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This article describes a method for extracting the true tip–sample potential from an experimental
force curve in atomic force microscopy. This potential is not the negative integral of the force curve.
Rather, the potential is a more complicated function of the force curve and cantilever spring
constant. If information about the shape of the tip is known, a decorrelation may be performed to
extract molecular pair potentials from the total tip–sample potential. Applications and limitations of
this method are discussed. ©1996 American Vacuum Society.
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I. INTRODUCTION

Atomic force microscopy~AFM! is capable of imaging
surfaces with high resolution in a noninvasive manner.1–3 To
perform an AFM experiment, a flexible cantilever with
small protruding tip is brought into contact with a surface;
the tip is scanned, the interaction forces between the elec
clouds of the atoms of the tip and the sample perturb
cantilever from its equilibrium position.

In addition to its imaging capability, AFM is also capab
of measuring the force between the tip and sample as a fu
tion of tip–sample separation, which is analogous to Israc
villi’s surface force experiments with a smaller conta
area.4,5

Several models have been proposed to explain AFM fo
curves.6–8 These models show poor agreement with expe
mental data. Often, the force curve is assumed to be rel
to the interaction potential by

Fmeas~r !52
d

dr
V~r !, ~1!

wherer is the tip–sample separation andV(r ) is the poten-
tial. However, an experimental force curve does not rec
the force on the tip as a function oftip–sampledistance.
Rather, it monitors the force on the tip versus the separa
of the cantilever baseand the sample. Equation~1! is only
correct when the cantilever base and the tip do not m
with respect to each other, which is true only in the limit
a very large cantilever spring constant. This error is resp
sible for the inaccuracy of the negative integral method
reconstructing the tip–sample potential from the force cur

The chemical nature of the tip and sample must also
considered when interpreting force curves. The potential
tween tip and sample will be primarily due to the interactio
of the surface atoms.9 Controlled experiments confirm tha
the surface chemistry dominates the shape of the fo
curves.9–11

In this article, a thorough analysis of the AFM sample–
cantilever system will be presented. An accurate expres
for the relationship between the force curve and the ac
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tip–sample potential will be derived. These results will be
compared to the standard method of force curve interpreta-
tion by numerical simulation.

A chemical model of the tip–sample interaction will also
be developed. This model analyzes the relation between the
tip shape, intermolecular potential, and the total potential
between tip and sample. Numerical and analytical methods
for extracting single intermolecular pair potentials from the
total tip–sample potential will be derived, and the limitations
of applying these methods to real experimental data will be
discussed.

II. EXTRACTION OF ACCURATE TIP–SAMPLE
POTENTIALS FROM FORCE CURVES

In this section, an accurate analytical expression for the
relationship between the force curve and the actual tip–
sample potential will be derived. This expression will be
compared with the standard method of force curve interpre-
tation, and its application to real-world data will be dis-
cussed.

A. Theoretical model (analytical)

The sample–tip–cantilever system will be modeled by re-
placing the cantilever with a spring of spring constantk. In
Fig. 1~b!, the cantilever deflectionb is z2D2ceq, whereceq
is the equilibrium length of the spring.

To perform a force curve, the cantilever deflection is
monitored as the base is withdrawn from the sample; the
distance between the cantilever base and the sample~which
is z! is being controlled, not the distance between the tip and
the sample~which isD!. Since a force curve does not accu-
rately describe the force versus distance behavior of the tip
versus the sample, we will use the terminology ‘‘deflection
versus distance curve’’@which is denoted DVD curve or
b(z)#.

To find the relationship betweenD andz, an equation for
force balance is used:

k~z2D2ceq!12
d

dD
Vts~D !50. ~2!

The first term is the force from the cantilever spring; the
second term is the force due to the tip–sample potential.
130214(2)/1302/6/$10.00 ©1996 American Vacuum Society
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When the cantilever is in contact~a compressed state!, the
cantilever force is negative. The compressed position is in
repulsive regime of the tip–sample potential, therefore th
negative derivative will be positive. The total force will be
zero at equilibrium.

As the cantilever base is moved, the change in the ti
sample distance (dD/dz) is

dD

dz
5

k

k1~d2/dD2!Vts~D !
. ~3!

For the limiting case wherek@d2Vts/dD
2, the cantilever is

not bent by the tip–sample potential, andD changes exactly
the same amount asz. For k!d2Vts/dD

2, the tip–sample
potential is very stiff and the tip position remains fixed rela-
tive to the sample regardless of how the cantilever base
moved.

Experimentally, a force curve measures the cantilever de
flection ~b! as a function ofz. Therefore,

b8~z!5
db~z!

dz
5

d

dz
~z2D2ceq!

