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In this paper two things are done. (1) It is shown that a con-
siderable simplification can be attained in writing down matrix
elements for complex processes in electrodynamics. Further, a
physical point of view is available which permits them to be
written down directly for any specific problem. Being simply a
restatement of conventional electrodynamics, however, the matrix
elements diverge for complex processes. (2) Electrodynamics is
modified by altering the interaction of electrons at short distances,
All matrix elements are now finite, with the exception of those
relating to problems of vacuum polarization. The latter are
evaluated in a manner suggested by Pauli and Bethe, which gives
finite results for these matrices also. The only effects sensitive to
the modification are changes in mass and charge of the electrons.
Such changes could not be directly observed. Phenomena directly
observable, are insensitive to the details of the modification used
(except at extreme energies). For such phenomena, a limit can
be taken as the range of the modification goes to zero. The results
then agree with those of Schwinger. A complete, unambiguous,

and presumably consistent, method is therefore available for the
calculation of all processes involving electrons and photons.

The simplification in writing the expressions results from an
emphasis on the over-all space-time view resulting from a study
of the solution of the equations of electrodynamics. The relation
of this to the more conventional Hamiltonian point of view is
discussed. It would be very difficult to make the modification
which is proposed if one insisted on having the equations in
Hamiltonian form.

The methods apply as well to charges obeying the Klein-Gordon
equation, and to the various meson theories of nuclear forces.
Tllustrative examples are given. Although a modification like that
used in electrodynamics can make all matrices finite for all of the
meson theories, for some of the theories it is no longer true that
all directly observable phenomena are insensitive to the details of
the modification used.

The actual evaluation of integrals appearing in the matrix
elements may be facilitated, in the simpler cases, by methods
described in the appendix.

HIS paper should be considered as a direct con-
tinuation of a preceding one! (I) in which the
motion of electrons, neglecting interaction, was ana-
lyzed, by dealing directly with the solution of the
Hamiltonian differential equations. Here the same tech-
nique is applied to include interactions and in that way
to express in simple terms the solution of problems in
quantum electrodynamics.

For most practical calculations in quantum electro-
dynamics the solution is ordinarily expressed in terms
of a matrix element. The matrix is worked out as an
expansion in powers of €?/7c, the successive terms cor-
responding to the inclusion of an increasing number of
virtual quanta. It appears that a considerable simplifi-
cation can be achieved in writing down these matrix
elements for complex processes. Furthermore, each term
in the expansion can be written down and understood
directly from a physical point of view, similar to the
space-time view in I. It is the purpose of this paper to
describe how this may be done. We shall also discuss
methods of handling the divergent integrals which
appear in these matrix elements.

The simplification in the formulae results mainly from
the fact that previous methods unnecessarily separated
into individual terms processes that were closely related
physically. For example, in the exchange of a quantum
between two electrons there were two terms depending
on which electron emitted and which absorbed the
quantum. Yet, in the virtual states considered, timing
relations are not significant. Olny the order of operators
in the matrix must be maintained. We have seen (I),
that in addition, processes in which virtual pairs are
produced can be combined with others in which only

! R. P. Feynman, Phys. Rev. 76, 749 (1949), hereafter called I.

positive energy electrons are involved. Further, the
effects of longitudinal and transverse waves can be
combined together. The separations previously made
were on an unrelativistic basis (reflected in the circum-
stance that apparently momentum but not energy is
conserved in intermediate states). When the terms are
combined and simplified, the relativistic invariance of
the result is self-evident.

We begin by discussing the solution in space and time
of the Schrédinger equation for particles interacting
instantaneously. The results are immediately general-
izable to delayed interactions of relativistic electrons
and we represent in that way the laws of quantum
electrodynamics. We can then see how the matrix ele-
ment for any process can be written down directly. In
particular, the self-energy expression is written down.

So far, nothing has been done other than a restate-
ment of conventional electrodynamics in other terms.
Therefore, the self-energy diverges. A modification? in
interaction between charges is next made, and it is
shown that the self-energy is made convergent and
corresponds to a correction to the electron mass. After
the mass correction is made, other real processes are
finite and insensitive to the “width” of the cut-off in
the interaction.?

Unfortunately, the modification proposed is not com-
pletely satisfactory theoretically (it leads to some diffi-
culties of conservation of energy). It does, however,
seem consistent and satisfactory to define the matrix

2 For a discussion of this modification in classical physics see
R. P. Feynman, Phys. Rev. 74 939 (1948), hereafter referred
to as A.

3 A brief summary of the methods and results will be found in
R. P. Feynman, Phys. Rev. 74, 1430 (1948), hereafter referred
to as B.
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element for all real processes as the limit of that com-
puted here as the cut-off width goes to zero. A similar
technique suggested by Pauli and by Bethe can be
applied to problems of vacuum polarization (resulting
in a renormalization of charge) but again a strict
physical basis for the rules of convergence is not known.

After mass and charge renormalization, the limit of
zero cut-off width can be taken for all real processes.
The results are then equivalent to those of Schwinger*
who does not make explicit use of the convergence fac-
tors. The method of Schwinger is to identify the terms
corresponding to corrections in mass and charge and,
previous to their evaluation, to remove them from the
expressions for real processes. This has the advantage
of showing that the results can be strictly independent
of particular cut-off methods. On the other hand, many
of the properties of the integrals are analyzed using
formal properties of invariant propagation functions.
But one of the properties is that the integrals are infinite
and it is not clear to what extent this invalidates the
demonstrations. A practical advantage of the present
method is that ambiguities can be more easily resolved;
simply by direct calculation of the otherwise divergent
integrals. Nevertheless, it is not at all clear that the
convergence factors do not upset the physical con-
sistency of the theory. Although in the limit the two
methods agree, neither method appears to be thoroughly
satisfactory theoretically. Nevertheless, it does appear
that we now have available a complete and definite
method for the calculation of physical processes to any
order in quantum electrodynamics.

Since we can write down the solution to any physical
problem, we have a complete theory which could stand
by itself. It will be theoretically incomplete, however,
in two respects. First, although each term of increasing
order in €%/ %c can be written down it would be desirable
to see some way of expressing things in finite form to
all orders in €*/%c at once. Second, although it will be
physically evident that the results obtained are equiva-
lent to those obtained by conventional electrodynamics
the mathematical proof of this is not included. Both of
these limitations will be removed in a subsequent paper
(see also Dyson?).

