Continuous subgroups of the fundamental groups of physics. II.
The similitude group

J. Patera and P. Winternitz

Centre de Recherches Mathématiques, Université de Montréal, Montréal, Québec, Canada

H. Zassenhaus

Fairchild Distinguished Scholar, Department of Mathematics, Caltech, Pasadena, California

(Received 25 February 1975)

All subalgebras of the similitude algebra (the algebra of the Poincaré group extended by dilatations) are classified into conjugacy classes under transformations of the similitude group. Use is made of the classification of all subalgebras of the Poincaré algebra, carried out in a previous article. The results are presented in tables listing representatives of each class and their basic properties.

1. INTRODUCTION

This article is the second in a series of papers devoted to a study of the subgroup structure of Lie groups of fundamental importance in physics. In the first article, further to be referred to as I, we presented a general method for classifying Lie subalgebras of Lie algebras with nontrivial ideals. The method, making use of cohomology theory, was then applied to classify all continuous subgroups of the Poincaré group (inhomogeneous Lorentz group) and of the homogeneous similitude group, i.e., the Lorentz group extended by dilatations.

In this paper we make use of the previous results to provide a classification of all continuous subgroups of the similitude group, i.e., the Poincaré group extended by dilatations.

Let us mention in passing that related problems were treated in two other previous articles. In one of them, we found all maximal solvable subgroups of the pseudounitary groups (up to conjugation) and of the homogeneous similitude group, i.e., the Lorentz group extended by dilatations.

The similitude group \(SG \), also called the Weyl group, is of considerable interest in elementary particle physics, the general theory of relativity and other fields of physics. Its importance in high energy physics is largely related to the phenomenon of scaling in deep inelastic scattering and to short distance behavior in elementary particle theory. For information on various approaches to scale invariance we refer to recent reviews. Different subgroups of the similitude group may be of special relevance for the construction of elementary particle dynamics in certain frames of reference (see the discussion of the infinite momentum frame and its relation to an 8-parameter subgroup of the Poincaré group).

In Sec. 2 of this article we review some known results on the similitude group in order to establish notation (which is consistent with that used in I) and then discuss the method used to obtain all classes of subalgebras of the similitude algebra \(S \) (up to conjugation under the similitude group itself). In Sec. 3 we obtain our main results, i.e., a list of representatives of each conjugacy class of subalgebras of \(S \), summarized in Tables. Section 4 is devoted to the conclusions and future outlook.

2. METHOD FOR CLASSIFYING THE SUBALGEBRAS OF THE SIMILITUDE ALGEBRA

A. The similitude group and its algebra

The similitude group \(SG \) can be defined as the group of Lorentz transformations, translations and dilatations of Minkowski space, i.e., the transformations

\[x'_\mu = h \Lambda_{\mu \nu} x_\nu + a_\mu, \quad \mu, \nu = 0, 1, 2, 3, \]

where \(h \) is a real positive number, \(\Lambda_{\mu \nu} \) are matrix elements of an \(O(3,1) \) matrix and \(a_\mu \) are real numbers. The vectors \(x = (x_0, x_1, x_2, x_3) \) are real vectors in the four-dimensional Minkowski space with metric \(ds^2 = dx_0^2 - dx_1^2 - dx_2^2 - dx_3^2 \).
We shall, however, make use of a different representation of \(\mathcal{G} \), remembering that \(\mathcal{G} \) is a subgroup of the conformal group of space-time, i.e., the group of all transformations of \(x_a \), leaving the element \(ds^2 \) form-invariant: \(ds^2 = h ds'^2 \). This group is isomorphic to \(SU(2, 2) \) (for reviews see, e.g., Refs. 5–7 and 10). We shall use a somewhat nonstandard realization of \(SU(2, 2) \), already introduced earlier, 1–3 namely the group of transformations \(G \) of a four-dimensional complex vector space satisfying

\[
G^*G = J,
\]

where

\[
J = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ \end{pmatrix}
\]

(the cross on \(G \) implies Hermitian conjugation). Elements \(X \) of the Lie algebra of \(SU(2, 2) \) in this realization satisfy

\[
X^*J + JX = 0
\]

and the general element of the algebra can be written as

\[
X = \begin{pmatrix} \alpha & \beta & \epsilon & \iota a \\ \gamma & \delta & \epsilonstar & \iota b \\ \xi & \iota c & -\deltastar - \betastar \\ \iota d & -\kstar & -\gammastar & -\alphastar \\ \end{pmatrix}, \quad \alpha - \alphastar + \deltastar - \betastar = 0,
\]

where Greek letters denote complex numbers, italic letters real ones, and the stars indicate complex conjugation.