512
dD

dz

5
~d2/dD2!Vts~D !

k1~d2/dD2!Vts~D !
, ~4!

which can be rearranged to give

Vts~D !5E E k@b8~z!#

@12b8~z!#
dD dD. ~5!

FIG. 1. The tip–sample–cantilever system. The variablesz,D,ceq, andb are
the cantilever-base–sample distance, the tip–sample distance, the equil
rium ~undeflected! spring length, and the cantilever deflection, respectively.
~a! shows the undeflected cantilever;~b! shows the cantilever deflected by
repulsive interaction with the surface.
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In order to perform this integral, Eq.~5! must be written as a
function ofD, not z:

b8~z!5b8@D~z!#, ~6!

and from Eq.~4!:

D~z!5E 12b8~z!dz. ~7!

Therefore, in order to convert from a DVD curve to the
actual potential,D(z) must be computed fromb(z) using
Eq. ~7!. Then,Vts~D! can be determined using Eq.~5!.

B. Numerical simulation

Computer code has been developed to convert the DVD
curve to the tip–sample potential. Figure 2 presents a pseud
‘‘hard-wall’’ potential. The DVD curve that would be experi-
mentally measured due to this potential was calculated; from
this DVD curve, the potential was ‘‘reconstructed’’ by both
the negative integral method and the method outlined abov
The zero point on the numerical integration was determine
by assuming that the force on the cantilever is zero when th
tip–sample separation is large. Figure 3 is the same simula
tion for a Morse potential.

The simulations show that there can be a ‘‘loopback’’ in
the calculated DVD curve. Examination of the analytical ex-
pressions in Sec. II A shows that this loopback can only oc
cur when the tip–sample potential is attractive and has
second derivative greater than the spring constant of the ca
tilever that is, when the ‘‘stiffness’’ of the attractive force
momentarily exceeds the stiffness of the cantilever. This
manifestation generates the ‘‘jump to contact’’ and ‘‘snap-
off’’ commonly observed in experimental DVD curves.

The loopback observed in Fig. 3~B! is not simply a math-
ematical artifact. The mathematics used in this article pro
duce one DVD curve that is a function of the potential and
cantilever spring constant. The loopback in the curve implie
that for some values ofz there are two positions at which the
cantilever exibits a local energy minimum. While approach-
ing the sample, the cantilever would remain in the same po
tential well until it reaches the point of discontinuity where
the DVD curve starts to loop back. At this point, the canti-
lever would jump to the other local minimum~jump to con-
tact!. When retracting the tip, the point of discontinuity is
further away from the sample, as shown in Fig. 3~b!. This
explanation also predicts that the snap-off point will always
be further from the sample than the jump to contact.

Note that in the case where there is a jump to contact an
snap-off, the loopback region of the DVD curve cannot be
measured. This gap limits the utility of the method discusse
above for reconstructing tip–sample potentials. The problem
may be minimized by using a cantilever with a high spring
constant. A numerical algorithm that is insensitive to this
‘‘loopback’’ region is in development.15

These simulations also show that the DVD-to-potentia
transformation is highly sensitive to noise. Application of a
smoothing algorithm to the DVD curve prior to the conver-
sion corrects this problem. The smoothing algorithm em

ib-



in length

1304 Unger, O’Connor, and Baldeschwieler: Tip–sample interactions 1304
FIG. 2. Pseudohard wall potential simulation. The cantilever spring constant51 N/m. All the DVD curves have been multiplied by21 to show deflection away
from the surface as positive. The potential derived with the negative integral method has been truncated at 1 nJ for comparison. Notice the difference
scale.
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ployed was a simple, three-point moving window: the ne
value at each point is the average of the point and its tw
nearest neighbors. For 0.1 nm of noise and a cantilever w
a 0.1 N/m spring constant, five passes of this smoothi
algorithm were usually sufficient. For 0.25 nm of noise, te
passes were sufficient. The smoothing was considered co
plete when the conversion results were reproducible.

