Supporting Information

De-swelling mechanisms of surface-grafted poly(NIPAAm) brushes:
Molecular dynamics simulation approach

Seung Geol Lee,†‡┴ Tod A. Pascal,‡┴ Wonsang Koh,† Giuseppe F. Brunello,†
William A. Goddard III, *,‡ and Seung Soon Jang*,†

† Computational NanoBio Technology Laboratory, School of Materials Science and Engineering, Georgia Institute
of Technology, 771 Ferst Drive NW, Atlanta, GA 30332-0245, USA
‡ Materials and Process Simulation Center, Division of Chemistry and Chemical Engineering, California Institute of
Technology, Pasadena, CA 91125, USA

* To whom correspondence should be addressed.
Professor Seung Soon Jang, E-mail: SeungSoon.Jang@mse.gatech.edu
Professor William A. Goddard III, E-mail: wag@wag.caltech.edu

┴ These authors contributed equally to this work
Figure 1S. Packing energies of the surface-grafted P(NIPAAm) brush.
Figure 2S. Snapshots of the hydrated surface-grafted P(AAm) brushes during simulation at (a) 370 K; (b) 345 K; (c) 320 K; (d) 290 K; and (e) 275 K. Blue, yellow, red, and white color denote polymer brushes, silicon substrate, oxygen of water, and hydrogen of water, respectively.
Figure 3S. Density profiles of the surface-grafted P(AAm) brushes at: (a) 370 K; (b) 345 K; (c) 320 K; (d) 295 K; and (e) 275 K.
Figure 4S. Thickness of the P(AAm) brushes.
Figure 5S. Pair correlation functions of: (a) O(AAm)-O(water) pairs; and (b) N(AAm)-O(water) pairs.
Figure 6S. Change in the coordination numbers of: (a) O(AAm)-O(water) pairs; and (b) N(AAm)-O(water) pairs.
Figure 7S. Total number of hydrogen bonds in P(AAm) brushes.
Figure 8S. Total surface area of P(AAm) brushes.