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A new tunneling path for reactions such as 
H + H2-+H2 + Ha> 
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The standard tunneling path in transition state theory for reactions such as H + H2-+H2 + H has been the 
so-called reaction path, namely the path of steepest ascent to the saddle point. This path is now known to 
give numerical results for the reaction probability which are in disagreement with the exact quantum 
mechanical ones by an order of magnitude at low tunneling energies. A new tunneling path corresponding 
to a line of vibrational endpoints is proposed. It is much shorter and is shown to give results in agreement 
with the quantum ones to within about a factor of two. A semiclassical basis for choosing this new path is 
given. 

I. INTRODUCTION 

Recent comparisons of quantum mechanical and tran­
sition state theory calculations for the colinear and 
three-dimensional reaction rates of H +Hz- Hz+ H have 
revealed significant discrepancies between the two meth­
ods. 1 These discrepancies occur particularly at low en­
ergies, where tunneling is very important. The quantum 
mechanical rate is frequently of the order of ten to a hund­
red times larger than the rate predicted by transition 
state theory. Various numerical complex-valued classi­
cal trajectory studies have been made in this tunneling 
region, and used in semiclassical calculationsz• 3 and 
more recently in a periodic-trajectory-transition-state 
(PTTS) formalism. 4 The results obtained using the 
PTTS show markedly improved agreement with the quan­
tum mechanical results. 4 (The semiclassical ones did 
also, but they are not of the transition state theory type.) 

The question arises whether there is some simple 
physically intuitive modification of the usual tunneling 
calculation in transition state theory which yields good 
agreement, without requiring the computation of actual 
classical trajectories. Such a method is described in 
the present paper. It involves a new tunneling path for 
this H +Hz- Hz+ H reaction, a path corresponding to the 
vibrational limit during the motion. A semiclassical 
basis for the method is given. 

II. TUNNELING PATH AND RESULTS 

In transition state theory5 it is customary to calculate 
the "reaction path," the curve of steepest descent pass­
ing through the saddle-point, and employ it as the tunnel­
ing path. We let the coordinates along that path be de­
noted by s, and the potential energy along this "s- curve" 
by V1 (s ). For a co linear reaction in the tunneling region 
the vibrational energy of the lowest vibrational state in 
the transition state at s = sl is the zero-point energy, 
E0(s 1). The translational energy available for tunneling 
at any s is then often chosen to be the total energy E min­
us V1 (s)+E0(sl). Actually, the effective potential energy 
barrier is V1(s)+E0(s), where E0(s) is the system's lo­
cal zero-point energy at a given s, and this barrier is 
now frequently used instead of V1 (s) + E 0(sl). Classical-
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ly, the system will stop its motion in the s-direction at 
the s = s* for which the energy barrier equals the total 
energy, i. e., for which 

V1(s*)+E0(s*)=E, (2. 1) 

for a system in its lowest vibrational state. 

The coordinate perpendicular to the s-curve, a vibra­
tional coordinate, is denoted by p, with p positive when 
this coordinate is stretched, and negative when com­
pressed. p equals a (signed) measure of the distance 
perpendicular to a tangent to the s- curve. The potential 
energy associated with p-motion at any s is designated 
V2 (p, s), where V2(0, s) = 0 on the s-curve. The maximum 
vibrational amplitude at a given s is the p = Pmu which 
satisfies 

(2. 2) 

The family of points [Pmax(s), s] satisfying (2. 2) and for 
which p is positive describes a curve, which we shall 
call the t- curve. 

The contour lines of a typical potential energy surface 
for the H + H2 reaction are depicted using the usual 
skewed axes5 in Fig. 1. The. reaction path (the s- curve) 
is shown as a solid line, and the t- curve as the dotted 
line. The central idea of the present paper is that a pre­
ferred way of tunneling is not along the reaction path, 
the s-curve, but rather along a shorter path, the t­
curve described above. The tunneling along the t-curve 
starts from a point P for which s = s* and p = Pmaz. 

and continues along the t-curve to a corresponding point 
P' in the exit channel, i.e., the point for which (2.1) and 
(2. 2) are again satisfied but in the exit channel in Fig. 
1. The starting and end points on the t- curve, P and P', 
depend on the energy E, as in (2.1), and are given in 
Fig. 1 for a particular E. If V denotes the potential en­
ergy along the t- curve then 

V= V1(s)+E0(s) (on t-curve), (2. 3) 

as compared with V1 (s) on the s-curve. 

