Quantum Correlated D Decays at SuperB

CHIH-HSIANG CHENG

California Institute of Technology, Pasadena, California 91125, USA

We present the prospects for studying quantum correlated charm decays at the $\psi(3770)$ using 0.5–1.0 ab$^{-1}$ of data at SuperB. The impact of studying such double tagged decays upon measurements in other charm environments will be discussed.

PRESENTED AT

The 5th International Workshop on Charm Physics
Honolulu, Hawaii, USA, May 14–17, 2012
1 Introduction

SuperB is a next-generation high-luminosity asymmetric-energy e^+e^- collider that aims to collect 50 to 100 times more data than the B-Factories of the last decade, $BABAR$ and Belle. The center-of-mass energy for the majority of the program will be at or near the $\Upsilon(4S)$ resonance with the designed peak luminosity of $10^{30}\text{ s}^{-1}\text{cm}^{-2}$. The goal is to collect 75 ab^{-1} over five years. Additional runs are also planned at $D\bar{D}$ threshold $\psi(3770)$ to collect $0.5–1.0\text{ ab}^{-1}$ over a few months. SuperB’s physics programs include, but not limited to, heavy-flavor $B_{u,d,s}$, D, and τ physics. SuperB will be able to search for new physics at energy scale up to $10–100\text{ TeV}$ through rare/forbidden decay searches, CP violation, and precision CKM matrix measurements $[1]$. With 75 ab^{-1} of data near $\Upsilon(4S)$, $O(10^{11})$ charm mesons will be created. They come from continuum production $e^-e^\to c\bar{c}$, as well as B decays. Many charm analyses identify a D meson through $D^{++}\to D^0\pi^+$ process. Consequently the reconstruction efficiencies are relatively low.

With 0.5 ab^{-1} of data at $\psi(3770)$, one can expect approximately $1.8\times10^9D^0\bar{D}^0$ and $1.5\times10^9D^+D^-$ events. This amount is more than an order of magnitude larger than the current charm factory BESIII $[4]$ will collect. As a $J^{PC}=1^{--}$ state, $\psi(3770)\to D\bar{D}$ is in a quantum entangled, anti-symmetric state. If one D decays to state α at time t_1 and the other to β at t_2, the decay amplitude \mathcal{M} is

$$
\mathcal{M} = \frac{1}{\sqrt{2}}\left(\langle\alpha|H|D^0(t_1)\rangle\langle\beta|H|\bar{D}^0(t_2)\rangle - \langle\beta|H|D^0(t_2)\rangle\langle\alpha|H|\bar{D}^0(t_1)\rangle\right).
$$

A neutral meson mixing system can be described by a 2×2 effective Hamiltonian with non-vanishing off-diagonal terms

$$
\frac{i}{\hbar}\frac{\partial}{\partial t}\left(\begin{array}{c} D^0(t) \\ \bar{D}^0(t) \end{array}\right) = \left(\begin{array}{cc} M - i\frac{\Gamma}{2} & D^0(t) \\ \bar{D}^0(t) & M \end{array}\right).
$$

The eigenstates $|D_{1,2}\rangle = p|D^0\rangle \pm q|\bar{D}^0\rangle$ satisfy

$$
\frac{q}{p} = \sqrt{\frac{M_{12}^* - \frac{i}{2}\Gamma_{12}^*}{M_{12} - \frac{i}{2}\Gamma_{12}}}, \quad |p|^2 + |q|^2 = 1.
$$

The eigenvalues are

$$
\lambda_{1,2} \equiv m_{1,2} - i\frac{\Gamma_{1,2}}{2} = \left(\begin{array}{c} M - i\frac{\Gamma}{2} \pm \frac{q}{p} \left(M_{12} - i\frac{\Gamma_{12}}{2}\right) \end{array}\right).
$$