If we now consider the subalgebra of (5) leaving a two-dimensional vector space invariant, we obtain an 11-parameter subalgebra

\[
S = D \bigoplus (LSL(2, C) \triangleq LT_4),
\]

where \(\bigoplus \) indicates a semidirect sum, \(D \) generates dilatations, \(LT_4 \) four-dimensional translations, and \(LSL(2, C) \) is the algebra of the special linear group \(SL(2, C) \).

For our purposes a convenient basis for the similitude algebra \(S \) is provided by the following matrices.

Dilatations:

\[
D = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ \end{pmatrix}
\]

Translations:

\[
X_1 = \begin{pmatrix} 0 & 0 & 0 & i \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{pmatrix}, \quad X_2 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ \end{pmatrix}, \quad X_3 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{pmatrix}, \quad X_4 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{pmatrix}
\]

The dilatations satisfy the commutation relations

\[
[D, X_i] = 0, \quad i = 1, \ldots, 6; \quad [D, X_a] = 2X_a, \quad a = 1, \ldots, 4,
\]

and the translations commute:

\[
[X_a, X_b] = 0, \quad a, b = 1, \ldots, 4.
\]

All other commutation relations are given in Table I.

The usual physical notation is different and less convenient for our purposes. Throughout the article we shall use the generators \(B_i \) and \(X_a \). Their relation to the usual generators of rotations \(L_i \), proper Lorentz transformations (boosts) \(K_i \) (\(i = 1, 2, 3 \)) and translations \(P_a \) (\(a = 0, 1, 2, 3 \)) is

\[
B_1 = 2L_3, \quad B_2 = -2K_3, \quad B_3 = -L_2 - K_1,
\]

\[
B_4 = L_1 - K_2, \quad B_5 = L_2 - K_1, \quad B_6 = L_1 + K_2,
\]

\[
X_1 = \frac{1}{2}(P_0 - P_2), \quad X_2 = P_2, \quad X_3 = -P_1, \quad X_4 = \frac{1}{2}(P_0 + P_2).
\]

The commutation relations for the usual physical generators are

\[
[L_i, L_k] = \epsilon_{ikl}L_l, \quad [K_i, K_k] = -\epsilon_{ikl}L_l, \quad [L_i, K_k] = \epsilon_{ikl}K_l, \quad [L_i, P_0] = 0, \quad [L_i, P_a] = \epsilon_{ikl}P_l,
\]

\[
[K_i, P_0] = P_i, \quad [K_i, P_a] = \delta_{ik}P_a, \quad (i, k, l) = (1, 2, 3).
\]

An element of the similitude group itself can in the considered realization be written as \(G = \exp S \), where \(S \) is given by (6), i.e.,

\[
G = \begin{pmatrix} C_{11} & C_{12} \\ C_{13} & C_{22} \end{pmatrix}
\]

and condition (2) implies that the \(2 \times 2 \) matrices \(C_{12} \) and \(C_{22} \).
satisfy
\[G_{12}J_1G_{11}^* = J_1, \quad G_{12}J_1G_{11}^* + G_{11}J_1G_{12}^* = 0, \] (17)
with
\[J_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}. \]

Thus an element of the similitude group can be written as
\[g = \begin{pmatrix} \alpha & \beta & \epsilon & \xi \\ \gamma & \delta & \mu & \nu \\ 0 & 0 & \alpha^* / \Delta & -\beta^* / \Delta \\ 0 & 0 & -\gamma^* / \Delta & \delta^* / \Delta \end{pmatrix}, \]
\[\Delta = \alpha \delta - \beta \gamma = \Delta^*, \] (18)
with \(G_{12}\) satisfying
\[\alpha^* \xi - \alpha \xi^* + \beta^* \epsilon + \beta \epsilon^* = 0, \]
\[\gamma^* \delta + \delta^* \gamma + \beta \mu^* + \alpha \nu^* = 0, \]
\[\gamma^* \nu + \nu^* \gamma + \delta^* \mu + \delta \mu^* = 0. \] (19)

