability density \(\gamma(x | \mu) \)" etc. Writing \(\xi = \epsilon/kT' \), where \(T' \) is any reference temperature and multiplying Eq. (28) on both sides by the constant (for collisions) \(\exp(-\xi - \xi_1 - \xi_2 - \xi_3) \), the detailed balancing condition becomes
\[
0 = \gamma(x_1 | \mu_1) \gamma(x_2 | \mu_2) \gamma(x_3 | \mu_3) \frac{h(s) \hat{d} \xi}{h(s) \hat{d} \xi},
\]
where \(\xi = mg/kT' \), \(\xi = (\xi_1, \xi_2, \xi_3) \), and where for present purposes we regard \(\xi_1, \xi_2, \xi_3 \) as \(y \) variables with densities implied in Eq. (36). We now make a particular choice for \(h(s) \), reasons for which will become clear in the development, as
\[
h(s) = \prod_{i=1}^{s} \beta(s_i | \phi, \xi_i, (1 - \phi) \xi_i) \beta(s_i | \psi, \eta_i, (1 - \psi) \eta_i) \times \beta(s_i | \phi, \xi_i, \psi) \beta(s_i | \phi, \psi, \eta),
\]
where here \(s = (s_1, s_2, s_3, s_4, s_5) \) and where \(1 > \phi, \xi_0, \omega > 0, 1 > \psi, \xi_0, \omega > 0 \) are arbitrary functions (model parameters) of \(\xi_0, \omega = \xi_1 + \xi_2 + \xi_3 + \xi_4 + \omega \).

Substituting Eq. (37) into Eq. (36) yields, on the right-hand side factors of the form \(\gamma(x_1 | \eta)\beta(s_1 | \psi, \eta_1 (1 - \psi) \eta_1) \) together with like factors for the \(\xi_1, \xi_2, \xi_3 \) terms. Identifying these factors with the right-hand side of Eq. (32) and utilizing the properties of the \(\gamma \) and \(\beta \) distributions discussed here, the transformation, modeled on Eqs. (33)
\[
e \xi = s_1 \xi_1, \quad \epsilon \xi = s_2 \xi_2,
\]
\[
e \xi = (1 - s_1) \xi_1, \quad \epsilon \xi = (1 - s_2) \xi_2, \quad i = 1, 2,
\]
decomposes \(\{x_1, \gamma(x_1 | \eta_1)\} \) into the "partial energies" \(\{x_1 | \gamma(x_1 | \eta_1)\} \) and \(\{x_1 | \gamma(x_1 | \eta_1)\} \) and also \(\{x_1 | \gamma(x_1 | \eta_1)\} \) into partial energies \(\{x_1 | \gamma(x_1 | \phi, \xi_1)\} \) and \(\{x_1 | \gamma(x_1 | \psi, \eta_1)\} \), \(i = 1, 2, \) respectively.

Following Ref. 15 and regarding \(\epsilon \xi \) as the translational energy available for exchange during collision and \(\epsilon \xi \) as inactive together with a similar interpretation of the \(\epsilon \xi \) and \(\epsilon \xi \) in Eqs. (32), then the transformations [inverse of Eqs. (33)]
\[
e \xi = e_1 + e_2, \quad e \xi = e_1 + e_2,
\]
\[
e \xi = (e_1 + e_2), \quad e \xi = (e_1 + e_2),
\]
combines the active partial energies into \(\{x_1 | \gamma(x_1 | \phi, \xi_1) + 2\phi \xi_1) \} \) and generates the new quantities \(\{s_1 | \beta(s_1 | \phi, \xi_1) \} \)