Here we have assumed CPT conservation. The time evolution of $\psi(3770)\to D\bar{D}\to \alpha(t_1)\beta(t_2)$ system can then be expressed as

$$
d\Gamma/dt \propto (|a_+|^2 + |a_-|^2)\cosh(y\Gamma\Delta t) + (|a_+|^2 - |a_-|^2)\cos(x\Gamma\Delta t) - 2Re(a_+^*a_-)\sinh(y\Gamma\Delta t) + 2Im(a_+^*a_-)\sinh(x\Gamma\Delta t),
$$
where $\Delta t = t_2 - t_1$, $a_+ \equiv \bar{A}_a A_\beta - A_\alpha \bar{A}_\beta$, $a_- \equiv -\frac{q}{p} \bar{A}_a A_\beta + \frac{p}{q} A_\alpha \bar{A}_\beta$, $M = (M_{11} + M_{22})/2$ $\Gamma = (\Gamma_{11} + \Gamma_{22})/2$, $x = (m_1 - m_2)/\Gamma$, and $y = (\Gamma_1 - \Gamma_2)/(2\Gamma)$; $A_x(\bar{A}_x)$ is the decay amplitude of D (\bar{D}) to X.

2 Charm mixing measurements

The mixing in neutral D system is expected to be very small. The short-distance $|\Delta F| = 2$ comes from box diagrams. The diagrams with b quark in the loop is CKM-suppressed (with V_{ub} in the vertex), and the ones with s and d quarks are GIM-suppressed. The long-distance contributions come from diagrams that connect D^0 and \bar{D}^0 through on-shell states (e.g., $K\bar{K}$). These long-distance contributions are expected to be $\mathcal{O}(10^{-3})$ but the theoretical calculation is difficult. CP violation induced by mixing is therefore expected very small too. Observations of large mixing and/or CP violation are considered clear signs of new physics beyond the standard model.

Charm mixing has been firmly established at B-factories [2] using continuum events in the data taken near the $Y(4S)$ resonance. Both x and y terms are approximately 0.5%. These analyses use the charge of the soft pion from D meson tagged by $\psi(3770) \rightarrow D\bar{D}$ events in the data taken near the $\Upsilon(4S)$ model.

The cleanest mode used in this method is $D \rightarrow K^+\pi^-$, which is Cabibbo-favored in \bar{D}^0 decays but doubly-Cabibbo suppressed in D^0 decays. One does not measure x and y directly. Rather, the observables are rotated by the strong phase difference $\delta_{K\pi}$:

$$x' = x \cos \delta_{K\pi} + y \sin \delta_{K\pi}$$

$$y' = y \cos \delta_{K\pi} - x \sin \delta_{K\pi}$$

Independent measurements of strong phase difference are needed.

Strong phase differences can be measured in $\psi(3770) \rightarrow D\bar{D}$ decays with a “double-tag” technique. Due to the quantum-entangled nature of the system, when one D decays to a CP final state, the other D is projected to the orthogonal state,
which is a linear combination of D^0 and \bar{D}^0, and its decay branching fraction is sensitive to the relative strong phase of $D^0 \to f$ and $\bar{D}^0 \to f$. For example, for $f = K^-\pi^+$, the effective branching fraction of the double-tag event is $B_{S_{\pm}, K^-\pi^+} \simeq B_{S_{\pm}} B_{K^-\pi^+} (1 \pm 2\tau \cos \delta_{K\pi} + R_{WS} + y)$,

$$F_{S_{\pm}, K^-\pi^+} = B_{S_{\pm}} B_{K^-\pi^+} (1 \pm 2\tau \cos \delta_{K\pi} + R_{WS} + y),$$

where $B_{S_{\pm}}$ and $B_{K^-\pi^+}$ are the branching fractions of D^0 decaying to $CP\pm$ and $K^-\pi^+$ final states, respectively, $\langle K^+\pi^-|D^0\rangle/\langle K^+\pi^-|\bar{D}^0\rangle = re^{-i\delta_{K\pi}}$, and R_M is the wrong-sign total decay rate ratio, $R_M \equiv \Gamma(D^0 \to K^-\pi^+)/\Gamma(D^0 \to K^-\pi^+) = r^2 + ry' + (x^2 + y^2)/2$. CLEO-c [6] has demonstrated this technique with 281 pb$^{-1}$ of data and obtained $\delta_{K\pi} = (22_{-12}^{+11+9})^\circ$ or $[-7^\circ, +61^\circ]$ interval at 95% confidence level.

