Tip—sample interactions: Extraction of single molecular pair potentials
from force curves
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This article describes a method for extracting the true tip—sample potential from an experimental
force curve in atomic force microscopy. This potential is not the negative integral of the force curve.

Rather, the potential is a more complicated function of the force curve and cantilever spring
constant. If information about the shape of the tip is known, a decorrelation may be performed to
extract molecular pair potentials from the total tip—sample potential. Applications and limitations of

this method are discussed. €996 American Vacuum Society.

I. INTRODUCTION tip—sample potential will be derived. These results will be
compared to the standard method of force curve interpreta-

Atomic force microscopy(AFM) is capable of imaging tion by numerical simulation

surfaces with high resolution in a noninvasive marinéffo

¢ AEM . t a flexibl il ith A chemical model of the tip—sample interaction will also
perform an AFM experiment, a fiexible cantiever with a |, developed. This model analyzes the relation between the
small protruding tip is brought into contact with a surface; as;:

the tio i d. the int tion f bet the el tStl shape, intermolecular potential, and the total potential
€ tip 1S scanned, the intéraction forces between e electrqpl,, qq, tip and sample. Numerical and analytical methods

clout(_jls of ]Ehe a_ttoms o{_gh_e tp an_? the sample perturb th‘?or extracting single intermolecular pair potentials from the
cantiiever from Is equilibrium position. total tip—sample potential will be derived, and the limitations

In addit.ion {0 its imaging capability, AFM is also capable of applying these methods to real experimental data will be
of measuring the force between the tip and sample as a fun%ﬁscussed

tion of tip—sample separation, which is analogous to Israche-

villi's surface force experiments with a smaller contact“. EXTRACTION OF ACCURATE TIP—SAMPLE

4,5
area:
Several models have been proposed to explain AFM forcé:)OTEI\”—IALS FROM FORCE CURVES

curves®—® These models show poor agreement with experi- In this section, an accurate analytical expression for the

mental data. Often, the force curve is assumed to be relaté@lationship between the force curve and the actual tip—
to the interaction potential by sample potential will be derived. This expression will be

compared with the standard method of force curve interpre-

d tation, and its application to real-world data will be dis-
Fmeas(;r) == a V(r), (1) cussed.
wherer is the tip—sample separation a¥dr) is the poten- A. Theoretical model (analytical)
tial. However, an experimental force curve does not record The sample—tip—cantilever system will be modeled by re-
the force on the tip as a function dfp—sampledistance. Pplacing the cantilever with a spring of spring constintn
Rather, it monitors the force on the tip versus the separatiofiig. 1(b), the cantilever deflectiof is z— D — ¢4, wherec,,
of the cantilever baseand the sample. Equatiaii) is only  is the equilibrium length of the spring.
correct when the cantilever base and the tip do not move To perform a force curve, the cantilever deflection is
with respect to each other, which is true only in the limit of monitored as the base is withdrawn from the sample; the
a very large cantilever spring constant. This error is respondistance between the cantilever base and the satnpieh
sible for the inaccuracy of the negative integral method ofiS 2) is being controlled, not the distance between the tip and
reconstructing the tip—sample potential from the force curvethe samplgwhich isD). Since a force curve does not accu-
The chemical nature of the tip and sample must also b&ately describe the force versus distance behavior of the tip
considered when interpreting force curves. The potential beversus the sample, we will use the terminology “deflection
tween tip and sample will be primarily due to the interactionsversus distance curvefwhich is denoted DVD curve or
of the surface atomsControlled experiments confirm that 8(2)].
the surface chemistry dominates the shape of the force To find the relationship betwedd andz, an equation for

curves’ force balance is used:
In this article, a thorough analysis of the AFM sample—tip d
cantilever system will be presented. An accurate expression k(z—D —Cg)+ — aD V(D)=0. (2

for the relationship between the force curve and the actual
The first term is the force from the cantilever spring; the
3To whom correspondence should be addressed. second term is the force due to the tip—sample potential.
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Fic. 1. The tip—sample—cantilever system. The variab)esc.,, andg are
the cantilever-base—sample distance, the tip—sample distance, the equili

In order to perform this integral, EG5) must be written as a
function of D, not z:

B'(z)=p'[D(2)], (6)
and from Eq.(4):

D(z)=f 1-8'(z)dz @)

Therefore, in order to convert from a DVD curve to the
actual potentialD(z) must be computed fronB(z) using
Eq. (7). Then,V(D) can be determined using E).