and \(\{s_1 | \beta(s_1 | \phi, \xi_1) \} \) in Eq. (37), then
\[
e \xi = e_1 + e_2, \quad e \xi = e_1 + e_2,
\]
\[
e \xi = (e_1 + e_2), \quad e \xi = (e_1 + e_2),
\]
developes \(\xi \) into post collision partial energies \(\{e_1 | \gamma(x_1 | \eta_1)\} \) and \(\{e_1 | \gamma(x_1 | \eta_1)\} \), \(i = 1, 2 \) respectively. Finally, adding these to their respective inactive partials through
\[
e \xi = e_1 + e_2, \quad e \xi = e_1 + e_2,
\]
\[
e \xi = (e_1 + e_2), \quad e \xi = (e_1 + e_2),
\]
generates the post collision energies together with the new quantities \(\{s_1 | \beta(s_1 | \phi, \xi_1, 1 - \phi) \} \), \(i = 1, 2 \) and \(\{s_1 | \beta(s_1 | \psi, \eta_1, 1 - \psi) \} \). Eliminating intermediate quantities in Eqs. (38) and multiplying by \(h(s) \) we obtain an explicit \(L \) as a simple algebraic transformation
\[
e \xi = (s_1) \xi_1 + s_2 \xi_2, \quad e \xi = (1 - s_1) \xi_1 + (1 - s_2) \xi_2,
\]
\[
e \xi = (s_1) \xi_1 + s_2 \xi_2, \quad e \xi = (1 - s_1) \xi_1 + (1 - s_2) \xi_2,
\]
\[
e \xi = (s_1) \xi_1 + s_2 \xi_2, \quad e \xi = (1 - s_1) \xi_1 + (1 - s_2) \xi_2,
\]
\[
e \xi = (s_1) \xi_1 + s_2 \xi_2, \quad e \xi = (1 - s_1) \xi_1 + (1 - s_2) \xi_2,
\]
where \(s_1 = s_1 \xi_1 + s_2 \xi_2 \) and \(s_2 = s_1 \xi_1 + s_2 \xi_2 \) are \(\{s_1 | \beta(s_1 | \psi, \eta_1, 1 - \psi) \} \).

Using the appropriate form of Eq. (35) for each of the ten transformations in Eqs. (38), and the chain rule for Jacobians, it may be shown that Eq. (36) is satisfied by Eqs. (39) with \(h(s) \) given by Eq. (37). Manipulation of Eqs. (39) shows that energy conservation and Eq. (26) are satisfied (this should be clear from the method of construction), and hence, the model is consistent with \(Q(f, \xi) \) given by Eq. (29). This model is similar to that of Ref. 15 except that in the latter case, active partials were taken as constant fractions of \(\epsilon \xi \) and \(\xi \xi \) for \(\xi \), each was narrowly distributed about \(\epsilon \xi \) and \(\xi \xi \), respectively. The essential idea behind the models is that while active partial energies undergo a completely elastic exchange process in which pre- and post-collision values are uncorrelated [Eqs. (38b)–(38c)], the inactive partials behave inelastically thus retaining some correlation for the overall participating energies. The choice of Eqs. (37) for \(h(s) \) facilitates modeling of this process such that the required conditions are satisfied, using Eqs. (32)–(34). The functional parameters \(\phi \) and \(\psi \) may be shown to be respectively equal to the \(s \) averaged fraction of \(\epsilon \xi \) and \(\epsilon \xi \), \(s \xi \) available for exchange per collision. They are thus a measure of the ease with which exchange takes place for particular \(\epsilon \xi \) and \(\xi \xi \). From Eqs. (37) and (39) it follows that the limit \(\psi = 0, \phi = 0 \) leads to the inelastic (monatomic) case while \(\phi = 0, \psi = 1 \) yields the perfectly elastic model of Ref. 14. The limit \(\psi = 0 \) yields a model which is inelastic for translational-rotational exchange, but allows partial exchange of order \(\phi \) between particle internal energies. Here, both \(\epsilon \xi = \epsilon \xi + \epsilon \xi \) and \(\epsilon \xi \) are col-

lisional invariants. Hence, in homogeneous relaxation the velocity and internal energy distributions will approach the translational and internal distribution function factors of Eq. (31) separately in order one, and 1/φ collision times, respectively. At equilibrium separate translational and internal temperatures will be maintained.

Further particular cases of partial exchange models may be readily constructed; for example, the generalization of Eqs. (37) and (39) to r internal energy modes each with separate φi, φr, i = 1...r. The cross section R(ε | ε') for these models including the present case can be formally obtained using Eqs. (27), but the result is usually very complicated and not useful in practice. On the other hand, Eqs. (37) and (39a) are simple and may be readily used in Monte-Carlo or other applications. Note that while the ε' information in Eqs. (39b) is not required in practice, it must be considered here to establish detailed balancing.