Briefly the genesis of this theory was this. The con-
ventional electrodynamics was expressed in the La-
grangian form of quantum mechanics described in the
Reviews of Modern Physics.® The motion of the field
oscillators could be integrated out (as described in Sec-
tion 13 of that paper), the result being an expression of
the delayed interaction of the particles. Next the modi-
fication of the delta-function interaction could be made
directly from the analogy to the classical case.? This

4 J. Schwinger, Phys. Rev. 74, 1439 (1948), Phys. Rev. 75, 651
(1949). A proof of this equivalence is given by F. J. Dyson, Phys.
Rev. 75, 486 (1949).

5 R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948). The applica-
tion to electrodynamics is described in detail by H. J. Groenewold,
Koninklijke Nederlandsche Akademia van Weteschappen. Pro-
ceedings Vol. LII, 3 (226) 1949.
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was still not complete because the Lagrangian method
had been worked out in detail only for particles obeying
the non-relativistic Schrodinger equation. It was then
modified in accordance with the requirements of the
Dirac equation and the phenomenon of pair creation.
This was made easier by the reinterpretation of the
theory of holes (I). Finally for practical calculations the
expressions were developed in a power series in €2/ %c. It
was apparent that each term in the series had a simple
physical interpretation. Since the result was easier to
understand than the derivation, it was thought best to
publish the results first in this paper. Considerable time
has been spent to make these first two papers as com-
plete and as physically plausible as possible without
relying on the Lagrangian method, because it is not
generally familiar. It is realized that such a description
cannot carry the conviction of truth which would ac-
company the derivation. On the other hand, in the
interest of keeping simple things simple the derivation
will appear in a separate paper.

The possible application of these methods to the
various meson theories is discussed briefly. The formu-
las corresponding to a charge particle of zero spin
moving in accordance with the Klein Gordon equation
are also given. In an Appendix a method is given for
calculating the integrals appearing in the matrix ele-
ments for the simpler processes.

The point of view which is taken here of the inter-
action of charges differs from the more usual point of
view of field theory. Furthermore, the familiar Hamil-
tonian form of quantum mechanics must be compared
to the over-all space-time view used here. The first
section is, therefore, devoted to a discussion of the
relations of these viewpoints.

1. COMPARISON WITH THE HAMILTONIAN
METHOD

Electrodynamics can be looked upon in two equiva-
lent and complementary ways. One is as the description
of the behavior of a field (Maxwell’s equations). The
other is as a description of a direct interaction at a
distance (albeit delayed in time) between charges (the
solutions of Lienard and Wiechert). From the latter
point of view light is considered as an interaction of the
charges in the source with those in the absorber. This is
an impractical point of view because many kinds of
sources produce the same kind of effects. The field point
of view separates these aspects into two simpler prob-
lems, production of light, and absorption of light. On
the other hand, the field point of view is less practical
when dealing with close collisions of particles (or their
action on themselves). For here the source and absorber
are not readily distinguishable, there is an intimate
exchange of quanta. The fields are so closely determined
by the motions of the particles that it is just as well not
to separate the question into two problems but to con-
sider the process as a direct interaction. Roughly, the
field point of view is most practical for problems involv-
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ing real quanta, while the interaction view is best for
the discussion of the virtual quanta involved. We shall
emphasize the interaction viewpoint in this paper, first
because it is less familiar and therefore requires more
discussion, and second because the important aspect in
the problems with which we shall deal is the effect of
virtual quanta.

The Hamiltonian method is not well adapted to
represent the direct action at a distance between charges
because that action is delayed. The Hamiltonian method
represents the future as developing out of the present.
If the values of a complete set of quantities are known
now, their values can be computed at the next instant
in time. If particles interact through a delayed inter-
action, however, one cannot predict the future by
simply knowing the present motion of the particles.
One would also have to know what the motions of the
particles were in the past in view of the interaction this
may have on the future motions. This is done in the
Hamiltonian electrodynamics, of course, by requiring
that one specify besides the present motion of the
particles, the values of a host of new variables (the
coordinates of the field oscillators) to keep track of that
aspect of the past motions of the particles which de-
termines their future behavior. The use of the Hamil-
tonian forces one to choose the field viewpoint rather
than the interaction viewpoint.

In many problems, for example, the close collisions
of particles, we are not interested in the precise tem-
poral sequence of events. It is not of interest to be able
to say how the situation would look at each instant of
time during a collision and how it progresses from in-
stant to instant. Such ideas are only useful for events
taking a long time and for which we can readily obtain
information during the intervening period. For collisions
it is much easier to treat the process as a whole.® The
Mgller interaction matrix for the the collision of two elec-
trons is not essentially more complicated than the non-
relativistic Rutherford formula, yet the mathematical
machinery used to obtain the former from quantum
electrodynamics is vastly more complicated than
Schrédinger’s equation with the e%/r12 interaction
needed to obtain the latter. The difference is only that
in the latter the action is instantaneous so that the
Hamiltonian method requires no extra variables, while
in the former relativistic case it is delayed and the
Hamiltonian method is very cumbersome.

We shall be discussing the solutions of equations
rather than the time differential equations from which
they come. We shall discover that the solutions, because
of the over-all space-time view that they permit, are as
easy to understand when interactions are delayed as
when they are instantaneous.

As a further point, relativistic invariance will be self-
evident. The Hamiltonian form of the equations de-
velops the future from the instantaneous present. But

b ¢ This is the viewpoint of the theory of the S matrix of Heisen-
erg.
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for different observers in relative motion the instan-
taneous present is different, and corresponds to a
different 3-dimensional cut of space-time. Thus the
temporal analyses of different observers is different and
their Hamiltonian equations are developing the process
in different ways. These differences are irrelevant, how-
ever, for the solution is the same in any space time
frame. By forsaking the Hamiltonian method, the
wedding of relativity and quantum mechanics can be
accomplished most naturally.

