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ABSTRACT

This paper presents the application of a new reliability method called Subset Simulation to seis-
mic risk analysis of a structure, where the exceedance of some performance quantity, such as the peak
interstory drift, above a specified threshold level is considered for the case of uncertain seismic excita-
tion. This involves analyzing the well-known but difficult first-passage failure problem. Failure analysis
is also carried out using results from Subset Simulation which yields information about the probable
scenarios that may occur in case of failure. The results show that for given magnitude and epicen-
tral distance (which are related to the ‘intensity’ of shaking), the probable mode of failure is due to a
‘resonance effect.” On the other hand, when the magnitude and epicentral distance are considered to be
uncertain, the probable failure mode corresponds to the occurrence of ‘large-magnitude, small epicentral
distance’ earthquakes.

Keywords: First passage problem, Markov Chain Monte Carlo simulation, reliability, Subset
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INTRODUCTION

Structural reliability is concerned with the probability that a structure will not reach some
specified state of failure in some uncertain environment. Let @ = [04,...,0,] € R"” be a
parameter vector containing all the uncertain quantities of interest; in general, they can relate
to the structural behavior and the loading conditions. Let g : R™ — [0, 00) be a prescribed
probability density function (PDF) quantifying the relative plausibility of values that the set of
uncertain parameters § may assume. The failure probability can be formulated as

P(F) = / 11(6) q(6) b 0

where F' C R" denotes the failure region and I : R* — {0,1} is the indicator function:
Ip(@) = 1if8 € F and [x(0) = 0 otherwise. Much attention has been given to the eval-
uation of the failure probability in the past few decades (e.g., Engelund and Rackwitz 1993;
Schuéller et al. 1993), which constitutes the domain of reliability methods. To date, efficient
methods exist for solving time-independent (static) reliability problems where the number of
uncertain parameters is not too large. However, efficient and robust simulation methods for
solving general time-dependent (dynamic) reliability problems are still at their early explo-
ration stage (Schuéller et al. 1993).
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This paper presents the application of a new reliability method, called Subset Simula-
tion (Au 2001; Au and Beck 2001), to compute the small failure probabilities encountered
in seismic risk analysis where earthquake ground motions are described by a stochastic time-
history model. The first-passage failure of the interstory drift above a specified threshold is
considered for a linear moment-resisting steel frame with different types of uncertainties con-
sidered in the stochastic ground motion model. Failure analysis is also carried out using results
from Subset Simulation which yields information about the probable scenarios that may occur
in case of failure.

BASIC IDEA OF SUBSET SIMULATION

Given a failure region F, let F, D F, D --- D F,, = F be a decreasing sequence of
failure regions so that F, = N¥_ F;, k = 1,...,m. For convenience, we denote the failure
event by its corresponding failure region, then by the definition of conditional probability,

P(F) = P(Fy) = P(N11F;) = P(Fp| 025 F) PN F)
m—1
= P(Fpu|Fyp ) PN F)) = - = P(IY) [] P(Fa|Fy) )
i=1

Equation (2) expresses the failure probability as a product of a sequence of conditional prob-
abilities {P(Fj+1|F;) : 1 = 1,...,m — 1} and P(Fy). The idea of Subset Simulation is to
estimate the failure probability P(F) by estimating these quantities. In particular, standard
Monte Carlo simulation is used to estimate P(F}). Estimating the conditional probabilities
P(Fi11|F;) (@ = 1,...,m — 1) by simulation necessitates the efficient simulation of con-
ditional samples distributed according to the conditional PDF ¢(6|F;) = q(8) L, (8)/P(F;).
This is in general a non-trivial task. Nevertheless, it is accomplished by Markov Chain Monte
Carlo Simulation (Fishman 1996), where the conditional samples are simulated as the states of
a special Markov chain with a limiting stationary PDF equal to the conditional PDF. In spite of
the fact that the samples are generally dependent, they can be used for statistical averaging to
yield consistent estimates of conditional failure probabilities.