B. Choice of disposable parameters: Transport properties

Here, we give results for the transport coefficients of a gas conforming to the present partial exchange model. These may be used in choosing φ(ε, ω) and φ(ε, ω) for some particular application. Hirschfelder et al. gave explicit transport formulae for the quasi-quantum mechanical gas, obtained from a Chapman-Enskog solution to the Wang-Chang-Uhlenbeck equation. Expressions valid for the present theory may be derived by replacing the discrete quantum internal energy levels by the continuous set given in Eq. (31), and also the internal state transition probabilities by our equivalent h(s)ds or R(ε | ε')dε. For example, the relaxation time τ for inverse power molecules becomes

\[\tau^{-1} = \frac{2n}{9v^{4/3}} \left(\frac{kT}{m} \right)^{1/2} \left(\frac{\alpha a}{2kT} \right)^{1/2} \int \cdots \int \sin^{2\sigma - 1} \sin^{2\sigma - 1} \sin^{2\sigma - 1} \int \exp(-\xi_1 - \xi_2 - \xi_4)(\Delta \xi)^2 \omega d\omega d\omega dh(s) d\xi d\xi d\xi ,\]

(40)

where \(\xi_1 = \epsilon_i/kT, i = 1, 2, \xi_4 = \epsilon_4/kT, \Delta \xi = \xi_4 - \xi_2 - \xi_1 - \xi_2, T\) is the equilibrium temperature and where we have transformed \(\sigma d\sigma\) to impact parameter equivalent \(\omega d\omega d\theta\). Corresponding formulae for other transport coefficients may readily be obtained in like manner.

For \(r = 1\) and the exchange model of Sec. IIIA we give explicit results for the internal relaxation number \(Z = \tau^{-1}\), where the mean collision time \(\tau_z\) is

\[\tau_z = \pi \mu_0(T)/4m_kT\]

(41)

and

\[\mu_0(T) = \frac{5(mkT/\pi)^{1/2}(2kT/\alpha)^{2/\alpha}}{8A_4(\alpha)\Gamma(4 - 2/\alpha)}\]

is the zeroth order viscosity for inverse power molecules, and also for the viscosity \(\mu(T)\) and heat conductivity \(\lambda(T)\). These were obtained by substituting \(\Delta \xi\) from Eqs. (39a) and \(h(s)\) from Eq. (37) into the appropriate transport integrals and performing 8 of the 10 integrations analytically in each case. Expressions for \(Z\) and \(\mu\) are exact while that for \(\lambda\) requires the approxima-

\[Z^{-1} = \frac{5\pi}{4(3 - 2/\alpha)A_4(\alpha)} H_0,\]

(42a)

\[\left(\frac{\mu}{\mu_0} \right)^{-1} = 1 + \frac{\nu}{2(2 - 2/\alpha)A_4(\alpha)} H_1,\]

(42b)

\[\lambda = \lambda_1 + \lambda_2,\]

(42c)

where

\[\lambda_1 = \frac{75}{32A_4(\alpha)} \Gamma(4 - 2/\alpha) \left(\frac{kT}{\pi m} \right)^{1/2} \left(\frac{2kT}{\alpha} \right)^{2/\alpha} \times \left\{ 1 + \nu \left[\frac{H_0}{2A_4(\alpha)} - \frac{H_2}{3 - 2/\alpha} A_4(\alpha) \right] \right\},\]

(42d)

\[\lambda_2 = \frac{9\nu}{48A_4(\alpha)} \Gamma(3 - 2/\alpha) \left(\frac{kT}{\pi m} \right)^{1/2} \left(\frac{2kT}{\alpha} \right)^{2/\alpha} \times \left\{ 1 + H_0 \left[\frac{25}{4(3 - 2/\alpha)A_4(\alpha)} - \frac{3}{2A_4(\alpha)} \right] \right\},\]

(42e)

and where

\[A_4(\alpha) = \int_0^\infty \left(1 - \cos^2 x \right) \omega d\omega; \quad H_0 = \int_0^\infty K(\omega) \omega d\omega; \quad H_1 = \int_0^\infty K(\omega) \left(\frac{1}{2} - \sin^2 x \right) \omega d\omega; \quad H_2 = \int_0^\infty K(\omega) \left(\frac{1}{2} - \sin^2 x \right) \omega d\omega\]

with

\[K(\omega) = \frac{1}{\Gamma(\nu + 2 - 2/\alpha)} \int_0^\infty \phi(\nu + 2 - 2/\alpha - 1) \phi(\nu + 2) \left(\frac{\omega}{\phi(\nu + 2 - 2/\alpha) \phi(\nu + 2)} \right)^{\nu - \nu - 2/\alpha} e^{\nu \omega \delta x} d\nu,\]

where \(\xi_0 = \xi_1 + \xi_2 + \xi_4\) and \(\chi = \chi(\omega)\) is the deflection angle.