We illustrate these points in the next section by
studying the solution of Schrédinger’s equation for non-
relativistic particles interacting by an instantaneous
Coulomb potential (Eq. 2). When the solution is modi-
fied to include the effects of delay in the interaction
and the relativistic properties of the electrons we obtain
an expression of the laws of quantum electrodynamics

(Eq. 4).
2. THE INTERACTION BETWEEN CHARGES

We study by the same methods as in I, the interaction
of two particles using the same notation as I. We start
by considering the non-relativistic case described by the
Schrédinger equation (I, Eq. 1). The wave function at
a given time is a function y¥/(X,, Xs, £) of the coordinates
X, and x; of each particle. Thus call K(X,, X, ; Xa', X5', )
the amplitude that particle a at x," at time ¢ will get
to X, at ¢ while particle b at x;’ at ¢’ gets to x; at ¢. If the
particles are free and do not interact this is

K(Xq, X5, t; X, Xp', ') = Koa(Xa, t; Xa', ') Kop (X, t; X", ')

where K. is the K, function for particle a considered
as free. In this case we can obviously define a quantity
like K, but for which the time ¢ need not be the same
for particles @ and b (likewise for ¢'); e.g.,

Ko(3,4;1,2)=Koa(3, 1)Kos(4, 2) €Y

can be thought of as the amplitude that particle a goes
from x, at ; to X; at /3 and that particle b goes from x,
at {3 to X4 at #4.

When the particles do interact, one can only define
the quantity K(3,4;1, 2) precisely if the interaction
vanishes between #, and {, and also between ¢; and .
In a real physical system such is not the case. There is
such an enormous advantage, however, to the concept
that we shall continue to use it, imagining that we can
neglect the effect of interactions between ¢, and ¢, and
between f; and #,. For practical problems this means
choosing such long time intervals ¢3—¢, and f,—¢, that
the extra interactions near the end points have small
relative effects. As an example, in a scattering problem
it may well be that the particles are so well separated
initially and finally that the interaction at these times
is negligible. Again energy values can be defined by the
average rate of change of phase over such long time
intervals that errors initially and finally can be neg-
lected. Inasmuch as any physical problem can be defined
in terms of scattering processes we do not lose much in
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F16. 1. The fundamental interaction Eq. (4). Exchange of one
quantum between two electrons.

a general theoretical sense by this approximation. If it
is not made it is not easy to study interacting particles
relativistically, for there is nothing significant in choos-
ing f1=1; if x1£X3, as absolute simultaneity of events
at a distance cannot be defined invariantly. It is essen-
tially to avoid this approximation that the complicated
structure of the older quantum electrodynamics has
been built up. We wish to describe electrodynamics as
a delayed interaction between particles. If we can make
the approximation of assuming a meaning to K(3,4;1, 2)
the results of this interaction can be expressed very
simply.

To see how this may be done, imagine first that the
interaction is simply that given by a Coulomb potential
¢2/r where 7 is the distance between the particles. If this
be turned on only for a very short time Afy at time ,,
the first order correction to K(3, 4; 1, 2) can be worked
out exactly as was Eq. (9) of I by an obvious general-
ization to two particles:

K®(3,4;1,2)= —-ic2ffKoa(3, 5)Kos(4, 6)r567"

X Koa(5, 1)K o6, 2)d*x5d*xAl,

where #;=1Ils=1,. If now the potential were on at all
times (so that strictly K is not defined unless ¢,=1; and
h=t,), the first-order effect is obtained by integrating
on {,, which we can write as an integral over both #5
and #¢ if we include a delta-function 8(/s—1) to insure
contribution only when f{;=t. Hence, the first-order
effect of interaction is (calling f5—te=1z6):

K®G3,4;1,2)=—ie f f Koa(3, $)Ko(4, 6)r55”

X 8(t56) Koa(S, 1) Kob(6, 2)d1sd7s, (2)

where dr=d®xd!.

We know, however, in classical electrodynamics, that
the Coulomb potential does not act instantaneously,
but is delayed by a time 73, taking the speed of light
as unity. This suggests simply replacing 755 8(fs6) in
(2) by something like 756~'8(/56—756) to represent the
delay in the effect of b on a.
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This turns out to be not quite right,” for when this
interaction is represented by photons they must be of
only positive energy, while the Fourier transform of
6(ts6—736) contains frequencies of both signs. It should
instead be replaced by &, (fs6—7s¢) where

o (x)= f e~ “"dw/m=lim ST)—_= ()4 (rix)"t. (3)

=0 x—je

This is to be averaged with 757'8,(—f56—7s6) which
arises when /;<{/; and corresponds to a emitting the
quantum which b receives. Since

)10y (t—=r) 84 (—1—1))=08,(L—1),

this means 757'8(/56) is replaced by &,(sss?) where
sse’ =156’ — 756’ is the square of the relativistically in-
variant interval between points 5 and 6. Since in
classical electrodynamics there is also an interaction
through the vector potential, the complete interaction
(see A, Eq. (1)) should be (1—(vs-vg)d,(s562), or in the
relativistic case,

(1 — Qg Wb)5+(5662) = Baﬁb'Yau'Ybua-f-(saGZ)-

Hence we have for electrons obeying the Dirac equation,

K®@, 451, 2) = —ie f f Ksa(3, 5)Ko(4, 6)Yaron

X6, (556) K1a(S, 1)K 0(6, 2)drsdrs, (4)

where v,, and v, are the Dirac matrices applying to
the spinor corresponding to particles ¢ and b, respec-
tively (the factor 8,8, being absorbed in the definition,
I Eq. (17), of K,).

This is our fundamental equation for electrodynamics.
It describes the effect of exchange of one quantum
(therefore first order in ¢?) between two electrons. It
will serve as a prototype enabling us to write down the
corresponding quantities involving the exchange of two
or more quanta between two electrons or the interaction
of an electron with itself. It is a consequence of con-
ventional electrodynamics. Relativistic invariance is
clear. Since one sums over u it contains the effects of
both longitudinal and transverse waves in a relati-
vistically symmetrical way.