Two other factors may contribute to the inaccuracy
experimental force curves: scanner calibration and spr
constant uncertainty. For most commercially available sy
tems, scanners are calibrated by the manufacturer. Howe
hysteresis and repoling may alter the calibration accuracy
is preferable to monitor the sample position simultaneous
with an alternative mechanism~such as interferometry or ca-
pacitance! while the force curve is being performed. Also
Eq. ~5! is dependent upon the cantilever spring consta
Typical manufacturer specifications can be very inaccura
and imprecise.12 A number of highly accurate methods hav
been developed to determine the cantilever spring const
experimentally.12–14

III. EXTRACTION OF INTERMOLECULAR PAIR
POTENTIALS FROM TIP–SAMPLE POTENTIALS

In this section, the relationship between intermolecul
pair potentials, tip geometry, and total tip–sample potent
will be analyzed. The tip–sample potential can be model
as the potential between rigidly bound head groups on the
J. Vac. Sci. Technol. B, Vol. 14, No. 2, Mar/Apr 1996
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and sample, i.e.,Vts~D!5Vmol(D). Finally, the tip–sample
interaction will be represented by the summation of all the
pairwise interactions of chemical ‘‘head groups.’’ It will be
shown that the tip–sample potential is a cross correlation o
the intermolecular potential with a function of the tip geom-
etry. Extraction of the intermolecular potential~or informa-
tion about the shape of the tip! from the tip–sample potential
is possible by either direct decorrelation or an analytical fit-
ting method; analytical fitting will be shown to be the more
useful of the two for real data.

A. Sum˜Correlation

The total tip–sample potential can be written as a sum o
the single potentials at variable distances~a! ~see Fig. 4!:

Vts~D !5Vmol~D1a1!1Vmol~D1a2!1Vmol~D1a3!

1••• ; ~8!

and forn groups:

Vts~D !5(
i51

n

Vmol~D1a i !. ~9!

As the limit of a continuum ofai ’s is approached:

Vts~D !5E
2`

`

Vmol~D1a!r~a!da, ~10!
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FIG. 3. Morse potential simulation. The cantilever spring constant50.1 N/m. The distance origin is arbitrary. Note the loopback in the DVD curve. The dott
lines denote the points of instability that manifest themselves in the jump to contact and snap-off commonly seen in force curves.
a

a

o

where r is the distribution of distances. This integral is
cross correlation ofVmol(D) andr(D), a close mathematical
relative of the convolution:

f ~x!* g~x!5E
2`

`

f ~x2a!g~a!da ~convolution!, ~11!

f ~x! ^g~x!5E
2`

`

f ~x1a!g~a!da ~cross correlation!,

~12!

Vmol~D ! ^ r~D !5E
2`

`

Vmol~D1a!r~a!da

~ tip–sample cross correlation!. ~13!

Therefore,

Vts~D !5Vmol~D ! ^ r~D !. ~14!

This mathematical model is useful since~i! it allows us to
find the tip–sample potential easily from the intermolecul
potential and the shape of the tip;~ii ! the correlation may be
found by a Fourier transform method if the integral cann
be performed analytically;~iii ! the Fourier transform method
can be used to perform a decorrelation, allowingVmol to be
determined ifr andVts are known.

Application of the definition of the Fourier transform to
the convolution integral gives
JVST B - Microelectronics and Nanometer Structures
r
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f ~x!* g~x!5F21$F~ f ~x!!•F@g~x!#% ~convolution!, ~15!

f ~x! ^g~x!5F21@F@ f ~x!#•F@g~2x!## ~correlation!,
~16!

Vmol~D ! ^ r~D !5F21$F@Vmol~D !#•F@r(2D !#%

~ tip–sample correlation!. ~17!

F andF21 represent the Fourier transform and inverse Fou-
rier transform, respectively.

B. Direct decorrelation

1. Intermolecular pair potential V mol (D)

Straightforward manipulation of the correlation equations
~14! and ~17! gives

Vmol~D !5F21S F@Vts~D !#

F@r~2D !# D . ~18!

If Vts~D! andr(D) are known, it is in principle possible to
extract the intermolecular pair potential of the head groups
@Vmol(D)#.

2. Distance distribution r

The correlation equations~14! and ~17! can also be rear-
ranged to give
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r~2D !5F21S F@Vts~D !#

F@Vmol~D !# D . ~19!

Therefore, ifVts~D! andVmol(D) are known, it is in principle
possible to extractr(D), the head-group distribution func-
tion. Note:r(D) does not uniquely determine the actual ge
ometry. However, the distribution itself is a valuable piece
information because it allows the radius of curvature at t
apex of the probe to be estimated. A distribution that has
large value close toD50 must have a large radius of curva
ture; a distribution that is near zero atD50 has a small
radius of curvature.

3. Limitations of direct decorrelation

The decorrelation Eqs.~18! and ~19! are analytical ex-
pressions; they make the assumption thatVts~D! is known for
all values ofD. In practice, instrumental limitations restric
the measurement to a finite segment of the DVD curve a
thus a finite segment of the potential. Effectively,Vts~D! is
being multiplied by a window function [w(D)]; w(D)51,
whereVts~D! is known;w(D)50 elsewhere. Therefore, in
the Fourier domain,F[Vts~D!# must be replaced with
F[Vts~D!#* F[w(D)] @Eqs. ~17! and ~18!#. This limitation
makes the numerical decorrelation possible only under c
tain conditions.

