A candidate LiBH₄ for hydrogen storage: Crystal structures and reaction mechanisms of intermediate phases

Jeung Ku Kang and Se Yun Kim
Department of Materials Science and Engineering, KAIST, Daejeon 305-701, Republic of Korea

Young Soo Han
LG Electronics, Institute of Technology, Devices and Materials Laboratory, Seoul 137-724, Republic of Korea

Richard P. Muller
Computational Materials and Molecular Biology, Sandia National Laboratories, Albuquerque, New Mexico 87185-0996

William A. Goddard III
Materials and Process Simulation Center, California Institute of Technology, Pasadena California 91125-7400

(Received 17 December 2004; accepted 4 August 2005; published online 6 September 2005)

First-principles calculation and x-ray diffraction simulation methods have been used to explore crystal structures and reaction mechanisms of the intermediate phases involved in dehydriding of LiBH₄. LiBH₄ was found to dehydride via two sequential steps: first dehydriding through LiBH, followed by the dehydriding of LiBH through LiB. The first step, which releases 13.1 wt.% hydrogen, was calculated to have an activation barrier of 2.33 eV per formula unit and was endothermic by 1.28 eV per formula unit, while the second step was endothermic by 0.23 eV per formula unit. On the other hand, if LiBH₄ and LiBH each donated one electron, possibly to the catalyst doped on their surfaces, it was found that the barrier for the first step was reduced to 1.50 eV. This implies that the development of the catalyst to induce charge migration from the bulk to the surface is essential to make LiBH₄ usable as a hydrogen storage material in a moderate temperature range, which is also important to stabilize the low-temperature structure of Pnma (no. 62) LiBH on dehydrogenation. Consequently, the high 13.1 wt.% hydrogen available from the dehydriding of LiBH₄ and LiBH and their phase stability on Pnma when specific catalysts were used suggest that LiBH₄ has good potential to be developed as the hydrogen storage medium capable of releasing the Department of Energy target of 6.5 wt.% for a hydrogen fuel cell car in a moderate temperature range. © 2005 American Institute of Physics. [DOI: 10.1063/1.2042632]

There is great interest in small and lightweight hydrogen storage materials.¹,² Hydrogen fuel, which can be produced from renewable energy sources, contains a much larger chemical energy per mass (142 MJ kg⁻¹) than any hydrocarbon fuel, thus making a hydrogen fuel cell an attractive alternative to the internal combustion engine for transportation. A hydrogen fuel cell car needs to store at least 4 kg hydrogen to cover the same range as a gasoline-powered car.¹ On the other hand, to store this hydrogen at room temperature and atmospheric pressure requires such a large volume that corresponds to a balloon with a 4.5 m diameter, which is hardly a practical volume for a small vehicle. To reduce this problem, one could consider using liquid hydrogen for hydrogen storage since it has a high mass density (70.8 kg m⁻³). However, to liquefy hydrogen requires expensive processes due to its low condensation temperature (−252 °C at 1 bar). An additional problem is that heat transfer through the available modern containers can result in a loss of up to 40% of the energy content in hydrogen.³ Currently, in this respect, there is much interest in storing hydrogen on advanced carbons and lightweight metals. Dillon et al.⁴ reported that 6–8 wt. % hydrogen was stored in single-walled nanotubes (SWNTs). However, controversy results⁵,⁶ have been reported concerning the true hydrogen storage capacity on advanced carbons. Hirscher and his coworkers⁷ argued against Dillon’s report by showing that titanium hydrides in the SWNT stored large amounts of hydrogen, but the hydrogen storage capacity on SWNT itself was less than 1 wt. %. Likewise, Chen et al.⁸ showed that the increase in the hydrogen storage capacity by alkaline metal-doped carbon NTs was attributed to the formation of metal hydrides. Putting all of these results together, one could say that the reversible hydrogen content on the pristine SWNT still does not satisfy the Department of Energy (DOE) target of 6.5 wt. %.

A promising alternative for hydrogen storage is the metal hydride system. However, there are still considerable challenges to meet the requirements¹⁷ for practical applications that include (1) increasing the maximum weight percent of reversible hydrogen to 6.5 wt. %, (2) increasing the maximum hydrogen capacity per volume to 62 kg m⁻³, and (3) improving the rate for adsorption/desorption to 1–3 g s⁻¹. In the search for metal hydrides with higher than hitherto known gravimetric storage capacities, LiBH₄ with light elements Li and B, has been considered for this purpose due to its high available 18.5 wt. % hydrogen. The recent experimental x-ray diffraction (XRD) study⁹ and theoretical predictions by Miwa et al.¹⁰ and Ge et al.¹¹ indicate that LiBH₄ is the most stable when it has orthorhombic symmetry. On the other hand, detailed knowledge about the mechanisms of re-

⁴Electronic mail: jeungku@kaist.ac.kr
moving hydrogen and adding hydrogen has not yet been reported. However, we consider that this knowledge can be obtained by using density functional theory (DFT)11,12 calculations, as they allow accurate determination of crystal structures and their energies.