We shall now interpret Eq. (4) in a manner which
will permit us to write down the higher order terms. It
can be understood (see Fig. 1) as saying that the ampli-
tude for “a” to go from 1 to 3 and “b” to go from 2 to 4
is altered to first order because they can exchange a
quantum. Thus, “e” can go to 5 (amplitude K (5, 1))

7It, and a like term for the effect of a on b, leads to a theory
which, in the classical limit, exhibits interaction through half-
advanced and half-retarded potentials. Classically, this is equi-
valent to purely retarded effects within a closed box from which
no light escapes (e.g., see A, or J. A. Wheeler and R. P. Feynman,
Rev. Mod. Phys. 17, 157 (1945)). Analogous theorems exist in
quantum mechanics but it would lead us too far astray to discuss
them now.
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emit a quantum (longitudinal, transverse, or scalar
Yau) and then proceed to 3 (K4(3,5)). Meantime “‘b”
goes to 6 (K, (6, 2)), absorbs the quantum (vys,) and
proceeds to 4 (K,(4, 6)). The quantum meanwhile pro-
ceeds from 5 to 6, which it does with amplitude 8, (sss?).
We must sum over all the possible quantum polariza-
tions u and positions and times of emission 5, and of
absorption 6. Actually if #;> 1/ it would be better to
say that “a” absorbs and “b” emits but no attention
need be pald to these matters, as all such alternatives
are automatically contained in (4).

The correct terms of higher order in ¢ or involving
larger numbers of electrons (interacting with themselves
or in pairs) can be written down by the same kind of
reasoning. They will be illustrated by examples as we
proceed. In a succeeding paper they will all be deduced
from conventional quantum electrodynamics.

Calculation, from (4), of the transition element be-
tween positive energy free electron states gives the
Moller scattering of two electrons, when account is
taken of the Pauli principle.

The exclusion principle for interacting charges is
handled in exactly the same way as for non-interacting
charges (I). For example, for two charges it requires
only that one calculate K(3,4; 1,2)—K(4, 3; 1, 2) to
get the net amplitude for arrival of charges at 3 and 4.
It is disregarded in intermediate states. The inter-
ference effects for scattering of electrons by positrons
discussed by Bhabha will be seen to result directly in
this formulation. The formulas are interpreted to apply
to positrons in the manner discussed in I.

As our primary concern will be for processes in which
the quanta are virtual we shall not include here the
detailed analysis of processes involving real quanta in
initial or final state, and shall content ourselves by only
stating the rules applying to them.® The result of the
analysis is, as expected, that they can be included by
the same line of reasoning as is used in discussing the
virtual processes, provided the quantities are normalized
in the usual manner to represent single quanta. For
example, the amplitude that an electron in going from 1
to 2 absorbs a quantum whose vector potential, suitably
normalized, is ¢, exp(—ik-x)=C,(x) is just the expres-
sion (I, Eq. (13)) for scattering in a potential with
A (3) replaced by C (3). Each quantum interacts only

8 Although in the expressions stemming from (4) the quanta are
virtual, this is not actually a theoretical limitation. One way to
deduce the correct rules for real quanta from (4) is to note that
in a closed system all quanta can be considered as virtual (i.e.,
they have a known source and are eventually absorbed) so that
in such a system the present description is complete and equiva-
lent to the conventional one. In particular, the relation of the
Einstein A and B coefficients can be deduced. A more practical
direct deduction of the expressions for real quanta will be given
in the subsequent paper. It might be noted that (4) can be re-
written as describing the action on a, K®(3,1)=: /K ,(3,5)
XA(5)K..(5, 1)drs of the potential A#(S)—e?fK+(4 6)3.(s563) v
XK, (6, 2)dn ar151ng from Maxwell’s equations — [1%4 ,=4wj,
from a “current” j,(6)=eK (4, 6)vuK (6, 2) produced by par-
ticle b in going from 2 to 4. This is virtue of the fact that &,

satisfies
— 0220, (s21%) =478(2, 1). 5

7173

once (either in emission or in absorption), terms like
(I, Eq. (14)) occur only when there is more than one
quantum involved. The Bose statistics of the quanta
can, in all cases, be disregarded in intermediate states.
The only effect of the statistics is to change the weight
of initial or final states. If there are among quanta, in
the initial state, some # which are identical then the
weight of the state is (1/#!) of what it would be if these
quanta were considered as different (similarly for the
final state).

3. THE SELF-ENERGY PROBLEM

Having a term representing the mutual interaction
of a pair of charges, we must include similar terms to
represent the interaction of a charge with itself. For
under some circumstances what appears to be two dis-
tinct electrons may, according to I, be viewed also as
a single electron (namely in case one electron was
created in a pair with a positron destined to annihilate
the other electron). Thus to the interaction between
such electrons must correspond the possibility of the
action of an electron on itself.®

This interaction is the heart of the self energy prob-
lem. Consider to first order in ¢? the action of an electron
on itself in an otherwise force free region. The amplitude
K(2,1) for a single particle to get from 1 to 2 differs
from K, (2, 1) to first order in ¢ by a term

k0@ 0==ie [ [K@mK. 63,
XK+(3, 1)d7’3dT454 (3432). (6)

It arises because the electron instead of going from 1
directly to 2, may go (Fig. 2) first to 3, (K,(3, 1)), emit
a quantum (v,), proceed to 4, (K,(4,3)), absorb it
(vu), and finally arrive at 2 (K.(2,4)). The quantum
must go from 3 to 4 (5,(s43%)).

This is related to the self-energy of a free electron in
the following manner. Suppose initially, time ¢, we have
an electron in state f(1) which we imagine to be a posi-
tive energy solution of Dirac’s equation for a free par-
ticle. After a long time f,—¢, the perturbation will alter

F16. 2. Interaction of an elec-
tron with itself, Eq. (6).

K4(3,1)

9 These considerations make it appear unlikely that the con-
tention of J. A. Wheeler and R. P. Feynman, Rev. Mod. Phys.
17, 157 (1945), that electrons do not act on themselves, will be a
successful concept in quantum electrodynamics.



774

the wave function, which can then be looked upon as
a superposition of free particle solutions (actually it
only contains f). The amplitude that g(2) is contained
is calculated as in (I, Eq. (21)). The diagonal element
(g=f) is therefore

f f FQ)BK® (2, 1)Bf(1)dxidxe. )

The time interval T'=1,—{, (and the spatial volume V'
over which one integrates) must be taken very large,
for the expressions are only approximate (analogous to
the situation for two interacting charges). This is
because, for example, we are dealing incorrectly with
quanta emitted just before £, which would normally be
reabsorbed at times after #s.

