CaltechAUTHORS
  A Caltech Library Service

Evaluation of the Seismic Performance of a Code-Conforming Reinforced-Concrete Frame Building – Part II: Loss Estimation

Mitrani-Reiser, Judith and Haselton, Curt and Goulet, Christine and Porter, Keith and Beck, James and Deierlein, Gregory (2006) Evaluation of the Seismic Performance of a Code-Conforming Reinforced-Concrete Frame Building – Part II: Loss Estimation. In: 8th U.S. National Conference on Earthquake Engineering (8NCEE), April 18-22, 2006, San Francisco, CA. http://resolver.caltech.edu/CaltechAUTHORS:20120905-160718746

Full text is not posted in this repository.

Use this Persistent URL to link to this item: http://resolver.caltech.edu/CaltechAUTHORS:20120905-160718746

Abstract

Performance-based earthquake engineering (PBEE) is a methodology that incorporates desired performance levels into the design process. Performance in PBEE can be economic (e.g., expected annual losses), or expressed in terms of operability and safety performance (e.g., expected downtime due to safety tagging and/or repair). These performance objectives are relevant to various types of stakeholders and should be addressed in building loss estimation procedures. In this study, we consider the structural and economic performance of a codeconforming office building. An analytical approach for PBEE is implemented to evaluate the performance of this reinforced-concrete moment-frame building. The PBEE approach used is consistent with the Pacific Earthquake Engineering Research (PEER) center’s framework, which is divided into four core analytical stages: hazard analysis, structural analysis, damage analysis, and loss analysis. Future losses of the building are uncertain because they depend on uncertain quantities, such as the shaking intensity of the earthquake, the mechanical properties of the facility, and the uncertain damageability and unit repair costs of the facility. An analytical approach is developed to propagate these uncertainties. This paper presents the mathematical foundation for the damage and loss analyses, and a description of its implementation into software. The results from running this software on multiple design variants of the building are presented, including seismic vulnerabilities as a function of shaking intensity and corresponding expected annual losses.


Item Type:Conference or Workshop Item (Paper)
Additional Information:Copyright© (2006) by Earthquake Engineering Research Institute. The authors would like to thank Jonathan Stewart, Ertugrul Taciroglu, and Vivian Gonzales for their insightful collaboration on this project. This work was supported primarily by the Earthquake Engineering Research Centers Program of the National Science Foundation, under award number EEC-9701568 through the Pacific Earthquake Engineering Research Center (PEER). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect those of the National Science Foundation.
Funders:
Funding AgencyGrant Number
NSFEEC-9701568
Record Number:CaltechAUTHORS:20120905-160718746
Persistent URL:http://resolver.caltech.edu/CaltechAUTHORS:20120905-160718746
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:33883
Collection:CaltechAUTHORS
Deposited By: Carmen Nemer-Sirois
Deposited On:10 Oct 2012 19:51
Last Modified:10 Oct 2012 19:51

Repository Staff Only: item control page