If dq denotes an element of length along the tunneling 
path, then the imaginary part of the complex-valued 
phase integral which appears in a tunneling calculation is 
J(E). 

J(E) = Im fP' pdq/li (2. 4) 
p 
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FIG. 1, Plot of potential energy contours for the H + H2 - H2 
+ H reaction using the Porter-Karplus surface. Solid line is 
line of steepest ascent (reaction path). Dotted line is the t­
curve (limit of vibrational amplitudes in the given vibrational 
state, here the zero-point state). The points P and P' denote 
the initial and final tunneling points on the t-curve for a par­
ticular total energy. The corresponding tunneling points if 
tunneling occurred along the reaction path are Q and Q'. 

where Im denotes "imaginary part of"; p is the compo­
nent of the momentum along the path, e. g. , on the t­
curve it is 

p=[2J.L(E- V)]1 12 , (2. 5) 

where V is given by (2. 3). tJ. is a reduced mass whose 
value depends on the distance scaling factors used in 
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FIG. 2, Plot of reaction probability vs initial translational 
energy in the center of mass system for the H + H2 - H2 + H 
reaction, for the Porter-Karplus potential energy surface. 
Curves are given for the exact quantum mechanical result 
(Ref. 9), the usual transition state theory result, the present 
transition state theory result and a result (PTTS) which intro­
duces numerically computed periodic trajectories into a transi­
tion state theory [curve from Fig, 6 of Ref. 4(b)). 
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FIG. 3. same legend as Fig, 2, but for an SSMK Wall-Porter 
potential energy surface. Exact results are from Ref, lO(b) 
and the PTTS curve is obtained from Fig. 5 of Ref. 4(b). 

Fig. 1. The J.l and scaling factors used in the present 
paper are the standard ones. 5•6 

The semiclassical transmission coefficient (ratio of 
outgoing flux of products to incident flux of reactants) is 
K(E). Using the results obtained by mapping the effec­
tive potential onto one of parabolic form, K(E) is given 
by7 

K(E) = exp(- 2J)/(1 +exp(- 2J)] . (2. 6) 

The initial translational energy is E- E0(- oo), where 
E0(- oo) is the initial zero point energy. A plot of K(E) 
versus this translational energy, for the Porter-Karplus 
surface8 and for the new tunneling path, is shown in Fig. 
2, together with the quantum mechanical9 and convention­
al transition state results. The results are seen to 
agree quite well with the quantum ones, 9 and show con­
siderable improvement over the use of the conventional 
path. In Fig. 3 the corresponding results for the SSMK 
Wall-Porter surface10

•
11 are shown. The results agree 

with the quantum results10
<b> to about the same accuracy 

as before. An interesting approach to transition state 
theory, given by Miller4 et al., utilizes numerically 
computed classical trajectories (periodic-trajectory­
transition-state method, PTTS). The results are given 
in Figs. 2 and 3. 

In the H + H2 - H2 + H reaction at the total energies giv­
en in Figs, 2 and 3 no excited vibrational states of H2 can 
exist. In other systems for which excited vibrational 
states can exist in this tunneling region, one can compute 
a transmission coefficient Kn(E) for the nth vibrational 
state at the given total energy, using (2. 6) with E0(s) in 
(2.1)-(2. 3) replaced by En(s). The sum of the trans­
mission coefficients at the total energy E is then the sum 
Ln Kn(E) over all energetically accessible initial states n 
in a microcanonical ensemble of initial states. Micro­
canonical transition state theory, and the manner in 
which each K" contributes to the reactive flux is de-
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scribed, in both the adiabatic and general forms of mi­
crocanonical transition state theory in Ref. 12. 

A theoretical basis for the present choice for the tun­
neling path is obtained from the semiclassical arguments 
given in the next section. 