B. Numerical simulation

Computer code has been developed to convert the DVD
curve to the tip—sample potential. Figure 2 presents a pseudo
“hard-wall” potential. The DVD curve that would be experi-
mentally measured due to this potential was calculated; from
this DVD curve, the potential was “reconstructed” by both
the negative integral method and the method outlined above.
The zero point on the numerical integration was determined
By assuming that the force on the cantilever is zero when the

rium (undeflectedispring length, and the cantilever deflection, respectively. tip—sample separation is large. Figure 3 is the same simula-
(@) shows the undeflected cantilevéb) shows the cantilever deflected by tion for a Morse potential.

repulsive interaction with the surface.

The simulations show that there can be a “loopback” in
the calculated DVD curve. Examination of the analytical ex-
pressions in Sec. Il A shows that this loopback can only oc-
cur when the tip—sample potential is attractive and has a

When the cantilever is in conta¢a compressed statethe
cantilever force is negative. The compressed position is in §¢cond derivative greater than the spring constant of the can-
negative derivative will be positive. The total force will be Momentarily exceeds the stiffness of the cantilever. This
zero at equilibrium. manifestation generates the “jump to contact” and “snap-

As the cantilever base is moved, the change in the ti®ff” commonly observed in experimental DVD curves.

sample distancedD/d2) is

dD k
dz  k+(d?dD)VD)"

)

For the limiting case wher&>d?V,J/dD? the cantilever is
not bent by the tip—sample potential, abdchanges exactly
the same amount a& For k<d?V,JdD? the tip—sample
potential is very stiff and the tip position remains fixed rela-
tive to the sample regardless of how the cantilever base i

moved.

Experimentally, a force curve measures the cantilever d

flection (B) as a function ofz. Therefore,

d
pia=22 -2 (2pcy

:1_E

_(d¥dD?)V(D)
~ k+(d?/dD?)V(D)"’
which can be rearranged to give

B KB (2)]
VtS(D)—f f —[1_3,(2)] dD dD. (5)

(4)
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The loopback observed in Fig(B) is not simply a math-
ematical artifact. The mathematics used in this article pro-
duce one DVD curve that is a function of the potential and
cantilever spring constant. The loopback in the curve implies
that for some values of there are two positions at which the
cantilever exibits a local energy minimum. While approach-
ing the sample, the cantilever would remain in the same po-
tential well until it reaches the point of discontinuity where

e DVD curve starts to loop back. At this point, the canti-
ever would jump to the other local minimufjump to con-
tac). When retracting the tip, the point of discontinuity is
further away from the sample, as shown in Figb)3 This
explanation also predicts that the snap-off point will always
be further from the sample than the jump to contact.

Note that in the case where there is a jump to contact and
snap-off, the loopback region of the DVD curve cannot be
measured. This gap limits the utility of the method discussed
above for reconstructing tip—sample potentials. The problem
may be minimized by using a cantilever with a high spring
constant. A numerical algorithm that is insensitive to this
“loopback” region is in developmenit

These simulations also show that the DVD-to-potential
transformation is highly sensitive to noise. Application of a
smoothing algorithm to the DVD curve prior to the conver-
sion corrects this problem. The smoothing algorithm em-
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Fic. 2. Pseudohard wall potential simulation. The cantilever spring corstaNtm. All the DVD curves have been multiplied byl to show deflection away
from the surface as positive. The potential derived with the negative integral method has been truncated at 1 nJ for comparison. Notice the difference in length
scale.

ployed was a simple, three-point moving window: the newand sample, i.e.V,(D)=V (D). Finally, the tip—sample

value at each point is the average of the point and its twanteraction will be represented by the summation of all the

nearest neighbors. For 0.1 nm of noise and a cantilever witpairwise interactions of chemical “head groups.” It will be

a 0.1 N/m spring constant, five passes of this smoothinghown that the tip—sample potential is a cross correlation of

algorithm were usually sufficient. For 0.25 nm of noise, tenthe intermolecular potential with a function of the tip geom-

passes were sufficient. The smoothing was considered cometry. Extraction of the intermolecular potenti@r informa-

plete when the conversion results were reproducible. tion about the shape of the jifrom the tip—sample potential
Two other factors may contribute to the inaccuracy ofis possible by either direct decorrelation or an analytical fit-

experimental force curves: scanner calibration and springing method; analytical fitting will be shown to be the more

constant uncertainty. For most commercially available sysuseful of the two for real data.