If K®(2,1) from (6) is actually substituted into (7)
the surface integrals can be performed as was done in
obtaining I, Eq. (22) resulting in

—ie f f FOrK (4, 37,03 (ssd)dradrs. (8)

Putting for f(1) the plane wave % exp(—ip-x1) where
Pu is the energy (ps) and momentum of the electron
(p*>=m?), and u is a constant 4-index symbol, (8)
becomes

—ie [[ [ (@K, v

Xexp(ip- (24— %3))04(5457)dT3d 74,

the integrals extending over the volume V and time
interval 7. Since K (4, 3) depends only on the difference
of the coordinates of 4 and 3, x4, the integral on 4
gives a result (except near the surfaces of the region)
independent of 3. When integrated on 3, therefore, the
result is of order VT. The effect is proportional to V,
for the wave functions have been normalized to unit

%
MOMENTUM p-k, MOMENTUM k,
FACTOR (p~-k-m)_! FACTOR k=2
INTERACTION , %,
MOMENTUM p

F16. 3. Interaction of an electron with itself.
Momentum space, Eq. (11).

10 This is discussed in reference 5 in which it is pointed out that
the concept of a wave function loses accuracy if there are delayed
self-actions.
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volume. If normalized to volume V, the result would
simply be proportional to 7. This is expected, for if the
effect were equivalent to a change in energy AE, the
amplitude for arrival in f at {, is altered by a factor
exp(—1iAE(t;—11)), or to first order by the difference
—1i(AE)T. Hence, we have

AE=¢ f (vuK (4, 3)vu0) explip- 2a)by (sud)drs, (9)

integrated over all space-time dr,. This expression will
be simplified presently. In interpreting (9) we have
tacitly assumed that the wave functions are normalized
so that (#*u)= (@y.w)=1. The equation may therefore
be made independent of the normalization by writing
the left side as (AE) (dyu), or since (@ys%) = (E/m)(tin)
and mAm=EAE, as Am(du) where Am is an equivalent
change in mass of the electron. In this form invariance
is obvious.

One can likewise obtain an expression for the energy
shift for an electron in a hydrogen atom. Simply replace
K, in (8), by K, the exact kernel for an electron in
the potential, V'=g¢e*/r, of the atom, and f by a wave
function (of space and time) for an atomic state. In
general the AE which results is not real. The imaginary
part is negative and in exp(—:AET) produces an ex-
ponentially decreasing amplitude with time. This is
because we are asking for the amplitude that an atom
initially with no photon in the field, will still appear
after time T with no photon. If the atom is in a state
which can radiate, this amplitude must decay with
time. The imaginary part of AE when calculated does
indeed give the correct rate of radiation from atomic
states. It is zero for the ground state and for a free
electron.

In the non-relativistic region the expression for AE
can be worked out as has been done by Bethe.! In the
relativistic region (points 4 and 3 as close together as a
Compton wave-length) the K. which should appear
in (8) can be replaced to first order in V by K, plus
K,®(2,1) given in I, Eq. (13). The problem is then
very similar to the radiationless scattering problem
discussed below.

4. EXPRESSION IN MOMENTUM AND
ENERGY SPACE

The evaluation of (9), as well as all the other more
complicated expressions arising in these problems, is
very much simplified by working in the momentum and
energy variables, rather than space and time. For this
we shall need the Fourier Transform of 8, (sz?2) which is

— 8, () = 71 f exp(—ik-xa)kd%,  (10)

which can be obtained from (3) and (5) or from I,
Eq. (32) noting that I,(2, 1) for m®=0 is §,(s52) from

1 H. A. Bethe, Phys. Rev. 72, 339 (1947).
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a. Eq.12

b. Eq.13 c. Eq.14

I'16. 4. Radiative correction to scattering, momentum space.

I, Eq. (34). The k2 means (k-%)~' or more precisely
the limit as 6—0 of (k-k+18)~'. Further d‘ means
(27)2dk1dkodksdks. If we imagine that quanta are par-
ticles of zero mass, then we can make the general rule
that all poles are to be resolved by considering the
masses of the particles and quanta to have infinitesimal
negative imaginary parts.

Using these results we see that the self-energy (9) is
the matrix element between @ and u of the matrix

(/i) f (b k—m)y iy kdk, (1)

where we have used the expression (I, Eq. (31)) for the
Fourier transform of K. This form for the self-energy
is easier to work with than is (9).

The equation can be understood by imagining (Fig. 3)
that the electron of momentum p emits (y,) a quantum
of momentum k, and makes its way now with mo-
mentum p— k& to the next event (factor (p—k—m)™)
which is to absorb the quantum (another v,). The
amplitude of propagation of quanta is k2. (There is a
factor ¢2/mi for each virtual quantum). One integrates
over all quanta. The reason an electron of momentum p
propagates as 1/(p—m) is that this operator is the re-
ciprocal of the Dirac equation operator, and we are
simply solving this equation. Likewise light goes as
1/k2, for this is the reciprocal D’Alembertian operator
of the wave equation of light. The first v, represents
the current which generates the vector potential, while
the second is the velocity operator by which this poten-
tial is multiplied in the Dirac equation when an external
field acts on an electron.

Using the same line of reasoning, other problems may
be set up directly in momentum space. For example,
consider the scattering in a potential A=A ,y, varying
in space and time as @ exp(—1¢-x). An electron initially
in state of momentum p,=p.v, will be deflected to
state p, where p.=p1+q. The zero-order answer is
simply the matrix element of a between states 1 and 2.
We next ask for the first order (in e?) radiative correc-
tion due to virtual radiation of one quantum. There are
several ways this can happen. First for the case illus-
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(b)

F1G. 5. Compton scattering, Eq. (15).

(a)

trated in Fig. 4(a), find the matrix:
(62/7"'i)f’)’u(1’2— k—m)7a(pr— k—m) 7y, k*d%.  (12)

For in this case, first”? a quantum of momentum & is
emitted (v,), the electron then having momentum
D1— k and hence propagating with factor (p1—k—m)~1.
Next it is scattered by the potential (matrix @) receiving
additional momentum ¢, propagating on then (factor
(pa— k—m)™") with the new momentum until the quan-
tum is reabsorbed (v,). The quantum propagates from
emission to absorption (k2) and we integrate over all
quanta (d*k), and sum on polarization u. When this is
integrated on ks, the result can be shown to be exactly
equal to the expressions (16) and (17) given in B for
the same process, the various terms coming from resi-
dues of the poles of the integrand (12).