Another powerful method of measuring D^0-\bar{D}^0 mixing is using a time-dependent Dalitz-plot analysis with three-body decays. With this method, one can avoid strong phase ambiguity and resolve x and y by exploiting strong phase variation and interferences of resonances on the Dalitz plot. The most powerful mode of this kind is $D^0 \to K^0_\text{s} \pi^+\pi^-$. The time-dependent decay amplitude of a state created as D^0 or \bar{D}^0 at $t = 0$ can be expressed as [6],

$$M(s_{12}, s_{13}, t) = A_D(s_{12}, s_{13}) \frac{e_1(t) + e_2(t)}{2} + q \frac{p A_D(s_{12}, s_{13}) e_1(t) - e_2(t)}{2},$$

$$\tilde{M}(s_{12}, s_{13}, t) = \tilde{A}_D(s_{12}, s_{13}) \frac{e_1(t) + e_2(t)}{2} + q \frac{p A_D(s_{12}, s_{13}) e_1(t) - e_2(t)}{2},$$

where A_D (\tilde{A}_D) is the decay amplitude of D^0 (\bar{D}^0) as a function of invariant mass squared $s_{12} \equiv m^2 = (p_{K^0_\text{s}} + p_{\pi^-})^2$, $s_{13} \equiv m^2_+ = (p_{K^0_\text{s}} + p_{\pi^+})^2$, and $e_{1,2}(t) = \exp[-i(m_{1,2} - i\Gamma_{1,2}/2)t]$. Using this method, Belle [7] and BABAR [8] measured $x = (0.80 \pm 0.29_{-0.07}^{+0.09} \pm 0.14)^\circ$, $y = (0.33 \pm 0.24_{-0.12}^{+0.08} \pm 0.06)^\circ$, and $x = (0.16 \pm 0.23 \pm 0.12 \pm 0.8)^\circ$, $y = (0.57 \pm 0.20 \pm 0.13 \pm 0.07)^\circ$, respectively, where the first uncertainties are statistical, the second are systematic, and the third are Dalitz plot model uncertainty. With 75 ab$^{-1}$ of $\Upsilon(4S)$ at SuperB, the statistical uncertainty can be reduced by a factor of 10. Since major systematic uncertainties are in fact statistical in nature, estimated from data control samples and simulated events, they will also be improved with more data. However, the Dalitz plot model uncertainty may not improve much without other input; it will become the dominant uncertainty at SuperB [1].

To avoid Dalitz plot model dependence, Giri et al [9] proposed a method, originally for measuring the CKM angle γ in $B^+ \to D[K^0_\text{s} \pi^+\pi^-]K^+$ decays using time-dependent Dalitz plot analysis. In this method, the Dalitz plot phase space is divided into N pairs of bins; two bins in each pair is mirror-symmetric about the line $s_{12} = s_{13}$.
the Dalitz plane. One then can define

\[c_i \equiv \int dp A_{12,13} A_{13,12} \cos(\delta_{12,13} - \delta_{13,12}), \]
\[s_i \equiv \int dp A_{12,13} A_{13,12} \sin(\delta_{12,13} - \delta_{13,12}), \]
\[T_i \equiv \int dp A_{12,13}^2, \]

where \(\delta_{1j,1k} \equiv \delta(s_{1j}, s_{1k}) \), and \(A_{1j,1k} \) is the magnitude of the \(D \) decay amplitude \(A_D(s_{1j}, s_{1k}) = A_{1j,1k} \exp(i\delta_{1j,1k}) \). The integral is over the phase space of the bin \(i \). Here we have used the fact that \(A_D(s_{12}, s_{13}) = A_D(s_{13}, s_{12}) \). The \(c_i \) and \(s_i \) contain unknown strong phase difference \(\delta_{12,13} - \delta_{13,12} \), and thus unknown, but \(T_i \) can be measured with flavor tagged \(D^0 \) decays. For mirror bins, \(i \) and \(\bar{i} \), \(c_i = c_{\bar{i}} \) and \(s_i = -s_{\bar{i}} \).