Ill. SEMICLASSICAL ARGUMENTS 

In semiclassical theory the action variables are the 
· b 13(a)-13(f) 0 classtcal analog of the quantum num ers. ne 

can obtain a wavefunction13<•>· 13<d> for a collision system 
beginning in a given specified initial quantum state n, by 
using a set of classical trajectories having the desired 
initial action variables but uniformly distributed in initial 
phase w0• When this wavefunction is introduced into a 
well-known quantum mechanical expression for the S­
matrix elements S,n one obtains an integral expression 
for these elements. U<d>,U<g> The reaction probability 
(transmission coefficient) of a system in staten is 

(3.1) 

where the sum is over all final states m of products. 
The S-matrix element can be written as (3. 2) for a two 
coordinate system (the dw0 becoming dwfawg •.• , and the 
preexponential factor becoming a determinant, for a 
higher dimensional system):13 <d> 

smn = .2::: r I aw/aw0l1 12 exp - i qap 1 [ J'' 
paths J;;;o=o pi 

+2JTi(;i- m)w- N1ri] dw0
, (3. 2) 

where w is a final angle variable (a final phase), a con­
stant for any trajectory, I qdp denotes a path integral 
with q being a distance along the path if the coordinates 
are Cartesian, and p being the local Cartesian momen­
tum component along the path. (If other coordinates are 
used qdp denotes a sum Lk qkdPk over all coordinates k. ) 
The integration limits are from the value (p1

) of the mo­
mentum p at a vibrational endpoint at some large initial 
separation distance R1 to that (p1) at a vibrational end­
point at some final separation R'. The integration path 
is chosen to consist of three parts: first at a fixed 
R(=R1

) from the vibrational end-point to some desired 
initial vibrational phase w0

, then along an actual classi­
cal trajectory to the final specified separation distance 
R1 (in the present case in the products' chaQnel) and fi­
nal phase w, and then at fixed R1 to a vibrational end­
point at the R'. The first and third legs of the integra­
tion are performed in regions where the internal motion 
is separable from the translational motion, and so an in­
tegration path at fixed R can be chosen in those regions. 
N is related to the number of times the trajectory touch­
es one of the vibrational caustics (the one not joining the 
initial and final vibrational end points). 12 <d> The classi­
cal mechanical analog of the final quantum number of the 
trajectory in the products' channel is n, and the transi­
tion of interest for smn is for n- m. 

The principal approximation which will be introduced 
into (3. 2) is one of vibrational adiabaticity, namely the 
assumption that the quantum number n remains constant 

during the trajectory. 14 The assumption presumes a high 
enough vibrational frequency of the motion transverse to 
the reaction path. With the assumption of vibrational 
adiabaticity, the value of the classically attainable s be­
comes independent of the initial vibrational phase w0

• 

This s* is then given by Eq. (2.1) in the case that the 
vibrational state is the lowest one (and by the same equa­
tion with E0(s*) replaced by En(s*), when the vibrational 
state is any given state n). These trajectories thereby 
each reach the same vibrational turning point P at s*, 
and then tunnel from there since it is the closest point 
to the classically allowed region of the products' chan­
nel. Thereby, for each w0 one has the same value of the 
complex-valued quantity I pdq in (3. 2) from point P to 
point P' for each member of this family of trajectories, 
a family whose members differ only in w0

• 

InEq. (3. 2) one can now set n = n, since in the vibration­
ally-adiabatic approximation all trajectories will have 
the same value of n, namely the initial value n. (When 
the coordinates aWO denotes awf, a:wg, ... , n and n de­
note nt. n2, ••• and nt. n2, ••• ). The integral over p 
can be integrated by parts, yielding I pdq- ~R1 + p~R1 , 
PR being the translational momentum, since the vibra­
tional momentum vanishes at the end points of the above 
integration path. p~ and P1 are the final and initial 
translational momenta. The trajectories beginning with 
different w0 will all have the same value for this integral 
because of the absence of a relative distortion of the tra­
jectories in a vibrationally-adiabatic approximation. It 
can then be placed outside the integral over w0

• Because 
of this lack of distortion the aw/aw0 in (3. 2) can be set 
equal to unity. If the imaginary part of f pdq/n, namely 
the value along the path between P and P', is denoted by 
J(E), Eq. (3. 2) gives (3. 3) for I S,n 12

, after integration 
over w0

, 

I smnl 2 
= exp(- 2J). (3. 3) 