Or again if the quantum is both emitted and re-
absorbed before the scattering takes place one finds
(Fig. 4(b))

(¢*/i) f a(pi—m) v (pr— k—m) "y, k2%, (13)

or if both emission and absorption occur after the
scattering, (Fig. 4(c))

(¢¥/wi) f Yu(po— k—m)y, (po—m)'ak?d%k. (14)

These terms are discussed in detail below.

We have now achieved our simplification of the form
of writing matrix elements arising from virtual proc-
esses. Processes in which a number of real quanta is
given initially and finally offer no problem (assuming
correct normalization). For example, consider the
Compton effect (Fig. 5(a)) in which an electron in state
b1 absorbs a quantum of momentum g, polarization
vector ey, so that its interaction is e1,y,=e;, and emits
a second quantum of momentum —g,, polarization e,
to arrive in final state of momentum p.. The matrix for

12 First, next, etc., here refer not to the order in true time but to
the succession of events along the trajectory of the electron. That

is, more precisely, to the order of appearance of the matrices in
the expressions.
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this process is ey(p1+¢gi1—m)'e;. The total matrix for
the Compton effect is, then,

ex(pr+q1—m) e e (pr+qa— (15)

the second term arising because the emission of e; may
also precede the absorption of e; (Fig. 5(b)). One takes
matrix elements of this between initial and final electron
states (p1+¢q1=p2—¢2), to obtain the Klein Nishina
formula. Pair annihilation with emission of two quanta,
etc., are given by the same matrix, positron states being
those with negative time component of p. Whether
quanta are absorbed or emitted depends on whether the
time component of ¢ is positive or negative.

m)_132,

5. THE CONVERGENCE OF PROCESSES WITH
VIRTUAL QUANTA

These expressions are, as has been indicated, no more
than a re-expression of conventional quantum electro-
dynamics. As a consequence, many of them are mean-
ingless. For example, the self-energy expression (9) or
(11) gives an infinite result when evaluated. The infinity
arises, apparently, from the coincidence of the é-function
singularities in K, (4, 3) and 8,(ss3?). Only at this point
is it necessary to make a real departure from conven-
tional electrodynamics, a departure other than simply
rewriting expressions in a simpler form.

We desire to make a modification of quantum electro-
dynamics analogous to the modification of classical
electrodynamics described in a previous article, A.
There the §(s12?) appearing in the action of interaction
was replaced by f(s1s?) where f(x) is a function of small
width and great height.

The obvious corresponding modification in the quan-
tum theory is to replace the &,(s*) appearing the
quantum mechanical interaction by a new function
f+(s*). We can postulate that if the Fourier trans-
form of the classical f(s15?) is the integral over all k of
F(R?) exp(—tk-x12)d*k, then the Fourier transform of
f+(s?) is the same integral taken over only positive fre-
quencies k4 for £>¢; and over only negative ones for
o<ty in analogy to the relation of é,(s?) to §(s*). The
function f(s?)=f(x-x) can be written* as

f-2)= (2m) f [ sinteutzl)

Xcos(K-x)dkd*Kg(k- k),

where g(k- k) is k4! times the density of oscillators and
may be expressed for positive &, as (A, Eq. (16))

o() = f (6(2) — 5(K— )G\,

where fi*G(A\)dA=1 and G involves values of A large
compared to m. This simply means that the amplitude

* This relation is given incorrectly in A, equation just pre-
ceding 16.
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for propagation of quanta of momentum & is

—F (k)= f (B2— (R*=N)")G(N)dN\,

rather than k2. That is, writing F  (k*)= —n—'k2C(k?),
— fi(s122) = w"lf exp(—tk-x12) K 2C(k®)d*%. (16)

Every integral over an intermediate quantum which
previously involved a factor d‘k/k? is now supplied with
a convergence factor C(k?) where

0

C(k2)=f —N(R*—=N)7IG(N)ax (17)

The poles are defined by replacing k* by k*4-i6 in the
limit 6—0. That is \? may be assumed to have an infini-
tesimal negative imaginary part.

The function f,(s12?) may still have a discontinuity
in value on the light cone. This is of no influence for the
Dirac electron. For a particle satisfying the Klein
Gordon equation, however, the interaction involves
gradients of the potential which reinstates the é func-
tion if f has discontinuities. The condition that f is to
have no discontinuity in value on the light cone implies
R2C(k?) approaches zero as k* approaches infinity. In
terms of G(\) the condition is

f NG(\)dA=0.
0

This condition will also be used in discussing the con-
vergence of vacuum polarization integrals.
The expression for the self-energy matrix is now

(18)

(&/i) f (b= k—m) "y, kRC(RD),  (19)

which, since C(k?) falls off at least as rapidly as 1/k2,
converges. For practical purposes we shall suppose
hereafter that C(k?) is simply —\?/(k*—\?) implying
that some average (with weight G(\)d\) over values of
N\ may be taken afterwards. Since in all processes the
quantum momentum will be contained in at least one
extra factor of the form (p—k—m)™! representmg
propagation of an electron while that quantum is in
the field, we can expect all such integrals with their
convergence factors to converge and that the result of
all such processes will now be finite and definite (ex-
cepting the processes with closed loops, discussed below,
in which the diverging integrals are over the momenta
of the electrons rather than the quanta).