B. Classification of subalgebras of the similitude algebra

In paper I we have provided a list of representatives of all conjugacy classes of subalgebras of the Poincaré group Lie algebra. The results were summarized in three tables. The first of these (Table II of I) presents all subalgebras of the algebra of \(SL(2, \mathbb{C})\) and hence all continuous subgroups of the homogeneous Lorentz group (these were known previously). Table III of I presents all subalgebras of the Poincaré algebra \(P\) that split over their intersection with the translations \(LT_4\) (i.e., the bases for these algebras can be written in a form containing elements of the type \(B_4\) and \(X_4\) only). Table IV of I lists representatives of all subalgebras of \(P\) that do not split over their intersections with \(LT_4\) (i.e., their bases will always contain elements of the type \(B_j + c_{14} X_4\) where \(c_{14}\) are real constants that are not all equal to zero and cannot be transformed into zero by an inner automorphism of the Poincaré group).

In this paper we take the results of I and build them up into a list of all subalgebras of the similitude algebra (up to conjugation under the similitude group). We use a related notation for the subalgebras of \(S\), namely, \(S_{j,k}\) where \(j\) runs from 1 to 15 and indicates the subalgebra \(F_j\) of \(LSL(2, \mathbb{C})\) that has been extended to \(S_{j,k}\) by translations and dilatations. The label \(k\) simply distinguishes different subalgebras obtained from the same \(F_j\).

The procedure consists of several steps:

1. Find representatives of all conjugacy classes of subalgebras of the Poincaré algebra, that are not equivalent under the similitude group. To do this we must merely remember that the dilatation generator \(D\) commutes with all generators \(B_i\) of \(SL(2, \mathbb{C})\), but multiplies translations by a constant [see formula (11)]. The transformation \(exp(D)\) in the group \(S\) will thus multiply all generators \(X_j\) by a constant, leaving \(B_i\) invariant. The matrix \(D\) itself is not of form (18), but we shall include it in our group of automorphisms, to simplify subalgebras of \(S\). It corresponds to total inversion (parity times time-reversal) and is contained in the similitude group, but not in the component connected to identity. It follows that the extension of the Poincaré group by dilatations leads to the coalescence of certain nonsplitting subalgebras of the Poincaré algebra. Indeed, we have, e.g.,
\[D(B_4 - X_4)D^{-1} = B_4 + X_4, \]
\[e^{i \theta}(B_4 + x^2 X_4)e^{-i \theta} = B_4 + X_4. \] (20)

Thus the algebra \(B_4 + X_4\), while inequivalent under the Poincaré group, are conjugated under the similitude group. Similarly, the continuous set of Poincaré subalgebras \(B_4 + x^2 X_4\) coalesces into one subalgebra \(B_4 + X_4\).

In Table II of the following section we list conjugacy classes of subalgebras of \(P\) (and of \(S\)) that are inequivalent with respect to the similitude group.

2. Subalgebras of the similitude algebra containing \(D\) as a generator. Any subalgebra of this type has the form
\[D : P_{j,k}, \] (22)
where \(P_{j,k}\) is a subalgebra of the Poincaré algebra. It follows from the above discussion that we thus obtain subalgebras of \(S\) if and only if \(P_{j,k}\) is a splitting subalgebra of \(P\) (Table III of I) and that each splitting subalgebra of \(P\) provides a different subalgebra (22) of \(S\).

3. Subalgebras of \(S\) not contained in the Poincaré algebra and not containing any conjugate of \(D\) under \(SG\), such that the intersection with the Poincaré algebra splits over the translations. Choosing one generator of such an algebra as
\[D + \sum a_j B_j + \sum x_j X_j, \] (23)
there has to be at least one \(a_j\) or \(x_j\) nonzero even after \(SG\)-conjugation. The other generators \((B_4, X_4)\) form one of the splitting subalgebras \(P_{j,k}\) of the Poincaré algebra listed in Table III of I. To find all these subalgebras of \(S\) we consider each splitting subalgebra \(P_{j,k}\) of \(P\), add to it a generator (23) with \(a_j\) and \(x_j\) so chosen that we obtain an algebra. The element (23) is then simplified using the normalizer of \(P_{j,k}\) in the Poincaré group and
possibly further transformations involving D and normalizing (leaving invariant) the subalgebra P_{jh}.