If Vts~D! is zero outside the window, then
w(D)Vts~D!5Vts~D!, and the information outside the win-
dow does not corrupt the data. For example, at the rig
cutoff ~i.e., large D!, Vts~D! approaches zero, and
w(D)Vts~D!'Vts~D!. However, most potentials become
strongly repulsive asD approaches zero. The left cutoff will
be in the repulsive regime, whereVts~D! is large outside the
envelope, and the leftmost decorrelated data will be inacc
rate up to the width ofr(D). Therefore, this method is lim-
ited to cases where the potential is wider than the correlat
function. In practice, a narrowr(D) is required, such as
planar, tilted square~with a small angle!, narrow Gaussians,
etc.

C. Analytical fitting

Amore flexible method of performing decorrelations is t
fit experimental data to analytical correlations. This metho
avoids envelope-limited potentials and is less sensitive
noise than the decorrelation method.

FIG. 4. Single and multiple head groups.D andD1an are the intermolecu-
lar distances for a single pair~a! and an ensemble~b! of molecular head
groups.
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1. Intermolecular pair potential V mol (D)

A functional formVmol,ff(D) must first be chosen to rep-
resent the intermolecular potential. The analytical correlatio
Vmol,ff~D!^r~D!5Vts,ff is carried out, and the experimentally
determinedVts~D! is then fit to Vts,ff . For example, if a
Morse potential is chosen for the functional form of the in
termolecular potential and a sphere as our model for the
shape,

Vmol,ff~D !5De~~12e2b~D2r0
4
!!221 and

r~D !5pd ~20!

~De , b, and r 0 are the dissociation energy, stiffness, an
equilibrium distance of the Morse potential, respectively;d
is the diameter of the sphere!. The experimentally deter-
minedVts~D! is then fit toVts,ff , whereVts,ff is given by

Vts,ff~D !5Vmol,ff~D ! ^ r~D !

5pd
De

2b
eb~r02D !~eb~r02D !24!. ~21!

The fitted parametersDe , b, andr 0 then describe our best-fit
Morse potential forVmol(D).

2. Distance distribution r

The use of analytical fitting to findr(D! simply reverses
the roles ofr~D! andVmol in the above procedure. A func-
tional form r ff~D! must first be chosen to represent the ge
ometry of the tip. The analytical correlation
Vmol(D)^ r ff~D!5Vts,ff is carried out, and the experimentally
determinedVts~D! is then fit toVts,ff , as described above. If a
sphere@r(D)5pd# is chosen as our functional form for
r(D), and a Morse potential as our model for the intermo
lecular potential, thenVts,ff~D! will again be given by Eq. 21.
This time, however, our only fitted parameter isd, the radius
of the sphere representing the tip.

3. Limitations

The primary limitation of the analytical fitting method of
decorrelation is the difficulty of carrying out some of the
analytical correlations. Analytical correlations for a wide va
riety of intermolecular potential functional forms andr’s
have been carried out.15

There are several intrinsic limitations that apply to al
decorrelation methods. SinceVts~D! is averaged overx and
y, the extractedVmol(D) is also averaged overx and y. A
smoothr(D) is a good approximation only for a reasonably
large number of head groups~n.100 or more!.

The correlation model makes the assumption that all in
teractions are pairwise. No account is made for cooperati
interactions between neighboring head groups. If necessa
an appropriately weightedr(D) could be chosen to include
these cooperative interactions before decorrelating.

IV. CONCLUSION

In this article, an accurate method for deriving tip–sampl
potentials from AFM force curves has been developed an
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shown to be practical for real-world data. Also, a mathem
cal technique for determining single molecular pair pot
tials from these tip–sample potentials has been discusse
practice, these algorithms may be used by an experime
microscopist in two manners.

First, if the surface chemistry of the AFM tip is careful
controlled, it should be possible to determine an accu
r(D) from the measured force curve, since the molecu
pair potentials can be estimated. As noted above, many c
plicated tip geometries may possess similarr(D). However,
for typical AFM tips, it is possible to accurately estimate t
radius of curvature of the apex with this method.

Second, an accurate determination of the tip apex sh
will produce an accurater(D). Therefore, if a chemical moi
ety with an unknown pair potential is attached to the tip,
pair potential can be extracted from the force curve.
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