SUBSET SIMULATION PROCEDURE

The Subset Simulation procedure is outlined below. Details can be found in Au and Beck
(2001) or Au (2001). First, we simulate N samples {6,,...,0,} by standard Monte Carlo
simulation to compute an estimate P, for P(F,) by

N
P(R)~ P = 1 Y Th (@) ®
k=1

where {6, : k = 1,..., N} are independent and identically distributed (i.i.d.) samples sim-
ulated according to the parameter PDF ¢. From these samples, one readily obtains samples
distributed as ¢(-|Fy), simply as those which lie in Fy. Starting from each of these samples,
Markov chain Monte Carlo simulation is used to simulate additional samples which are also
distributed as ¢(-|F;). They can be used to estimate P(F,|F) using an estimator P, similar
to (3). Those samples which lie in F5 are distributed as ¢(-|F») and provide ‘seeds’ for sim-
ulating more samples according to ¢(-|F2) to estimate P(F3|F»). Repeating this process, one
can compute the conditional probabilities of the higher conditional levels until the failure event
of interest, F' (= F,;,), has been reached. At the i-th conditional level, 1 < i < m — 1, let



{8 : k=1,..., N} be the Markov chain samples with distribution ¢(:|F;), possibly coming
from different chains generated by different ‘seeds.” Then

N
~ 1
P(Fi1|F;) = Py = N E IF,,(0;k) (4)
k=1

Finally, combining (2), (3) and (4), the failure probability estimator is Pr = ], F;. It can
be shown that Pr is asymptotically unbiased and its variance decays with 1/N as in standard
Monte Carlo simulation (Au and Beck 2001).

FAILURE ANALYSIS USING MARKOV CHAIN SAMPLES

The Markov chain samples generated during Subset Simulation are used for estimating
the conditional probabilities. Due to their conditional nature, they can also be used to infer
the probable scenarios that may occur in case of failure. The distribution of some response
quantity of interest, h(6), evaluated at the Markov chain samples gives information about the
system performance when failure occurs. In particular, using the Markov chain samples {0, ;. :
k =1,..., N} conditional on the failure event F; (i = 1,...,m), the conditional expectation
of h(6) when the failure event F; has occurred can be estimated by:

N
L S he

N 9, x)
k=1

E[(0)|F}] = / h(0) g(8)F) df ~ (5)

APPLICATIONS TO SEISMIC RISK BASED ON DYNAMIC ANALYSIS

Stochastic ground motion model

The seismic risk problem is formulated using a stochastic ground motion model to describe
the uncertainty associated with the ground motion at the site in a seismic event of given magni-
tude and earthquake source location. The stochastic ground motion model developed by Atkin-
son and Silva (2000) (referred as the A-S model here) is adopted, which is a point-source model
characterized by the moment magnitude M and epicentral distance » (Boore 1983). The model
is characterized by the ‘radiation spectrum’ A(f; M, r) and the ‘envelope function’ e(¢; M, r).
To generate a time history for the ground acceleration for given M and r, a discrete-time white
noise sequence {W; = /2w /At Z; : j = 1,...,n,} is first generated, where 7, ..., Z,, are
i.i.d. standard Normal variables. The white noise sequence is then modulated by the envelope
function e(t; M, r) at the discrete time instants and the discrete Fourier transform is applied to
the modulated white noise sequence. The resulting spectrum is multiplied with the radiation
spectrum A(f; M, r), after which the discrete inverse Fourier transform is applied to transform
the sequence back to the time domain to yield a sample for the ground acceleration time his-
tory. The synthetic ground motion a(¢; Z, M, r) is thus a function of the ‘additive excitation
parameters’ Z = [Z1,. .., Zy,] and the ‘stochastic excitation model parameters’ M and r.

Radiation Spectrum

The radiation spectrum consists of several factors which account for the spectral effects
from the source and propagation through the Earth’s crust. Figure 1 shows the radiation spec-
trum for » = 20 km, where the choice of the other model parameters used can be found
in Au (2001). It can be seen that as the moment magnitude increases, the spectral amplitude
increases at all frequencies, with a shift of dominant frequency content towards the lower fre-
quency regime, as expected. Roughly speaking, both A and r have a multiplicative effect on
the synthetic ground acceleration a(¢; Z, M, r) and hence on the structural response.
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Envelope function
The envelope function is the major factor affecting the duration of simulated ground mo-
tions for given M and r. It is assumed to be

e(t; M,r) = c3t® exp(—co t) U(t) (6)

where U (t) is the unit-step function, ¢; = —ejlogea/[1 + 1 (loger — 1)], ca = c1/e1 Ty
and c3 = /(2c2)2+1/T'(2¢; + 1) is a normalizing factor such that the envelope function has
unit energy, in the sense that [~ e(¢; M,r)?dt = 1. Here, I'(-) is the Gamma function, and
Tw = 1/fs + 0.1R is related to the duration of the envelope function. The parameters £, and
€9 are taken to be e = 0.2 and e = 0.05 (Boore 1983). The envelope function is shown in
Figure 2 for » = 20 km. It can be seen that increasing the moment magnitude increases the
duration of the envelope function, as expected.