tems, scanners are calibrated by the manufacturer. However,

hysteresis and repoling may alter the calibration accuracy. It

is preferable to monitor the sample position simultaneoushyy. sym —Correlation

with an alternative mechanisfauch as interferometry or ca- , ) ,

pacitancg while the force curve is being performed. Also, 1€ total tip—sample potential can be written as a sum of

Eq. (5) is dependent upon the cantilever spring constantN€ Single potentials at variable distances (see Fig. 4

Typical manufacturer specifications can be very inaccurate V,(D)=Vo(D+ a1) + Vimo(D+ @) + VoD + a3)
and imprecisé? A number of highly accurate methods have
been developed to determine the cantilever spring constant T ®)

experimentally?~4 and forn groups:

n

[ll. EXTRACTION OF INTERMOLECULAR PAIR _ _
POTENTIALS FROM TIP-SAMPLE POTENTIALS Vts(D)_Z'l Vimol D+ @) ©

In this section, the relationship between intermolecularas the limit of a continuum ofy’s is approached:
pair potentials, tip geometry, and total tip—sample potential
will be analyzed. The tip—sample potential can be modeled , (D)= fx V(D + @) p(a)da (10)
as the potential between rigidly bound head groups on the tip = Mol ’

J. Vac. Sci. Technol. B, Vol. 14, No. 2, Mar/Apr 1996
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Fic. 3. Morse potential simulation. The cantilever spring constént N/m. The distance origin is arbitrary. Note the loopback in the DVD curve. The dotted
lines denote the points of instability that manifest themselves in the jump to contact and snap-off commonly seen in force curves.

where p is the distribution of distances. This integral is a f(x)*g(x)=F Y{F(f(x))-F[g(x)]} (convolution, (15
cross correlation o¥/ (D) andp(D), a close mathematical

relative of the convolution: f(x)@g(x)=F F[f(x)]-F[g(=x)]] (correlatior),(lG)
f(x)*g(x)=f:f(x—a)g(a)da (convolution), (1)  Vmo(D)®p(D)=F HF[Vmo(D)]1-Flp(—D)]}

. (tip—sample correlation (17)
f(x)@g(x)= Jiwf(XJr a@)g(a)da (cross correlation F andF ! represent the Fourier transform and inverse Fou-

12 rier transform, respectively.

oo

VmoI(D)®P(D):f Vimol(D+a)p(a)da B. Direct decorrelation
1. Intermolecular pair potential V 0 (D)

(tip—sample cross correlatipn (13 Straightforward manipulation of the correlation equations

Therefore, (14) and(17) gives

V(D) =V D) ® p(D). 14 ]

| (D) |F )®p(D) | - (14 Vmo|(D)=F‘1< F[V«(D)] ) 18
This mathematical model is useful singg it allows us to Flp(—=D)]

find the tip—sample potential easily from the intermolecular¢ V(D) and p(D) are known, it is in principle possible to

potential and the shape of the tifii) the correlation may be  gyiract the intermolecular pair potential of the head groups
found by a Fourier transform method if the integral cannot[vmol(D)]_

be performed analytically(ii) the Fourier transform method
can be used to perform a decorrelation, allowing, to be
determined ifp andV,s are known.