All calculations were performed on the PW91 method13 using Vanderbilt pseudopotentials14 with a cutoff energy of 270 eV. First, we considered the B32 (Fd-3m) structure for LiB and performed the total energy calculations using 270 eV (9880 k-points) and 300 eV cutoff energy (37 671 k-points). Their total energies per formula unit were found to differ by only 2.51 kJ/mol, which indicates that the 270 eV cutoff energy is somehow optimal in terms of both being able to reduce the considerably expensive computational cost by using much larger cutoff energies and also being reasonably accurate in their total energies. The set of k-points used to expand the wave functions was based on the Monkhorst-Pack scheme.15 In addition, we used Gillan’s thermal broadening scheme16 with broadening energies of 0.2 eV. All electronic structure calculations for optimizing geometries were carried out using the CASTEP17 program, and simulated XRD18 patterns were determined through simulations of d-spacing, 2\theta, and intensities for hkl reflections at the optimized geometries.

First, we determined the lowest-energy structure for LiB through geometry optimizations of several types: namely, the Fd-3m, I4_1/a, Pnma, Cmc_21, P6_3mc, and P2_1/c space group types. The Pnma structure is determined as the lowest-energy structure for LiB, with the P2_1/c structure 0.39 eV, the Cmc_21 structure 0.83 eV, the Fd-3m structure 1.14 eV, the I4_1/a structure 2.82 eV, and the P6_3mc structure 4.38 eV per formula unit higher. The optimized lattice parameters for Pnma LiB are obtained as a=6.41 Å, b=3.01 Å, and c=5.60 Å with α=90.0°, β=90.0°, and γ=90.0°, in which the B–B distance of 1.52 Å and the B–B–B angle of 165.0° suggest that the B–B bonding has a certain character of sp hybridization.

LiBH\textsubscript{4} consists of BH\textsubscript{4} anions spaced by Li+ counter ions. As an initial guess for LiBH\textsubscript{4}, we used the Fd-3m LiB\textsubscript{4} structure, but its simulated XRD was found to disagree with the experimental hkl reflections.8 The hkl reflections from I4_1/a LiBH\textsubscript{4} were also predicted to disagree with experimental hkl reflections. On the other hand, the simulated XRD [see Fig. 1(a)] peaks at the wavelength λ=0.486 Å from orthorhombic LiBH\textsubscript{4} [Fig. 2(a)] were found to agree with the experimental patterns. The strongest XRD peak was (011) with 2\theta=7.66°, and the ratio of the second strongest (101) peak with 2\theta=5.63° to the strongest peak was 92.26%, while the third strongest (200) peak with 2\theta=7.80° had a ratio of I(200)/I(011)=83.41%. The Pnma structure was the lowest-energy structure for LiBH\textsubscript{4}, having predicted lattice parameters of a=7.14 Å, b=4.29 Å, and c=6.85 Å with α=90.0°, β=90.0°, and γ=90.0°, which compared to experimental values: a=7.18 Å, b=4.44 Å, and c=6.80 Å with α=90.0°, β=90.0°, and γ=90.0° (see Table I). For Pnma LiBH\textsubscript{4}, each B had four H tetrahedrally coordinated to form BH\textsubscript{4} with the B–H bond distance of 1.21 to 2.22 Å and the H–H bond angle of 109.5° to 110.6°, while the Li–H distance was 2.05 to 2.13 Å. Additionally, the total energies for Cmc_21, P6_3mc, and P2_1/c LiBH\textsubscript{4} were determined through full geometry optimizations, but the Cmc_21 structure was 2.13 eV, the P6_3mc structure was 0.31 eV, and the P2_1/c structure was 0.16 eV per formula unit energetically less stable than the Pnma LiBH\textsubscript{4}.