Equation (3. 3) presumes only a single traverse be­
tween points P and P', whereas one should really sum in 
the right hand side of (3. 2) over all traverses, as indi­
cated by 4ath• (suitably renormalized to conserve flux, 
when there is a branching of the paths). For example, 
the system may go from P to P', and return to the re­
actants' channel, or go from P to P', return to P, re­
turn to P', and then go into the products channel, and so 
on. There are an infinite number of such paths. In ef­
fect, a sum over all these paths is obtained by mapping 
the tunneling problem between P and P' onto the para­
bolic barrier problem, and solving that problem, with 
the result that the tunneling factor is given7 by (3, 4) in­
stead of (3. 3), 

I smnl 2 = exp(- 2Jl/[1 + exp(- 2J)J (3. 4) 

Eq. (3. 4) reduces to (3, 3) when J is large, that is when 
all paths but the single traverse path become unimpor­
tant. 

To summarize, we have introduced into (3. 2) the ap­
proximations of vibrational adiabaticity and a semi­
classical tunneling expression (3, 4), with the implication 
of tunneling along the shortest path, namely between P 
and P'. The tunneling approximation (3. 4) should intro­
duce very little error, since it has been numerically 
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tested. The third and final approximation which remains 
to be introduced is the choice of the optimum tunneling 
path between P and P' for calculating J. The "best" path 
is a dynamical one, namely the one which, by Hamilton's 
principle of least action, has the least value of f pdq be­
tween the two points. 15

Cb> We have selected the t-curve, 
the t- curve being one which involves tunneling in the s­
direction and not in the p-direction. We have indeed ex­
amined a number of other paths and found the Imf pdq 
for those paths for the present reaction either to have 
nearly the same or a larger value. Examples are given 
in Appendix A. 

A principal assumption, as already noted, is the vi­
brational adiabatic one. Actually, any reaction, even 
H + H2 - H2 + H, is at least somewhat vibrationally- non­
adiabatic. 14 For example, classical trajectories for this 
reaction reveal that s* depends somewhat on uP. 16 Thus, 
as a result of passing through the pretransition state re­
gion there has been some change in the vibrational action 
variable of the p-motion before reaching s*, whereas 
that action variable would be constant in a vibrational­
adiabatic approximation. Thereby, for some w0's the 
s* is larger and for others smaller than that determined 
by Eq. (2. 1 ). We have termed this vibrational nonadia­
baticity elsewhere the "nonadiabatic tail, " 17 because 
some systems will pass over the barrier at energies 
where in the vibrationally-adiabatic approximation they 
could not. The agreement in Figs. 2 and 3 is neverthe­
less seen to be quite reasonable. 

IV. DISCUSSION 

The new tunneling path is a simple path which provides 
a considerably improved agreement with the quantum re­
sults, as compared with the standard tunneling path. We 
have neglected vibrational-nonadiabaticity in the pre­
transition state region, as indeed do all quantum transi­
tion state theories. Vibrational nonadiabaticity allows 
some systems to pass sl with a vibrational energy less 
than E0(sl), and causes any transition state theory re­
sults at energies near E equal to V(sl) + E0(s1) to be too 
low. The error is not more than a factor of about two, 
judging from the results in that region (largely not given 
in Figs. 2-3, but calculated). 18 

We have considered above a class of reactions involv­
ing three centers of comparable (in the present case 
equal) masses. One system of particular interest is the 
transfer of a light particle between two heavy ones. 
Here, the acute angle in Fig. 1 is so much smaller that 
the exit and entrance channels are almost parallel. Dy­
namically this syst€m is quite different, and it is planned 
to discuss tunneling for such a system elsewhere. 

Finally, we should note that tunneling along a path 
other than the standard reaction path was first employed 
by Johnston and Rapp, 19 who considered straight line 
paths. 

ACKNOWLEDGMENT 

We are pleased to acknowledge the support of this re­
search by the National Science Foundation. One of us 

(M. E. C.) was the recipient of a University of Illinois 
Fellowship. 