For \(\alpha = 0\), i.e., hard spheres, and the choice \(\phi = \phi_0, \omega < 1\); \(\phi = \phi_0, \omega > 1\), Eqs. (42) reduce to

\[Z = \frac{8(2 + \nu)}{5\pi} \frac{1}{\phi_0},\]

(43a)

\[\mu = \mu_0,\]

(43b)

\[\lambda = \frac{75}{64d^2} \left(\frac{kT}{\pi m} \right)^{1/2} \left(1 - \frac{13\nu}{24(2 + \nu)} \phi(\nu) \right),\]

(43c)

\[\lambda = \frac{25}{48d^2} \left(\frac{kT}{\pi m} \right)^{1/2} \left(1 + \frac{13}{8(2 + \nu)} \phi_0 \right),\]

(43d)

where \(d\) is the hard sphere diameter. Equation (43a) shows that \(Z\) is inversely proportional to \(\phi\) as might be expected while the viscosity correction in Eq. (43b) vanishes essentially due to the inelasticity implied in the choice for \(\phi(\omega)\) and \(\phi(\omega)\). Note that Eqs. (43c) and (43d) agree with the results of an approximate transport theory due to Mason and Monchick (Ref. 3, p. 326 and Ref. 21).

C. Behavior in simulation

The present partial exchange model was tested in Bird's direct simulation Monte-Carlo scheme. The hard sphere gas with \(\nu = 2\) was employed with \(\phi, \phi\) being chosen as outlined herein, to simulate the homogeneous relaxation problem. The simulation was initially by choosing velocity vectors distributed on the unit sphere \((c_1^2 + c_2^2 + c_3^2)/2RT = \frac{1}{3}\), in \(c_1 - c_2 - c_2\) space, for each of \(N\)
<table>
<thead>
<tr>
<th>Model</th>
<th>$\phi = 0.5$</th>
<th>$\phi = 0.2$</th>
<th>$\phi = 0.1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monatomic</td>
<td>1.27</td>
<td>1.27</td>
<td>1.27</td>
</tr>
<tr>
<td>Ref. 15, $\nu = 2$</td>
<td>2.50</td>
<td>2.12</td>
<td>2.04</td>
</tr>
<tr>
<td>Present, $\nu = 2$</td>
<td>5.02</td>
<td>4.46</td>
<td>4.17</td>
</tr>
</tbody>
</table>

The H theorem for the present model guarantees that the Boltzmann distribution will be obtained at equilibrium. Here, we have chosen fixed ν, ψ corresponding to constant Z; however, the model has the flexibility to allow approximate matching of any desired temperature variation of Z say, through Eqs. (42).

Table I shows approximate CDC-6400 execution times per 1000 collisions for the models tested compared with times for a monatomic gas simulation. The present model requires five beta variables per collision calculation compared with two per collision for the restricted exchange model and therefore is the slower of the two. In some cases, then, where this latter model has been properly tested, it is probably to be preferred to the present modified version. For more complex problems than have been treated here, say for a gas with several internal energy modes, the present model is perhaps superior. Note that computing times for these phenomenological models are one to two orders of magnitude smaller than currently reported times for the semi-classical models of Refs. 12 and 13.

IV. CONCLUDING REMARKS

Phenomenological models of the complex energy exchange processes in inelastic collisions of polyatomic molecules appear to be an acceptable alternative to the classical or semi-classical approach. We have presented a theory for certain classes of such models and have shown how one recently proposed special model describing a particular mode of exchange may be recon structed within its general framework. Other special models may be readily constructed. Using methods proposed by Cercignani for the construction of $P(c|c')$ in gas-surface theory, it is possible to obtain an apparently unlimited number of forms for the differential scattering cross section $R(c|c')$, all of which satisfy the required conditions of energy conservation, microreversibility, nonnegativity, and normalization. However, the physical interpretation of models constructed in this manner is not always straightforward and their usefulness is therefore rather difficult to access. It is not clear whether the partial exchange models are the only class of models that can be constructed within the $s, k(s)$ formulation. This seems unlikely, however, and further investigation will undoubtedly produce other cases.

![FIG. 1. Relaxation behavior for restricted exchange model and present modified version.](image1)

![FIG. 2. Internal energy distribution at equilibrium for restricted exchange model and modified version.](image2)
Although we have presently considered only a single species chemically inert gas, the extension of the present theory to a chemically inert gas mixture with a different internal structure for each species is quite straightforward. The further extension, particularly of the partial exchange models to a nonequilibrium chemically reacting system would be an interesting area for future investigation.

ACKNOWLEDGMENT

The help and encouragement of Dr. J. K. Harvey of the Department of Aeronautics, Imperial College, London, is gratefully acknowledged.

40. C. Cerignani, presented at the Euromech Colloquium 37, University of Strathclyde, Glasgow (1973).