4. Subalgebras of S not contained in the Poincaré algebra and not containing any conjugate of D under SG, such that the intersection with the Poincaré algebra does not split over the translations. We choose one generator of each of these subalgebras in the form (23), the others form one of the nonsplitting subalgebras P_{jh} of P listed in Table IV of I. To find all such subalgebras of S we consider each nonsplitting subalgebra P_{jh} of P separately and choose a_a and x_a in (23) in the most general manner that forms an algebra with D and also normalizing P_{jh} (i.e., we use the normalizer of P_{jh} in the similitude group).

This method provides a list of all subalgebras S_{jh} of S.

Several comments are in order.

1. The subalgebras of S obtained by applying the above steps 3 and 4 correspond to a generalization of the “Goursat twist”17-19 method for obtaining subgroups of a group that is in itself the direct product of two subgroups [e.g., $O(4)$ as $O(3) \times O(3)$].

2. We could have applied directly the general method developed in I for classifying subalgebras of a given algebra. The Poincaré algebra would then have served as a nonabelian invariant subalgebra whose subalgebras are known. In this particular case we found the method described above to be more convenient.

3. COMPLETE LIST OF CONJUGACY CLASSES OF SUBALGEBRAS OF THE SIMILITUDE ALGEBRA

A. Subalgebras of the Poincaré algebra P as subalgebras of the similitude algebra

All subalgebras P_{jh} listed in Table III of I split over their intersection with the translations. These subalgebras are not affected by dilations. Hence Table II of I also provides a list of representatives of conjucacy classes of subalgebras of the similitude algebra S and no two entries are conjugate to each other under the similitude group. We shall not reproduce the table here but only refer to I. For the purposes of this article all subalgebras P_{jh} of Table III of I will be denoted S_{jh} (same value of j and k).

Table IV of I, listing all nonsplitting subalgebras P_{jh} of P is modified when conjugacy is considered under the similitude group. In view of formulas of the type (20) and (21) many classes coalesce. This Table IV of part I is replaced by the following Table II.

The first column in Table II introduces a notation for the subalgebra, the second tells us from which subalgebra of $LSL(2,C)$ it was obtained, the third lists the subalgebras P_{jh} of P that coalesce to form the same subalgebra of S up to 5G conjugacy. The fourth column gives the generators of S_{jh} and the last one its dimension (over the real numbers).

B. Subalgebras of the similitude algebra containing D as a generator

A complete list of such algebras is obtained by taking each splitting subalgebra of the Poincaré group and adding D to the basis. Thus, we take all algebras listed in Table III of I and add D to them. No other subalgebras of S, containing D as a basis element exist. Again, we shall not reproduce this table and refer the reader to I. We thus obtain subalgebras which we denote S_{h5}, S_{h6}, S_{h7}, S_{h8}, S_{h9}, S_{h10}, S_{h11}, S_{h12}, S_{h13}, S_{h14}, S_{h15}, S_{h16}, S_{h17}, S_{h18}, S_{h19}, S_{h20}, S_{h21}.
C. Subalgebras of \mathcal{S} that are not contained in the Poincaré algebra do not contain any SG-conjugate of D and are such that the intersection with the Poincaré algebra splits over the translations.

We consider each subalgebra P_{λ^k} of Table III of I, and add the generator $\tilde{D} = D + \alpha B_1 + x_1 X_2$ to it and find α and x_1 such a manner as to obtain an algebra. We put $\alpha = 0$ for those generators B_μ and X_ν that are contained in P_{λ^k}. This algebra must then be simplified using transformations contained in $\text{Nor}_{SG} P_{\lambda^k}$ (normalizer of P_{λ^k} in the similitude group).

In view of the fact that transformations of D by translations produce all expressions

$$\tilde{D} = D + \sum x_i X_i$$

(25)

it follows that for no SG-conjugate of \tilde{D} can we have $\alpha = 0$, $\mu = 1, \ldots, 6$.

We consider several examples to illustrate our method and then list all subalgebras of this type in Table III.