We also determined energies and structures for the plausible intermediate phases such as LiBH\textsubscript{6}, LiBH\textsubscript{5}, LiBH\textsubscript{4}, and LiBH\textsubscript{3} about LiBH\textsubscript{4} is described in terms of three Li+ ions surrounding each [BH\textsubscript{6}]− molecule (see Table II). We found that LiBH\textsubscript{3}BH\textsubscript{4} was the most stable in the R-3 phase, but that the dehydriding of LiBH\textsubscript{4} through LiBH\textsubscript{3} was endothermic by 3.57 eV per formula unit, while those through the lowest-energy structures of Pnma LiBH and Pnma LiBH\textsubscript{2} were endothermic by 1.28 and 2.89 eV, respectively, per formula unit. Thus, these results suggest that the dehydriding of LiBH\textsubscript{4} through LiBH\textsubscript{3} is the most preferable reaction. The reaction barrier of 2.33 eV per formula unit for dehydriding of LiBH\textsubscript{4} to LiBH was also obtained from the geometries, as seen in Fig. 2, where the H–H bond distance for a desorbing H\textsubscript{2} is 1.463 Å. However, it should be noted that a high temperature (>400 K) would be needed to obtain a practical amount of released hydrogen from LiBH\textsubscript{4} due to its relatively high barrier of 2.33 eV. On the other hand, the low-temperature structure of Pnma LiBH\textsubscript{2} might be unstable at this high temperature. Consequently, dehydrogenation of LiBH\textsubscript{4} and hydrogenation of LiBH should be “reversible” only if the dehydrogenation temperature could be reduced to the extent that Pnma LiBH\textsubscript{2} is stabilized. The recent experimental study by Vajo et al.19 showed that LiBH\textsubscript{4} could be developed as reversible hydrogen storage when specific catalysts were used. We also found that the barrier was reduced to 1.50 eV when LiBH\textsubscript{4} donated one electron, possibly to the catalyst dopant on the hydrogen storage material surface, where the H–H bond distance of a desorbing H\textsubscript{2} is 1.15 Å.
TABLE I. Atomistic details and energies per formula unit for the lowest-energy structures of LiBH₄, Li₃BH₆, LiBH₂, LiBH, and LiB from this work.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Atomic Coordinates (x/a, y/b, z/c)</th>
<th>Lattices a, b, c Å, α, β, γ(°)</th>
<th>Energy (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiBH₄</td>
<td>Li: (0.16 0.25 0.01), B: (0.30 0.25 0.42), H: (0.91 0.25 0.94), (0.39 0.25 0.27), (0.20 0.02 0.42)</td>
<td>a=7.1, b=4.3, c=6.9, α=β=γ=90</td>
<td>-333.816⁹</td>
</tr>
<tr>
<td>Li₃BH₆</td>
<td>Li: (0.95 0.22 0.31), B: (0.00 0.00 0.00), (0.00 0.00 0.50), H: (0.85 0.83 0.10), (0.65 0.48 0.43)</td>
<td>a=b=7.4, c=8.8, α=β=90, γ=120</td>
<td>-744.316</td>
</tr>
<tr>
<td>LiBH₂</td>
<td>Li: (0.24 0.25 0.14), B: (0.45 0.25 0.42), H: (0.07 0.25 0.94), (0.51 0.25 0.23)</td>
<td>a=8.1, b=3.0, c=5.9, α=β=γ=90</td>
<td>-299.208</td>
</tr>
<tr>
<td>LiBH</td>
<td>Li: (0.24 0.25 0.21), B: (0.45 0.25 0.51), H: (0.75 0.25 0.96)</td>
<td>a=6.2, b=3.0, c=6.3, α=β=γ=90</td>
<td>-284.979</td>
</tr>
<tr>
<td>LiB</td>
<td>Li: (0.26 0.25 0.24), B: (0.50 0.25 0.52)</td>
<td>a=6.4, b=3.0, c=5.6, α=β=γ=90</td>
<td>-268.901</td>
</tr>
</tbody>
</table>

⁹Orthorhombic phase Pnma (space group of no. 62). Total energies per formula unit of other space group types for LiBH₄ are also given: P₂₁/c (−333.656 eV), P₆₃mc (−333.514 eV), I₄₁/a (−333.154 eV), Fd-3m (−332.577 eV), and Cmc2₁ (−331.687 eV).

The 1.50 eV barrier was compared to the 1.62 eV obtained experimentally from SiO₂-catalyzed LiBH₄ by Zuttel and his co-workers.¹⁰ In this respect, we can conclude that the development of the catalyst to induce charge migration from the bulk to the surface is essential to lower the activation barrier and the temperature for dehydrogenation of LiBH₄, thus also to stabilize Pnma LiBH on dehydrogenation. Moreover, another good finding was that the 13.1 wt. % hydrogen was available from dehydriding of LiBH₄ through LiBH.

In summary, metal hydride systems such as LiAlH₄ and NaAlH₄¹¹,¹² with high hydrogen storage capacities are suffering from formation of intermediate structures having different phases on dehydrogenation, which results in slow kinetics on dehydrogenation. In this respect, the phase stability of LiBH₄ and LiBH on the Pnma structure when specific catalysts were used and the 13.1 wt. % hydrogen available from dehydriding of LiBH₄ to LiBH are very important aspects. Consequently, we conclude that the catalyst-doped LiBH₄ could be a very attractive hydrogen storage material capable of releasing the DOE target¹ of 6.5 wt. % for a hydrogen fuel cell car in a moderate temperature range.

This research was supported by General Motors Global Alternative Proposal Center.