APPENDIX A. ACTION CALCULATED ALONG 
ALTERNATIVE TUNNELING PATHS 

We consider the phase integral I{ pdq along several 
paths to compare with the value along the t-curve. The 
principle of stationary action for fixed P, P', and E is 

p' 

fJ t pdq = 0 , (A1) 

which implies that the variations (from the value along 
the best dynamical path) of its real part and of its imag­
inary part are zero. The latter part determines the tun­
neling probability [cf. Eq. (3. 3)], and we focus attention 
on it. Strictly speaking, the p in (A1) should be directed 
along that path. We first consider some paths for which 
this is not the case but which satisfy vibrational adia­
baticity. 

One family of curves is the following: (1) a path at 
constant s* from p = Pmu. to p = kPmu where k is a constant 
less than unity, (2) a path with p(s) = kPmu(s) from that 
s* to the s* in the exit channel, and (3) a path at that s* 
from p = kPmu to P'. Only step (2) contributes to Imf pdq, 
when p lies between its minimum and maximum classi­
cally allowed values. At any point in step (2) the rele­
vant value of p, p., in the integrand (the component along 
the path) is {2J.L[E- E0(s)- V1 (s)]}112

, since 

(A2) 

Thus, at any s in step (2) the p in the integrand, namely 
Ps, is the same as the p on the t-curve, given by Eqs. 
(2. 3) and (2. 5). However, the path along step (2) is 
longer than that along the t-curve, and thus the value of 
Imf pdq is greater than that along the t-curve. For ex­
ample, for the SSMK Wall-Porter surface atE= 0. 3985 
eV, J(E) along the s-curve is 5. 81, whereas that along 
the t-curve is only 3. 65. (J is Imf pdq/1£.) 

Another set of paths is that for which p(s)~Pmax(s). 
Once again we first choose a three-step path: (1) a path 
at the initial s* from p = Pmu. to p = kPmu• where k is a 
constant greater than unity, (2) a path with p(s) = kPmu.(s), 
from the initial s* to the s* in the exit channel, and (3) 
at the final s* from p = kPmu to p = Pmax• Now all three 
steps contribute to Imf pdq. For k = 1. 01 and 1. 05, the 
values of J were 3. 73 and 4. 07, respectively, for the 
cited E, thus once again exceeding the value of J = 3. 65 
for the t- curve. 

These results are summarized in Table I. The path 
along the t- curve is the only internally consistent path in 
Table I: It alone has a zero component of velocity nor­
mal to it. 

Many other paths can be suggested, and a complete in­
vestigation of them would be equivalent to solving Hamil­
ton's equations in the vicinity of the saddle-point. 
Among the classes of paths are (A3), choosing s = 0 to 
lie along the bisector of the acute angle in Fig. 1. 

p(s)=[l=Fa(1-ls/s*I)Jpmu.<s) (O<a<1). (A3) 

With the minus sign, one would have p(s)~Pmu(s), and 
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TABLE I. Summary of phase integrals 
along different tunneling paths. 

Description of patha Imf pdq/n 

p =0 (s-curve) 5.81 

p =kPmax (k < 1) >3. 65 

p = Pmax (t-curve) 3.65 

p=1,01pmax 3.73 

P =1. 05 Pmax 4.07 

aThese paths refer to three-step paths, 
but only the middle step between P and 
P' is described in this column. The 
value in the second column is the value 
of Imf pdq/n for the entire path between 
P and P'. All results are for the SSMK 
Wall-Porter surface for E=0,3985 eV. 

in the vibrationally-adiabatic approximation the Imp in 
J(E) would still be the Ps given by (A2). The s-distance 
part of the path length would be greater than that for the 
t-curve and so J(E) would be larger. With the plus sign 
of (A3), p(s)?:_Pmax(s). If one used zero velocity compo­
nent normal to the path, thereby dropping the vibrational 
adiabaticity (other than for the t-curve, for which a= 0), 
p would be [21.l(E- V)]112, where Vis the potential ener­
gy on the path, and J(E) could readily be calculated. 
Calculations for these paths and for other systems will 
be presented elsewhere. 

We have not discussed energies where E> V1(st)+E0(sl) 
but for which diffraction can occur when E is just above 
this barrier. Here, the path which maximizes K is one 
for which the end points are imaginary rather than real, 
and is not, therefore, between P and P'. The K(E) will 
lie between the values of 0. 5 and unity in this region. 
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