The algebras P_{λ^1} and P_{λ^2} (derived from F_2 and F_2) of Table III in I cannot be extended in this way (i.e., $\alpha = 0$). Consider those derived from F_2. The generators of the homogeneous part of P_{λ^1} are B_1, $B_2 + B_5$, B_6. Hence we could have

$$\tilde{D} = D + aB_1 + b(B_2 + B_5) + c(B_6 - X_2)$$. Commuting \tilde{D} with B_1, we obtain $b = c = 0$, commuting with $B_2 - B_4$, we find $a = 0$. Now consider, e.g., P_{λ^4}, not containing any translations. Commuting \tilde{D} with B_1, $B_2 - B_5$ and $B_4 + B_6$, we find $x_1 = x_2 = 0, x_1 = x_4, i.e.,

$$D + x(X_1 X_4), \quad B_1, \quad B_3 - B_5, \quad B_4 + B_6$$

form an algebra. However, the transformation

$$\exp[-\frac{1}{2}X(X_1 + X_4)]$$

is in the normalizer of P_{λ^4} and we have

$$\exp[-\frac{1}{2}X(X_1 + X_4)] = D$$

so that the algebra (26) is conjugate to one of the splitting subalgebras of (24) (and will hence not figure in Table III).

As a further example, consider the algebras P_{λ^k} of Table III of paper I, derived from F_{10}. The generators of the homogeneous part of P_{λ^3} (i.e., of F_{10}) are B_3 and B_4. Putting $\tilde{D} = D + a1 + 12 + x_2 + x_1$ and commuting with B_3 and B_4, we find $\alpha = 0$. Algebra P_{λ^4} is thus extended to

$$\tilde{D} = D + aB_1 + bB_2 + B_3 + B_4 + X_1 X_2, X_3 X_4,$$

$$-\infty < a < \infty, \quad -\infty < b < \infty, \quad a^2 + b^2 \neq 0$$

The algebra P_{λ^5}, on the other hand, leads to

$$\tilde{D} = D + aB_1 + bB_2 + x_1 X_2, B_4 + B_5, X_1 X_2, X_5$$

The transformation $\exp y X_4$ leaves P_{λ^5} invariant but takes x into zero in \tilde{D}, if we put $y = x/(2(1 - b))$ for $b \neq 1$. For $b = 1$, on the other hand, the transformation $\exp y D$ with $e^y = x^{1/2}$ for $x > 0$ or $\exp y D$ with $e^y = (-x)^{-1/2}$ for $x < 0$ will take x into 1. We thus obtain from P_{λ^6} two types of subalgebras of \mathcal{S}:

$$D + aB_1 + bB_2 + B_3 + B_4 + X_1 X_2, X_3$$

(27)

$$-\infty < a < \infty, \quad -\infty < b < \infty, \quad a^2 + b^2 \neq 0$$

and

$$D + aB_1 + B_2 + X_2, B_3 + B_4, X_1 X_2, X_5, -\infty < a < \infty$$

(28)

We proceed quite analogously with all subalgebras of Table III of I. The results are summarized in Table III.

Table III. Subalgebras of \mathcal{S} that do not contain any SG-conjugate of D and are such that their intersection with P splits over the translations.

