CaltechAUTHORS
  A Caltech Library Service

Concentrated solar thermoelectric generators

Baranowski, Lauryn L. and Snyder, G. Jeffrey and Toberer, Eric S. (2012) Concentrated solar thermoelectric generators. Energy and Environmental Science, 5 (10). pp. 9055-9067. ISSN 1754-5692. http://resolver.caltech.edu/CaltechAUTHORS:20121029-145349675

[img]
Preview
PDF - Published Version
See Usage Policy.

660Kb
[img]
Preview
PDF - Supplemental Material
See Usage Policy.

244Kb

Use this Persistent URL to link to this item: http://resolver.caltech.edu/CaltechAUTHORS:20121029-145349675

Abstract

Solar thermoelectric generators (STEGs) are solid state heat engines that generate electricity from concentrated sunlight. In this paper, we develop a novel detailed balance model for STEGs and apply this model to both state-of-the-art and idealized materials. This model uses thermoelectric compatibility theory to provide analytic solutions to device efficiency in idealized materials with temperature-dependent properties. The results of this modeling allow us to predict maximum theoretical STEG efficiencies and suggest general design rules for STEGs. With today's materials, a STEG with an incident flux of 100 kW m^(−2) and a hot side temperature of 1000 °C could achieve 15.9% generator efficiency, making STEGs competitive with concentrated solar power plants. Future developments will depend on materials that can provide higher operating temperatures or higher material efficiency. For example, a STEG with zT = 2 at 1500 °C would have an efficiency of 30.6%.


Item Type:Article
Related URLs:
URLURL TypeDescription
http://dx.doi.org/10.1039/c2ee22248e DOIUNSPECIFIED
http://pubs.rsc.org/en/Content/ArticleLanding/2012/EE/c2ee22248ePublisherUNSPECIFIED
Additional Information:© 2012 The Royal Society of Chemistry. Received 17 May 2012, Accepted 06 Aug 2012. First published on the web 31 Aug 2012. LLB was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program. GJS gratefully acknowledges the support of the Jet Propulsion Laboratory. EST acknowledges the NSF Materials Research Science and Engineering Center at CSM (NSF-MRSEC award DMR0820518) for funding. We thank Andriy Zakutayev for his insights and discussion.
Funders:
Funding AgencyGrant Number
National Defense Science and Engineering Graduate (NDSEG) FellowshipUNSPECIFIED
JPLUNSPECIFIED
NSF Materials Research Science and Engineering Center (MRSEC)DMR0820518
Record Number:CaltechAUTHORS:20121029-145349675
Persistent URL:http://resolver.caltech.edu/CaltechAUTHORS:20121029-145349675
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:35163
Collection:CaltechAUTHORS
Deposited By: Tony Diaz
Deposited On:29 Oct 2012 22:42
Last Modified:27 Dec 2012 02:56

Repository Staff Only: item control page