With charm mixing, the number of events in bin \(i \) at time \(t \) is [10]

\[T_i(t) \propto e^{-\Gamma t}[T_i + \sqrt{T_i T_{\bar{i}}}(c_i y + s_i x)\Gamma t + \mathcal{O}((x^2 + y^2)(\Gamma t)^2)]. \]

One can fit all bins simultaneously to extract mixing parameters \((x, y) \) if \((s_i, c_i) \) are known.

Again, using entangled \(\psi(3770) \rightarrow DD \), one can measure \(s_i \) and \(c_i \). If one \(D \) decays into a \(CP \) eigenstate, the other \(D \) is in an orthogonal state. We denote these two states as \(D^0_{\pm} \equiv (D^0 \pm \bar{D}^0)/\sqrt{2} \). The amplitude and partial decay width of the second \(D \) can be written as [9]

\[A(D^0_{\pm} \rightarrow K^0_S(p_1)\pi^-(p_2)\pi^+(p_3)) = \frac{1}{\sqrt{2}}(A_D(s_{12}, s_{13}) \pm A_D(s_{13}, s_{12})), \]
\[d\Gamma(D^0_{\pm} \rightarrow K^0_S(p_1)\pi^-(p_2)\pi^+(p_3)) = \frac{1}{2}(A^2_{12,13} + A^2_{13,12}) \pm A_{12,13} A_{13,12} \cos(\delta_{12,13} - \delta_{13,12}) dp, \]

where \(p_i \) in parentheses are the momentum of the corresponding particle. We can then measure \(c_i \) using

\[c_i = \frac{1}{2} \left[\int d\Gamma(D^0_+ \rightarrow K^0_S(p_1)\pi^-(p_2)\pi^+(p_3)) - \int d\Gamma(D^0_- \rightarrow K^0_S(p_1)\pi^-(p_2)\pi^+(p_3)) \right]. \]

If we can bin the Dalitz plot so that \(c_i \) and \(s_i \) are nearly constant in each bin, \((c_i, s_i) \) can be determined with high precision

\[c_i = \sum_j c_j = \sum_j A_j A_j \cos(\delta_j - \delta_j) \Delta p_j = \sum_j \sqrt{T_j T_{\bar{j}} \cos(\delta_j - \delta_j)}, \]
\[s_i = \sum_j \sqrt{T_j T_{\bar{j}}} \sin(\delta_j - \delta_j) = \sum_j \pm \sqrt{T_j T_{\bar{j}} - c_j^2}. \]
Table 1: D^0-\bar{D}^0 mixing parameters (x, y) and strong phases obtained from χ^2 fits to observables obtained either from BABAR or from their projections to SuperB. Fit a) is for 482 fb$^{-1}$ from BABAR alone and this is scaled up in b) to 75 ab$^{-1}$ at $\Upsilon(4S)$ for SuperB. Fit c) includes strong phase information projected to come from a BES III run at $D\bar{D}$ threshold, and d) is what would be possible from a 500 fb$^{-1}$ $D\bar{D}$ threshold run at SuperB. The uncertainties due to statistical limitation alone are shown below each fit result.

<table>
<thead>
<tr>
<th>Fit</th>
<th>$x \times 10^3$</th>
<th>$y \times 10^3$</th>
<th>$\delta_{K^+\pi^-}^0$</th>
<th>$\delta_{K^+\pi^-\pi^0}^0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>$3.01^{+3.12}_{-3.39}$</td>
<td>$10.10^{+1.69}_{-1.72}$</td>
<td>$41.3^{+22.0}_{-24.0}$</td>
<td>43.8 ± 26.4</td>
</tr>
<tr>
<td>Stat.</td>
<td>(2.76)</td>
<td>(1.36)</td>
<td>(18.8)</td>
<td>(22.4)</td>
</tr>
<tr>
<td>(b)</td>
<td>$xxx^{+0.72}_{-0.75}$</td>
<td>$xxx \pm 0.19$</td>
<td>$xxx^{+3.7}_{-3.4}$</td>
<td>$xxx^{+4.6}_{-4.5}$</td>
</tr>
<tr>
<td>Stat.</td>
<td>(0.18)</td>
<td>(0.11)</td>
<td>(1.3)</td>
<td>(2.9)</td>
</tr>
<tr>
<td>(c)</td>
<td>$xxx \pm 0.42$</td>
<td>$xxx \pm 0.17$</td>
<td>$xxx \pm 2.2$</td>
<td>$xxx^{+3.3}_{-3.4}$</td>
</tr>
<tr>
<td>Stat.</td>
<td>(0.18)</td>
<td>(0.11)</td>
<td>(1.3)</td>
<td>(2.7)</td>
</tr>
<tr>
<td>(d)</td>
<td>$xxx \pm 0.20$</td>
<td>$xxx \pm 0.12$</td>
<td>$xxx \pm 1.0$</td>
<td>$xxx \pm 1.1$</td>
</tr>
<tr>
<td>Stat.</td>
<td>(0.17)</td>
<td>(0.10)</td>
<td>(0.9)</td>
<td>(1.1)</td>
</tr>
</tbody>
</table>