The integral of (19) with C(k?)= — \*(k®—\?)~! noting
that p2=m?, \>m and dropping terms of order m/X\,
is (see Appendix A)

(¢/2m)[4m(In(\/m)+3) — p(In(\/m)+5/4) ]. ~ (20)
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When applied to a state of an electron of momentum p
satisfying pu=mu, it gives for the change in mass (as
in B, Eq. (9))

Am=m(e?/27)(3 In(\/m)+3). (21)

6. RADIATIVE CORRECTIONS TO SCATTERING

We can now complete the discussion of the radiative
corrections to scattering. In the integrals we include the
convergence factor C(k?), so that they converge for
large k. Integral (12) is also not convergent because of
the well-known infra-red catastrophy. For this reason
we calculate (as discussed in B) the value of the integral
assuming the photons to have a small mass ApinKm<KA.
The integral (12) becomes

(¢/i) f Yu(pr— ke m)a(pr— k)"

X 'Yu(k2'_ )\min2)_ld4kc(k2— xmirx2))

which when integrated (see Appendix B) gives (¢?/2w)
times

m 20
[Z(In——l)(l— )+0tan0
Amin tan26

]

4
+ fatanada]a
tan20 0
1 26
+-—(ga—agq)——+ra, (22)
4m sin26

where (g*)¥=2m sinf and we have assumed the matrix to
operate between states of momentum p; and po=p1+¢q
and have neglected terms of order Anin/m, m/\, and
¢*/\2. Here the only dependence on the convergence
factor is in the term ra, where

r=In(\/m)+9/4—2 In(m/Anin). (23)

As we shall see in a moment, the other terms (13),
(14) give contributions which just cancel the ra term.
The remaining terms give for small g,

1 g m 3
@W4ﬂ(——@a—a®+~—m(hr———~)), (24)
2 m 3m2 min 8

which shows the change in magnetic moment and the
Lamb shift as interpreted in more detail in B.!

13 That the result given in B in Eq. (19) was in error was re-
peatedly pointed out to the author, in private communication,
by V. F. Weisskopf and J. B. French, as their calculation, com-
pleted simultaneously with the author’s early in 1948, gave a
different result. French has finally shown that although the ex-
pression for the radiationless scattering B, Eq. (18) or (24) above
is correct, it was incorrectly joined onto Bethe’s non-relativistic
result. He shows that the relation In2kmax— 1=InAmin used by the
author should have been In2kmax—5/6=InAnin. This results in
adding a term —(1/6) to the logarithm in B, Eq. (19) so that the
result now agrees with that of J. B. French and V. F. Weisskopf,
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We must now study the remaining terms (13) and
(14). The integral on k in (13) can be performed (after
multiplication by C(k?)) since it involves nothing but
the integral (19) for the self-energy and the result is.
allowed to operate on the initial state u;, (so that
pruy=mu,). Hence the factor following a(p;—m)~! will
be just Am. But, if one now tries to expand 1/(p,—m)
=(pr+m)/(p*—m*) one obtains an infinite result,
since p?=m? This is, however, just what is expected
physically. For the quantum can be emitted and ab-
sorbed at any time previous to the scattering. Such a
process has the effect of a change in mass of the electron
in the state 1. It therefore changes the energy by AE
and the amplitude to first order in AE by —iAE-{ where
t is the time it is acting, which is infinite. That is, the
major effect of this term would be canceled by the effect
of change of mass Am.

The situation can be analyzed in the following
manner. We suppose that the electron approaching the
scattering potential @ has not been free for an infinite
time, but at some time far past suffered a scattering by
a potential b. If we limit our discussion to the effects
of Am and of the virtual radiation of one quantum be-
tween two such scatterings each of the effects will be
finite, though large, and their difference is determinate.
The propagation from b to a is represented by a matrix

a(p'—m)™'d, (25)

in which one is to integrate possibly over p’ (depending
on details of the situation). (If the time is long between
b and a, the energy is very nearly determined so that
P’ is very nearly m?2.)

We shall compare the effect on the matrix (25) of the
virtual quanta and of the change of mass Am. The effect
of a virtual quantum is

@Vﬂ{f«ﬂ—mrwxﬂ—k—mrl

Xyu(p'—m)'bk2d*kC(R?), (26)
while that of a change of mass can be written
a(p'—m)"Am(p'—m)~'d, 27)

and we are interested in the difference (26)-(27). A
simple and direct method of making this comparison is
just to evaluate the integral on k in (26) and subtract
from the result the expression (27) where Am is given
in (21). The remainder can be expressed as a multiple
—7r(p"?) of the unperturbed amplitude (25);

—r(p™)a(p’'—m)~'d. (28)

This has the same result (to this order) as replacing
the potentials @ and b in (25) by (1—3r($?))a and

Phys. Rev. 75, 1240 (1949) and N. H. Kroll and W. E. Lamb,
Phys. Rev. 75, 388 (1949). The author feels unhappily responsible
for the very considerable delay in the publication of French’s
result occasioned by this error. This footnote is appropriately
numbered.
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(1—37(p"™)b. In the limit, then, as p'>—m? the net
effect on the scattering is —3ra where 7, the limit of
7(p?) as p’>—m? (assuming the integrals have an infra-
red cut-off), turns out to be just equal to that given in
(23). An equal term —%ra arises from virtual transitions
after the scattering (14) so that the entire ra term in
{(22) is canceled.

The reason that 7 is just the value of (12) when ¢*=0
can also be seen without a direct calculation as follows:
Let us call p the vector of length m in the direction of
P’ so that if p?=m(1+4€)? we have p'= (1+4¢)p and we
take e as very small, being of order 7! where T is the
time between the scatterings b and a. Since (p'—m)™!
=(p'+m)/(p"?—m?) =~ (p-+m)/2m?, the quantity (25)
is of order ¢! or T. We shall compute corrections to it
only to its own order (¢7!) in the limit e—0. The term
(27) can be written approximately'* as

(&/xi) f a(p —m) oy (p— k)
Xy (p —m) bk2d*kC (K?),

using the expression (19) for Am. The net of the two
effects is therefore approximately!®

— (@ ’”')f a(p—m) iy (p— k—m)ep(p— k—m)~!
Xy (p —m) ok 2dRC(R?),

a term now of order 1/e (since (p'—m) =~ (p+m)
X (2m?e)~") and therefore the one desired in the limit.
Comparison to (28) gives for 7 the expression

(brt-m/2m) f o (B1— ke m)(pum1) (pr— k)

Xy, k2 kC(R?). (29)

The integral can be immediately evaluated, since it
is the same as the integral (12), but with ¢=0, for a
replaced by pi/m. The result is therefore r-(p:/m)
which when acting on the state u; is just 7, as pyu;=mu,.
For the same reason the term (p1+m)/2m in (29) is
effectively 1 and we are left with —7 of (23).1¢

In more complex problems starting with a free elec-

14 The expression is not exact because the substitution of Am
by the integral in (19) is valid only if p operates on a state such
that p can be replaced by m. The error, however, is of order

a(p’'—m) W (p—m)(p’'—m) b which is (1+e)ﬁ+m)(p-—m)
X ((14€e)p+m)p(2e+€)~?m™. But since p*= m? we have p(p—m)
=—m(@P—m)=(p—m)p so the net result is approximately
a(p—m)b/4m? and is not of order 1/e but smaller, so that its effect
drops out in the limit.