Application of the definition of the Fourier transform to  The correlation equationd4) and (17) can also be rear-
the convolution integral gives ranged to give

2. Distance distribution p

JVST B - Microelectronics and Nanometer Structures
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1. Intermolecular pair potential V' /(D)

A functional formV,, (D) must first be chosen to rep-
resent the intermolecular potential. The analytical correlation
Ip D+OhI Isz Vimoii#(D)®p(D)=V s 1 is carried out, and the experimentally

determinedV (D) is then fit to V4. For example, if a
/j\ /ﬁj‘?\ Morse potential is chosen for the functional form of the in-

termolecular potential and a sphere as our model for the tip

Lone groups Multiple groups sh ape,
_ 4
Fic. 4. Single and multiple head groug3.andD + «,, are the intermolecu- Vo (D) =De((1—e B(D=10))2—1 and
lar distances for a single paip) and an ensemblé) of molecular head
groups. p(D)=md (20)

(Do, B, andr, are the dissociation energy, stiffness, and
F[V(D)] _equilibriqm distance of the Morse potenti_al, respectively;
p(_D):Fl(t;)_ (19) is the diameter of the sphereThe experimentally deter-
F[Vmo(D)] minedV (D) is then fit toV, 4, whereV,q 4 is given by

Therefore, ifV (D) andV (D) are known, it is in principle Vis (D) =V (D)@ p(D)
possible to extracp(D), the head-group distribution func- ' '
tion. Note:p(D) does not uniquely determine the actual ge-
ometry. However, the distribution itself is a valuable piece of
information because it allows the radius of curvature at th
apex of the probe to be estimated. A distribution that has
large value close t® =0 must have a large radius of curva-
ture; a distribution that is near zero Bt=0 has a small
radius of curvature.

=1d 2D_/§ eB(fo—D)(eB(ro—D)_4)_ (21)

“rhe fitted parametenfd,, B, andr, then describe our best-fit
orse potential folV (D).

2. Distance distribution p

The use of analytical fitting to find(D) simply reverses

3. Limitations of direct decorrelation the roles ofp(D) andV,,, in the above procedure. A func-

The decorrelation Eqs18) and (19) are analytical ex- tional form pg(D) must first be chosen to represent the ge-
pressions; they make the assumption ¥4gD) is known for ~ometry of the tip. The analytical correlation
all values ofD. In practice, instrumental limitations restrict V(D) ® ps(D)=V,s ¢ is carried out, and the experimentally
the measurement to a finite segment of the DVD curve andeterminedV (D) is then fit toV,s , as described above. If a
thus a finite segment of the potential. Effectivelf(D) is  sphere[p(D)==d] is chosen as our functional form for
being multiplied by a window functionf(D)]; w(D)=1, p(D), and a Morse potential as our model for the intermo-
where V(D) is known; w(D)=0 elsewhere. Therefore, in lecular potential, theV, (D) will again be given by Eq. 21.
the Fourier domain,F[V,(D)] must be replaced with This time, however, our only fitted parametedisthe radius
F[VD)]* F[w(D)] [Egs.(17) and (18)]. This limitation  of the sphere representing the tip.
makes the numerical decorrelation possible only under cer-
tain conditions. 3. Limitations

If V(D) is zero outside the window, then  The primary limitation of the analytical fiting method of
w(D)V((D)=V(D), and the information outside the win- gecorrelation is the difficulty of carrying out some of the
dow does not corrupt the data. For example, at the righgnaiytical correlations. Analytical correlations for a wide va-

cutoff (i.e, large D), V(D) approaches zero, and yiety of intermolecular potential functional forms ants
w(D)V(D)~V(D). However, most potentials become pave peen carried otk

strongly repulsive ab approaches zero. The left cutoff will  There are several intrinsic limitations that apply to all
be in the repulsive regime, whekgy(D) is large outside the  jecorrelation methods. Sinaé(D) is averaged ovex and
envelope, and the leftmost decorrelated data will be inaccu)—, the extractedV,,(D) is also averaged over andy. A

rate up to the width op(D). Therefore, this method is lim-  smoothp(D) is a good approximation only for a reasonably
ited to cases where the potential is wider than the correlatmgarge number of head grougs>100 or morg.

function. In practice, a narrow(D) is required, such as  The correlation model makes the assumption that all in-
planar, tilted squaréwith a small anglg narrow Gaussians, teractions are pairwise. No account is made for cooperative

etc. interactions between neighboring head groups. If necessary,
an appropriately weighteg(D) could be chosen to include
C. Analytical fitting these cooperative interactions before decorrelating.

A more flexible method of performing decorrelations is to
fit experimental data to analytical correlations. This method V- CONCLUSION
avoids envelope-limited potentials and is less sensitive to In this article, an accurate method for deriving tip—sample
noise than the decorrelation method. potentials from AFM force curves has been developed and
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