CLEO-c [11, 12] measured s_i and c_i for $D \rightarrow K_0^0 \pi^+\pi^-$ and $D \rightarrow K_0^0 K^+K^-$ with 818 pb$^{-1}$ of data on $\psi(3770)$ resonance. They also estimated the impact on the measurement of the CKM angle γ. They found their s_i and c_i are consistent with that calculated from the Dalitz plot model used in BABAR analysis, and the reduction of Dalitz plot model dependence is substantial.

3 Projected precisions in SuperB era

In SuperB’s physics reach studies [1], the expected precisions in D^0-\bar{D}^0 mixing parameters in various scenarios on the SuperB time scale are estimated. First the results from BABAR’s 482 fb$^{-1}$ are extrapolated to SuperB’s target of 75 ab$^{-1}$ near $\Upsilon(4S)$, without any independent inputs of strong phase measurements. Then the improvement due to better precision in strong phase measurements using $D\bar{D}$ threshold data are estimated, first from the forthcoming BESIII runs and from SuperB plan (0.5 ab$^{-1}$ integrated luminosity).

The results, including current average values from BABAR, are summarize in Table 1 and the corresponding confidence regions are shown in Fig. 1.
Figure 1: The confidence regions of $D^0-\bar{D}^0$ mixing parameters (x, y) in various scenarios described in the text and in Table 1. Shaded areas indicate the coverage of measured observables lying within their 68.3% confidence region. Contours enclosing 68.3% (1σ), 95.45% (2σ), 99.73% (3σ), 99.994% (4σ) and $1 - 5.7 \times 10^{-7}$ two-dimensional confidence regions from the χ^2 fit to these results are drawn as solid lines.

4 Time-dependent CP asymmetry

Using coherent $\psi(3770) \to D^0\bar{D}^0$ decays, one can perform time-dependent CP asymmetry studies analogous to $\Upsilon(4S) \to B^0\bar{B}^0$ in B-factories. If a neutral D meson decays to a final state at t_1 that can identify the sign of its c-quark, e.g., lepton charge in semileptonic decays, the other D meson must be in an orthogonal state, i.e., the opposite flavor to the first D. The time-dependent decay rate of the second D meson into a CP eigenstate can be derived from Eq. 5:

$$A(\Delta t) = \frac{\Gamma(\Delta t) - \Gamma(\Delta t)}{\Gamma(\Delta t) + \Gamma(\Delta t)} = 2e^{y\Gamma\Delta t} \frac{(|\lambda_f|^2 - 1) \cos(x\Gamma\Delta t) + 2Im\lambda_f \sin(x\Gamma\Delta t)}{(1 + |\lambda_f|^2)(1 + e^{2y\Gamma\Delta t}) + 2(1 - e^{2y\Gamma\Delta t})Re\lambda_f},$$

(21)
Correlated production of neutral mesons

Neutral K, D, or B mesons are produced in correlated pairs in e⁺... will appear in its own decay.

