Reply to the Comment on "Dependence of the Ta K x-ray energy on the mode of excitation"*

A. A. Hahn, K.-C. Wang, F. Boehm, H. E. Henrikson, and P. Vogel
California Institute of Technology, Pasadena, California 91125
(Received 2 May 1977)

The difficulties in interpretation of the K x-ray shifts are acknowledged. A new experiment confirms, with higher accuracy, the previously reported data and excludes the possibility of a chemical shift.

We agree with the preceding comment, ¹ which points out that the tentative interpretation of the Ta K x-ray shifts,² based on the relatively large shake-off probability, disagrees with the commonly accepted calculations.³ Thus we cannot offer an interpretation of the observed shifts even if we assume that the shake-off probability accompanying fluorescence is larger than the shake-off probability accompanying electron capture. Our Hartree-Fock-Slater calculations and our experimental results which formed the substance of our paper³ are, however, unchanged.

We have repeated our experiment with a different apparatus and different experimental procedures. Using an improved method to fluoresce the Ta x-rays, we simultaneously took data from four sources: two oxides and two metals. For the Ta Kα₁, the observed centroid shifts (in eV) are for WO₃-Ta₃O₅, −0.78(07); W-Ta, −0.84(09); Ta₃O₅-Ta, −0.13(10); and WO₃-W, =−0.08(07). The first two numbers agree with our previously reported shift of −0.87(13) eV. The last two numbers represent the chemical shift of the Ta Kα₁ and agree within errors with the result of Sumbaev et al.⁴:
−0.113(30) eV. The preliminary data on Ta Kα₂ and Kβ₂ shifts are also in agreement with the shifts given in Ref. 2. In Ref. 2 we also reported a difference in linewidth between the W and Ta sources. Our present results do not corroborate these findings. It appears that the instrumental linewidth is strongly dependent upon the source dimensions. Therefore we cannot distinguish which of the two modes of x-ray excitation produces a broader x-ray line. A future paper will detail our new experimental setup and the measurements of the tantalum Kα₂ and Kβ₂ lines.

We would like to thank M. S. Freedman, M. L. Perlman, and J. P. Briand for correspondence.

---

¹Work supported by U. S. ERDA AT(04-3)-63.