CaltechAUTHORS
  A Caltech Library Service

Diffusion of a multi-species component and its role in oxygen and water transport in silicates

Zhang, Youxue and Stolper, E. M. and Wasserburg, G. J. (1991) Diffusion of a multi-species component and its role in oxygen and water transport in silicates. Earth and Planetary Science Letters, 103 (1-4). pp. 228-240. ISSN 0012-821X. http://resolver.caltech.edu/CaltechAUTHORS:20120820-161958837

Full text is not posted in this repository. Consult Related URLs below.

Use this Persistent URL to link to this item: http://resolver.caltech.edu/CaltechAUTHORS:20120820-161958837

Abstract

An important but poorly understood factor that affects diffusion rates is the role of speciation during diffusion of a multi-species component. The diffusion of such a component is complicated by the different diffusion coefficient of each species and the interconversion reactions among the species. These complexities can be treated by a diffusion equation that incorporates the diffusive fluxes of all species contributing to the concentration of the component. The effects of speciation on the diffusion of the component can be investigated experimentally in some simple cases by measuring concentration profiles of all species developed during diffusion experiments or by studying some of their other consequences. Experimental data on water diffusion in rhyolitic glasses indicate that although dissolved water is present as two species. H_2O molecules and OH groups, molecular H_2O is the dominant diffusing species at very low to high water concentrations. This explains the apparently complex behavior of water diffusion. Experimental data on oxygen diffusion in some silicates using ^(18)O tracers in the form of H_(2)^(18)O are consistent with the idea that ^(18)O transport is dominated by diffusion of H_2O molecules even at lower water contents (ppm or less). This explains why oxygen transport depends on the presence of water and generally depends on water fugacity linearly. For this mode of oxygen transport, there is a simple theoretical relationship between the effective total oxygen diffusion coefficient and the total water diffusion coefficient that is a function of only the water concentration of the silicate at low water content. This relationship appears to describe quantitatively the existing data over a wide range in water contents and diffusion coefficients in several phases.


Item Type:Article
Related URLs:
URLURL TypeDescription
http://dx.doi.org/10.1016/0012-821X(91)90163-CDOIUNSPECIFIED
http://www.sciencedirect.com/science/article/pii/0012821X9190163CPublisherUNSPECIFIED
Additional Information:© 1991 Elsevier Science Publishers B.V. Received 18 June 1990. Accepted 31 October 1990. Available online 23 October 2002. We thank Professors M.S. Peterson, G.R. Rossman, H.P. Taylor for helpful discussions, Professor C.E. Langmuir for editorial handling, and three anonymous reviewers. Contribution 4939 of Division of Geological and Planetary Sciences, Caltech. This work was supported through grants from the National Aeronautics and Space Administration (NAGW-1472 to E.M.S.), the National Science Foundation (EAR-8916707 to E.M.S.) and the Department of Energy (DE-FG03-88ER13851 to G.J.W.).
Funders:
Funding AgencyGrant Number
NASANAGW-1472
NSFEAR-891707
Department of Energy (DOE)DE-FG03-88ER13851
Other Numbering System:
Other Numbering System NameOther Numbering System ID
Caltech Division of Geological and Planetary Sciences4939
Record Number:CaltechAUTHORS:20120820-161958837
Persistent URL:http://resolver.caltech.edu/CaltechAUTHORS:20120820-161958837
Official Citation:Youxue Zhang, E.M. Stolper, G.J. Wasserburg, Diffusion of a multi-species component and its role in oxygen and water transport in silicates, Earth and Planetary Science Letters, Volume 103, Issues 1–4, April 1991, Pages 228-240, ISSN 0012-821X, 10.1016/0012-821X(91)90163-C. (http://www.sciencedirect.com/science/article/pii/0012821X9190163C)
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:33378
Collection:CaltechAUTHORS
Deposited By: Aucoeur Ngo
Deposited On:21 Aug 2012 14:42
Last Modified:29 Oct 2013 15:12

Repository Staff Only: item control page