Distribution of stochastic excitation model parameters

Using the A-S model, a synthetic ground acceleration a(t; Z, M, r) for given M and r can
be generated, where Z = [Z1, ..., Z,,] is a standard Normal vector. When the seismic hazard
aspect is to be addressed, the uncertainty in M and r has to be considered. The uncertainty in
the moment magnitude is modeled by the Gutenberg-Richter relationship, i.e., an exponential
distribution (with parameter chosen to be 2.3) truncated on the interval [5, 8] (Gutenberg and
Richter 1958). For the illustrative example considered here, earthquakes of magnitude between
5 and 8 are assumed to occur equally likely in a circular area of radius 7,,,,, = 50 km centered
at the site where the structure is situated. This leads to a triangular distribution for  confined
to the interval [0, a2 ]. Also, M and r are modeled as stochastically independent.

Structure

A six-story moment-resisting steel frame (Figure 3) subjected to uncertain ground motions
modeled by the A-S model is studied to illustrate the application of Subset Simulation to seis-
mic risk analysis. It is modeled as a two-dimensional linear frame. Details of the structure
can be found in Au (2001). The natural frequencies of the first two modes are 0.55 Hz and
1.56 Hz, respectively. Rayleigh damping is assumed so that the first two modes have 5% of
critical damping. Failure is defined as the exceedence of a specified interstory drift ratio b
at any one of the (twenty four) columns within the duration of interest. The sampling time
and duration of study are taken to be 0.02 sec and 30 sec, respectively, for both the simula-
tion of ground motions and dynamic structural analysis. The number of additive excitation
parameters Z involved in the generation of ground motion for a given stochastic model is thus
ny = 30/0.02 + 1 = 1501, where the time instants at ¢ = 0 and ¢ = 30 are also represented.
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FIG. 3. Moment-resisting frame structure

Results

Two cases corresponding to different uncertain situations are considered. In Case 1, only
the additive excitation parameters Z for generating the ground motion a(t; Z, M, r) are as-
sumed to be uncertain; the moment magnitude M and epicentral distance r are fixed at the
values: M = 7 and r = 20 km. This case corresponds to the classical first-excursion problem
with a given stochastic excitation model defined by fixed M and ». In Case 2, in addition to
the additive excitations, M and r are also considered to be uncertain, with the probability dis-
tributions described earlier. This corresponds to a seismic risk problem where the uncertainty
in the regional seismicity is also addressed.

Note that by varying the threshold b, one can generate the complement of the cumulative
distribution function for the peak interstory drift ratio. From this distribution, one can readily
generate the corresponding distribution for the peak lifetime interstory drift ratio, e.g., if a
Poisson model is used for the uncertain temporal occurrence of earthquakes in the region.

In the application of Subset Simulation, the conditional failure regions F; are defined by
the interstory drift ratio exceeding b; (i = 1, 2, 3) where these thresholds are adaptively chosen
such that a conditional failure probability of P, = 0.1 is attained. At each simulation level 4,
N = 500 samples are simulated with 50 samples from one level used to ‘seed’ the next level.

Failure probability estimation

Figures 4 and 5 show the estimates of failure probability for different threshold levels b
for Cases 1 and 2, respectively. A total of N = 1400 samples, i.e., dynamic structural anal-
yses, are performed to compute the results (solid line) in each figure. The results computed
by standard Monte Carlo simulation (MCS) with 10,000 samples are also shown for com-
parison. These figures show that the results computed using Subset Simulation give a good
approximation to the failure probabilities. Further results not presented here confirm that Sub-
set Simulation yields practically unbiased estimates and can lead to a substantial improvement
in efficiency over standard Monte Carlo simulation, especially when estimating small failure
probabilities.

Failure analysis using conditional samples

The Markov chain samples at the different failure levels simulated in a single run of Sub-
set Simulation are next examined for the purpose of failure analysis. Figure 6 shows the
typical samples of ground acceleration a(t; Z, M, r) that correspond to failure probabilities
10~',1072 and 103 (failure levels 1, 2 and 3, respectively) for Case 1. Note that only the
additive excitation parameters Z are uncertain in this case. Since samples of acceleration time
histories are generated for given moment magnitude M = 7 and epicentral distance » = 20 km,
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there is not much difference in their duration as well as mean square values. In terms of peak
acceleration, they do not differ significantly, either.