<table>
<thead>
<tr>
<th>Notations</th>
<th>F</th>
<th>P_{λ^k}</th>
<th>\tilde{D}</th>
<th>Generators of P_{λ^k}</th>
<th>$\dim \mathcal{S}_{\lambda^k}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_{a,b}$</td>
<td>F_1</td>
<td>P_{λ^1}</td>
<td>$D + aB_1, \alpha = 0$</td>
<td>$\cos \beta_1 + \sin \beta_2, B_3 + B_4 + X_1 X_2, X_3 X_4, 0 < \alpha < \tau, \tau < 2$</td>
<td>8</td>
</tr>
<tr>
<td>$S_{a,b}$</td>
<td>F_2</td>
<td>P_{λ^2}</td>
<td>$D + aB_2, \alpha = 0$</td>
<td>$\cos \beta_1 + \sin \beta_2, B_3 + B_4 + X_1 X_2, X_3 X_4, 0 < \alpha < \tau, \tau < 2$</td>
<td>7</td>
</tr>
<tr>
<td>$S_{a,b}$</td>
<td>F_3</td>
<td>P_{λ^3}</td>
<td>$D + aB_3, \alpha = 0$</td>
<td>$\cos \beta_1 + \sin \beta_2, B_3 + B_4 + X_1 X_2, X_3 X_4, 0 < \alpha < \tau, \tau < 2$</td>
<td>5</td>
</tr>
<tr>
<td>$S_{a,b}$</td>
<td>F_4</td>
<td>P_{λ^4}</td>
<td>$D + aB_4, \alpha = 0$</td>
<td>$B_1, B_3, B_4 + X_1 X_2, X_3 X_4$</td>
<td>4</td>
</tr>
<tr>
<td>$S_{a,b}$</td>
<td>F_5</td>
<td>P_{λ^5}</td>
<td>$D + aB_5, \alpha = 0$</td>
<td>$B_1, B_3, B_4 + X_1 X_2, X_3 X_4$</td>
<td>3</td>
</tr>
<tr>
<td>$S_{a,b}$</td>
<td>F_6</td>
<td>P_{λ^6}</td>
<td>$D + aB_6, \alpha = 0$</td>
<td>$B_1, B_3, B_4 + X_1 X_2, X_3 X_4$</td>
<td>2</td>
</tr>
<tr>
<td>$S_{a,b}$</td>
<td>F_7</td>
<td>P_{λ^7}</td>
<td>$D + aB_7, \alpha = 0$</td>
<td>$B_1, B_3, B_4 + X_1 X_2, X_3 X_4$</td>
<td>1</td>
</tr>
<tr>
<td>$S_{a,b}$</td>
<td>F_8</td>
<td>P_{λ^8}</td>
<td>$D + aB_8, \alpha = 0$</td>
<td>$B_1, B_3, B_4 + X_1 X_2, X_3 X_4$</td>
<td>0</td>
</tr>
<tr>
<td>$S_{a,b}$</td>
<td>F_9</td>
<td>P_{λ^9}</td>
<td>$D + aB_9, \alpha = 0$</td>
<td>$B_1, B_3, B_4 + X_1 X_2, X_3 X_4$</td>
<td>9</td>
</tr>
<tr>
<td>$S_{a,b}$</td>
<td>F_{10}</td>
<td>$P_{\lambda^{10}}$</td>
<td>$D + aB_{10}, \alpha = 0$</td>
<td>$B_1, B_3, B_4 + X_1 X_2, X_3 X_4$</td>
<td>8</td>
</tr>
</tbody>
</table>

Patera, Winternitz, and Zassenhaus
In the first column the symbol $S_{i,k}$ indicates that this is the kth algebra obtained as an extension of F_i by dilations and translations. The second column lists the subalgebras F_i and the third column gives $P_{i,k}$, i.e., the subalgebra of the Poincaré algebra that we are adding the generator D to. All generators of $S_{i,k}$ are in columns 4 and 5. The dimension $\dim_{\mathbb{R}} S_{i,k}$ of $S_{i,k}$ over the field of real numbers is given in column 6.
We have

$$D = B_2 + x X_4, \quad B_1 + x_1 X_1, X_2, X_3.$$

Consider the algebras $S_{\alpha, \beta}$ of Table II. The element D can be of the form $D = a B_2 + b B_3 + c B_4 + x \delta X_4$, commuting with $B_1 + x_1 X_1$, B_1 or $B_1 + x_1 X_1$, as the case may be. We find $b = c = 0$. Consider the case $S_{a, 0}$, i.e.,

$$D = D + B_2 + x X_4, \quad B_1 + x_1 X_1, B_2, B_3, B_4, X_1, X_2, X_3.$$

We have

$$\sqrt{D} = D + B_2 + x X_4, \quad B_1 + x_1 X_1,$$

and hence $a = 1$. Algebra (29) with $a = 1$, x arbitrary real should be further simplified, i.e., we must attempt to restrict further possible values of x. The normalizer of $S_{\alpha, \beta}$ contains transformations generated by $D + B_2, B_1$ and X_1 (in addition to the inner automorphisms $\exp S_{\alpha, \beta}$).

Using the commutation relations of Table I, it is easy to see that none of these change the value of x and hence (29) cannot be further simplified. Similar results are obtained for $S_{\alpha, \beta}$ and $S_{a, \beta}$ (see Table IV).