TIME-DEPENDENT CP ASYMMETRIES IN D AND ... PHYSICAL REVIEW D84, 114009 (2011)
114009-5

A one produced in a coherent wave function consisting of exactly respectively. The time-dependence of such mesons is com-

and the corresponding to the

A simple rotation), where used are

case, however, at

and the

statistics to be accumulated in order to make a nontrivial

While an asymmetry is observable, one will require large

E.g., if the first decays to a

ð

ð

Þ

¼

In order to illustrate Eq. (...)

For charm decays, the measured parameters normally

shows that the uncertainties with

CP shows that CP used several two-body charm decays with various combination of

threshold data is clearly not as

where Δt = t₂ − t₁, and λf = (qA_f)/(pA_f).

Measuring time-dependent CP asymmetry in D⁰−D‾⁰ system is much more difficult than in B⁰−B‾⁰ system. The reason is that charm mixing rate is very small; both x and y are \(O(1\%) \) for D⁰−D‾⁰, whereas x ~ O(1) for B⁰−B‾⁰. This effect is illustrated in Fig. 2[13], in which one can see that even with a large CP-violating phase (arg(λ_f) = π/4) the CP asymmetry is only a few percent within |Δt| < 10 ps (more than 20 times the D⁰ lifetime). In contrast, within the same Δt range, the CP asymmetry for B⁰ meson exhibits 1.5 full sinusoidal oscillations already.

At SuperB, the design beam spot is much smaller (σ_x ~ 8 μm, σ_y ~ 40 nm, σ_z ~ 200 μm) than that in BABAR. This makes fitting for the primary vertex possible (and meaningful) even if no charged tracks originating from the primary vertex. As illustrated in Fig. 3, the charm mesons from ψ(3770) decay fly away from the primary vertex for \(O(100 \, \text{μm}) \), depending on the center-of-mass frame boost. One can perform a beam-spot constraint fit on the ψ(3770) → D⁻D⁺ system to simultaneously fit for both flight lengths (L₁ and L₂) and convert them to decay times. At near \(\Upsilon(4S) \), one studies charm physics using continuum data; the soft pion from D⁺ decays are used to identify the initial flavor of the charm meson.

SuperB has conducted studies to evaluate the sensitivities to mixing parameters (x,y) and CP-violating parameters q/p using 0.5 ab⁻¹ of D⁻D⁺ threshold data alone and compared that with using 75 ab⁻¹ of data near \(\Upsilon(4S) \). The preliminary results that used several two-body charm decays with various combination of CP/flavor-tags shows that the uncertainties with ψ(3770) data are about six times larger than those with \(\Upsilon(4S) \) data. On this topic along, 0.5 ab⁻¹ of D⁻D⁺ threshold data is clearly not as
Figure 3: Illustrations of charm meson reconstructions with beam spot at SuperB for (left) $\psi(3770) \rightarrow D\bar{D}$ events and for (right) continuum events near $\Upsilon(4S)$.

competitive as $\Upsilon(4S)$ data. However, one should be reminded that the former only requires a few months of data taking, while the latter will take five years according to the plan.

5 Summary

The precision of charm mixing measurements will be limited by the uncertainties of strong phases and Dalitz plot model by the time SuperB collected its targeted data near $\Upsilon(4S)$. One can mitigate this situation by utilizing the quantum correlation of charm decays in $\psi(3770) \rightarrow D\bar{D}$ with BESIII data. With a months-long run at $D\bar{D}$ threshold at SuperB, it is possible to improve the precision by another factor of two. With a boost of the center-of-mass frame, time-dependent CP asymmetry measurements can also be performed in $\psi(3770) \rightarrow D\bar{D}$ data, but the precision is not as competitive as the much larger $\Upsilon(4S)$ data.

Finally, not discussed in this paper but worth noting here, charm threshold data have advantages to $\Upsilon(4S)$ data in several areas due to the low background and the fact that the whole event can be fully reconstructed (double tag), in addition to the quantum correlation. These areas include rare decays ($D^0 \rightarrow \gamma\gamma$, $\mu\mu (X)$, etc.), leptonic/semileptonic charm decays, form factor measurements, CPT violation, CP violation in $D \rightarrow V\gamma$ that probes chromomagnetic dipole operator [14], and others. It certainly adds to the breadth of SuperB physics programs.

References