The major difference among the samples of ground acceleration that lead to different levels
of failure lies in the frequency content. Figure 8 shows the average spectrum (power spectral
density) of the additive excitation parameters Z corresponding to the 500 samples of accelera-
tion time histories at different levels of failure. Level 0 refers to the initial phase of Subset Sim-
ulation where samples are generated directly from their parameter PDF, i.e., standard Monte
Carlo simulation. The spectrum at Level O (top plot of Figure 8) is almost flat, because there
is no conditioning on the samples at this level and therefore the spectrum theoretically corre-
sponds to that of white noise, which is flat up to the Nyquist frequency, being 1/2A¢ = 25 Hz.
As the simulation level increases, the spectrum develops a peak near 0.55 Hz, which is the
fundamental frequency of the structure. This illustrates an important statistical feature of the
additive excitations that lead to failure in the classical first-excursion problem (with determin-
istic structure and stochastic excitation model): the additive excitation tends to ‘tune’ itself to
the natural frequency of the structure to cause first-excursion failure. In other words, when the
stochastic excitation model parameters are fixed, the probable cause of failure for the structure
is due to resonance effects, especially when the threshold level is high. This phenomenon can
be explained from the high dimensional features of the reliability problem (Au 2001).

The situation is different when the stochastic excitation model parameters, M and r, are
also uncertain. Figures 7 and 9 show the conditional samples and the average spectra at differ-
ent simulation levels for Case 2, where Z, M and r are considered uncertain in the problem.
Figure 7 shows that in this case the excitation intensity and duration of the ground acceleration
differ significantly at different simulation levels. Both the excitation intensity and duration in-
crease as the simulation level increases. From Figure 9, it can be seen that the spectral peak at
0.55 Hz for Levels 2 and 3 is not as significant as observed in Case 1 (Figure 8). This indicates
that the frequency content of the additive excitation Z when failure occurs is not significantly
different from its original spectrum (flat), although this does not imply that the frequency con-
tent of the ground acceleration will be the same irrespective of whether failure occurs, since
the radiation spectrum A(f; M, r) could be different because of the change in the distribution
of M and r when failure occurs.

When the moment magnitude M and the epicentral distance r are uncertain (Case 2), they
are the parameters that control failure. Figure 10 shows the scattering of samples of (M, r) at
different simulation levels. Note that the samples of (M, r) at Level 0 are simulated according
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to their joint PDF. Also, for Levels 1 and 2, some of the locations shown in the figure contain
repeated samples. Since the Markov chain samples are not all distinct, to show the popula-
tion of the samples consistently, the dots are shown with area proportional to the number of
points situated at the particular location. Figure 10 clearly indicates that as the simulation level
increases, that is, when failure becomes more severe, the samples of (M, r) shift towards the

‘large magnitude, small distance’ regime.

CONCLUSIONS

Subset Simulation has been applied to compute the failure probabilities of structures dur-



ing seismic risk studies using dynamic analysis. Failure analysis has been carried out using
the samples generated during Subset Simulation to gain insight into the system behavior when
failure occurs. This analysis shows that when only the seismic ground acceleration time his-
tory is uncertain, the rare failure scenarios correspond to resonance of the excitation with the
structure. On the other hand, when the earthquake magnitude M and epicentral distance r
defining the stochastic excitation model are also uncertain, they tend to control failure, due to
their multiplicative effects on the response. The conditional joint distribution of M and » given
that failure occurs is significantly different from their original joint PDF.

It should be noted that the observations from the failure analysis, such as the distribution of
the moment magnitudes and epicentral distance when failure occurs, are based on the assumed
probability models for the ground acceleration. The results should be interpreted bearing in
mind the inherent limitations of these models. For example, the Atkinson-Silva model is a
point-source model which does not directly account for the geometry of the fault and the char-
acteristics of near-source ground motions. In view of this, the failure analysis results either
provide a means for calibrating the stochastic ground motion models, or otherwise should be
interpreted carefully. Nevertheless, on the premise that the quality of stochastic ground mo-
tion models will improve, Subset Simulation provides an efficient tool for estimation of failure
probabilities and for failure analysis.
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