It can be verified directly that none of the algebras $S_{\alpha, \beta}$ or $S_{a, \beta}$ of Table II can be extended by dilatations. Now consider algebras $S_{10,6}$ and $S_{10,6}$ involving B_2, B_1, X_1, X_2 and in the case of $S_{10,6}$ also X_3. In the case $S_{10,6}$ we find that the most general operator D forming a Lie algebra with $S_{10,6}$ is

$$D = B_2 + B_4 + x X_4.$$

The normalizer of $S_{10,6}$ is generated by $B_2, B_4, X_1, X_2, X_3, X_4$ and $D = B_2$. We have

$$\exp(y X_4) \tilde{D} \exp(-y X_4) = D + \frac{1}{2} B_2$$

if we put $y = x$. We thus obtain a single algebra generated by $D + B_2, B_3, B_4, X_1, X_2, X_3, X_4$.

Similarly, for $S_{10,6}$ we find that

$$\tilde{D} = B_2 + \frac{1}{2} B_4 + x X_4$$

provides an extension for all x. However, $\exp X_3$ belongs to the normalizer of $S_{10,6}$ and

$$\exp(x X_3) \tilde{D} \exp(-x X_3) = D + \frac{1}{2} B_2$$

if we put $y = x/2$. We again obtain a single algebra

$$D + B_2, B_3, B_4, X_1, X_2, X_3, X_4.$$

Continuing along the same lines we obtain the results presented in Table IV. The first column simply

D. Subalgebras of S that are not contained in P, do not contain any SG-Conjugate of D and are such that their intersection with P does not split over the translations.

We consider individually each subalgebra $S_{\alpha, \beta} = \tilde{P}_{\alpha, \beta}$ of Table II of the present article, i.e., the algebras obtained from Table IV of I by using dilatations to make certain classes of subalgebras of P coalesce. To the generators of $S_{\alpha, \beta}$ we again add a further operator $\tilde{D} = D + a B_2 + x \delta X_4$, putting the coefficient a and x_4 equal to zero if the corresponding B_2 or X_4 figures in $\tilde{P}_{\alpha, \beta}$ (we can set $a = 0$ if $B_2 \in \tilde{P}_{\alpha, \beta}$ or $B_2 + c y_4 X_4 \in \tilde{P}_{\alpha, \beta}$ where y_4 are real constants). Restrictions on the possible values of a and x_4 are obtained by requiring that $\tilde{D} + \tilde{P}_{\alpha, \beta}$ forms a Lie algebra. The element \tilde{D} of the algebra is then simplified using transformations belonging to the normalizer of $\tilde{P}_{\alpha, \beta}$ in the similitude group, i.e., the normalizer of $\tilde{P}_{\alpha, \beta}$ in the Poincaré group, listed in Table IV of I, supplemented by the discrete element D in the similitude group and transformations of the type $\exp[D + b_1 B_2 + c y_4 X_4]$ with b_1 and y_4 so chosen as to leave $\tilde{P}_{\alpha, \beta}$ invariant.

We shall consider some examples and then list all subalgebras of S obtained in this manner in Table IV above.

Consider the algebras $S_{\alpha, \beta}$ of Table II. The element \tilde{D} can be of the form $D + a B_2 + b B_3 + c B_4 + x \delta X_4$. Commuting with $B_1 + x_1 X_1$, B_1 or $B_1 + x_1 X_1$, as the case may be, we find $b = c = 0$. Consider the first case $S_{10,6}$, i.e.,

$$\tilde{D} = D + B_2 + x X_4, \quad B_1 + x_1 X_1, X_2, X_3.$$

We have

$$\sqrt{\tilde{D}} = D + B_2 + x X_4, \quad B_1 + x_1 X_1,$$

and hence $a = 1$. Algebra (29) with $a = 1$, x arbitrary real
enumerates the subalgebras of this type, the second tells us which subalgebras of $LSL(2, C)$ they were derived from, the third lists their intersections with the Poincaré algebra using the notations of Table II, the fourth and fifth column give all the generators and the last column gives the dimensions of the subalgebras.

This completes the list of all conjugacy classes of subalgebras of the similitude algebra.

Since the subalgebras of the homogeneous similitude algebra (the algebra of the homogeneous Lorentz group extended by dilatations) represent separate interest we provide a separate table of these (Table V). We suggest the name "scaling group" for this group. In Table V we use somewhat different conventions than in the rest of this article, in order to be able to show the mutual inclusions of the subalgebras. In this table $B_x = \cos x B_1 + \sin x B_2$ with $0 \leq x < \pi$, i.e., we include the points $x = 0$ and $x = \pi/2$. Subgroups of $D \otimes SL(2, C)$ that are contained in $SL(2, C)$ are separated out graphically. The lines connect each subalgebra (or continuous subgroup) with its maximal subalgebras. A full line indicates that the inclusion holds always, a dotted line indicates inclusion for specified values of the parameters only. Note that the way of writing the subalgebras in Table V corresponds more directly to Sec. 4 of article I than to the conventions of the rest of the present article.

4. CONCLUSIONS

The result of this paper is the complete classification of all subalgebras of the Lie algebra S of the similitude group SG. These subalgebras are of several types.

1. Subalgebras of S that are also subalgebras of the Poincaré algebra P and are splitting extensions of subalgebras of $LSL(2, C)$ by translations. Conjugacy classes of such algebras under the similitude group coincide with conjugacy classes under the Poincaré group. Representatives of all such algebras are listed in Table III of I and are not reproduced here. Their labels $S_{k,k}$ are obtained by setting j and k equal to the values they take in Table III of I.

2. Subalgebras of S that are also subalgebras of P and are nonsplitting extensions of $LSL(2, C)$ by translations. Many independent conjugacy classes under the Poincaré group coalesce under the similitude group. Representatives of all conjugacy classes of such algebras (under the similitude group) are given in Table II of this paper.

3. Subalgebras of S that contain D (the dilatation) as a generator. Representatives of all such algebras are obtained by taking Table III of I and adding the element D itself to the generators. We do not reproduce these subalgebras here; they are however assigned labels $S_{k,k}$ [see (24)].

4. Subalgebras of S such that (i) they contain an element $D = D + \sum B_x B_x + \sum x X_x$, but no SG-conjugate of D, (ii) their intersection with P splits over the translations. Representatives of all such algebras are listed in Table III above.

5. Subalgebras of S satisfying condition 4(i) above, but such that their intersection with P does not split over the translations. Representatives of all such algebras are listed in Table IV above.

The notations of this article are not entirely self-evident. It is, however, quite trivial to return to the usual physical notations. For the generators, indeed, the connection is given in formulas (13) and (14). Note that in our tables we have sometimes let the continuous parameters range through closed regions, e.g., $0 < c < 2\pi$ in $S_{\pi, \pi}$, sometimes through open ones like $0 < c < \pi/2$, $\pi/2 < c < \pi$ in $S_{\pi, \pi}$. In the last case the end points are separated out and listed separately. We could clearly have bunched more algebras together under one heading, but we did not find this appropriate, since the algebras, corresponding to the limiting values of the parameters often have quite specific properties.

The homogeneous similitude group $expD \otimes SL(2, C)$ is of separate interest and has already been treated in I. Indeed, in Table V of I we gave a complete list of subalgebras of $D \otimes LSL(2, C)$, obtained by using a version of the "Goursat twist method," 17-19 also presented in I. The results of Table V of I are actually contained in the tables of this paper in a somewhat different, but equivalent form. Table V of the present paper is new and shows the mutual inclusions of various conjugacy classes of subgroups of the homogeneous similitude group.

Let us just mention some related work on the classification of continuous subgroups of real Lie groups. All one-dimensional subgroups of $U(p,q)$ and $SU(p,q)$ groups are known. 20 A classification of the real semisimple subgroups of real semisimple groups was performed. 21 Subgroups of the Poincaré group were also considered by other authors 22 and some work has been done on certain subgroups of the conformal group, Galilei group and others. 23

In the following papers of this series we plan to provide similar lists of subalgebras and continuous subgroups for further groups of interest (de Sitter, conformal and others). We shall also return to the subgroups of the Poincaré and similitude groups and discuss some of their properties (mutual inclusions, isomorphisms, existence of Casimir operators, etc.).

ACKNOWLEDGMENT

One of the authors (J. P.) would like to thank the Physics Center in Aspen, Colorado where part of the work was performed, for its hospitality.

*Work supported in part by a NATO research grant.

1Permanent address: Department of Mathematics, Ohio State University, Columbus, Ohio.

TABLE V. Continuous subgroups of the scaling group (homogeneous Lorentz group extended by dilatations).

17 E. Courant, Ann. Sci. de l'Ecole Normale Supérieure, 60, 6, 9 (1889).