15 We have used, to first order, the general expansion (valid for
any operators 4, B)

(A+B)1'=A"1—A'BA 4+ A1BA'BA™—

with A=p—k—m and B= p’-— p=ep to expand the difference of
(p'—k—m) and (p—k—m)™L.

18 The renormalization terms appearing B, Eqs. (14), (15) when
translated directly into the present notation do not give twice
(29) but give this expression with the central pym™ factor replaced
by m~v./E, where E,=py, for u=4. When integrated it therefore
gives ra((p1+m)/2m)(mvys/E,) or ra—ra(mys/E)(p1—m)/2m.
(Since py1vs+vip1=2E,;) which gives just ra, since pyur=mu,.
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tron the same type of term arises from the effects of a
virtual emission and absorption both previous to the
other processes. They, therefore, simply lead to the
same factor 7 so that the expression (23) may be used
directly and these renormalization integrals need not
be computed afresh for each problem.

In this problem of the radiative corrections to scatter-
ing the net result is insensitive to the cut-off. This
means, of course, that by a simple rearrangement of
terms previous to the integration we could have avoided
the use of the convergence factors completely (see for
example Lewis!”). The problem was solved in the
manner here in order to illustrate how the use of such
convergence factors, even when they are actually un-
necessary, may facilitate analysis somewhat by remov-
ing the effort and ambiguities that may be involved in
trying to rearrange the otherwise divergent terms.

The replacement of 8, by f. given in (16), (17) is
not determined by the analogy with the classical prob-
lem. In the classical limit only the real part of 8, (i.e.,
just §) is easy to interpret. But by what should the
imaginary part, 1/(wis?), of 8, be replaced? The choice
we have made here (in defining, as we have, the location
of the poles of (17)) is arbitrary and almost certainly
incorrect. If the radiation resistance is calculated for
an atom, as the imaginary part of (8), the result de-
pends slightly on the function f;. On the other hand the
light radiated at very large distances from a source is
independent of f,. The total energy absorbed by distant
absorbers will not check with the energy loss of the
source. We are in a situation analogous to that in the
classical theory if the entire f function is made to
contain only retarded contributions (see A, Appendix).
One desires instead the analogue of (F),e of A. This
problem is being studied.

One can say therefore, that this attempt to find a
consistent modification of quantum electrodynamics is
incomplete (see also the question of closed loops, below).
For it could turn out that any correct form of f, which
will guarantee energy conservation may at the same
time not be able to make the self-energy integral finite.
The desire to make the methods of simplifying the
calculation of quantum electrodynamic processes more
widely available has prompted this publication before
an analysis of the correct form for f, is complete. One
might try to take the position that, since the energy
discrepancies discussed vanish in the limit A—o, the
correct physics might be considered to be that obtained
by letting A—o after mass renormalization. I have no
proof of the mathematical consistency of this procedure,
but the presumption is very strong that it is satisfac-
tory. (It is also strong that a satisfactory form for f,
can be found.)

7. THE PROBLEM OF VACUUM POLARIZATION

In the analysis of the radiative corrections to scatter-
ing one type of term was not considered. The potential

17 H, W. Lewis, Phys. Rev. 73, 173 (1948).
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which we can assume to vary as a, exp(—1ig-x) creates
a pair of electrons (see Fig. 6), momenta p,, — ps. This
pair then reannihilates, emitting a quantum g= p— p.,
which quantum scatters the original electron from state
1 to state 2. The matrix element for this process (and
the others which can be obtained by rearranging the
order in time of the various events) is

— (&) (v ) f SPL(pet-g—m)*

X 'Yv(pa'— m)_l'Yn:lddpaTQC(qQ)av- (30)

This is because the potential produces the pair with
amplitude proportional to a,v,, the electrons of mo-
menta p, and — (p,+¢q) proceed from there to annihi-
late, producing a quantum (factor +v,) which propagates
(factor ¢~%C(g?) over to the other electron, by which
it is absorbed (matrix element of v, between states 1
and 2 of the original electron (%yy,u1)). All momenta p,
and spin states of the virtual electron are admitted,
which means the spur and the integral on d*p, are
calculated.

One can imagine that the closed loop path of the
positron-electron produces a current

(1)

which is the source of the quanta which act on the
second electron. The quantity

Arju=Jua,,

Tom (/e f SpL(p+g—m)

X ’Yv(ﬁ— m)_l'Y#]d4p)

is then characteristic for this problem of polarization
of the vacuum.

One sees at once that J,, diverges badly. The modifi-
cation of & to f alters the amplitude with which the
current j, will affect the scattered electron, but it can
do nothing to prevent the divergence of the integral (32)
and of its effects.

One way to avoid such difficulties is apparent. From
one point of view we are considering all routes by which
a given electron can get from one region of space-time
to another, i.e., from the source of electrons to the
apparatus which measures them. From this point of
view the closed loop path leading to (32) is unnatural.
It might be assumed that the only paths of meaning are
those which start from the source and work their way
in a continuous path (possibly containing many time
reversals) to the detector. Closed loops would be ex-
cluded. We have already found that this may be done
for electrons moving in a fixed potential.

Such a suggestion must meet several questions, how-
ever. The closed loops are a consequence of the usual
hole theory in electrodynamics. Among other things,
they are required to keep probability conserved. The
probability that no pair is produced by a potential is

(32)

Fi16. 6. Vacuum polarization ef-
fect on scattering, Eq. (30).

not unity and its deviation from unity arises from the
imaginary part of J,. Again, with closed loops ex-
cluded, a pair of electrons once created cannot annihi-
late one another again, the scattering of light by light
would be zero, etc. Although we are not experimentally
sure of these phenomena, this does seem to indicate
that the closed loops are necessary. To be sure, it is
always possible that these matters of probability con-
servation, etc., will work themselves out as simply in
the case of interacting particles as for those in a fixed
potential. Lacking such a demonstration the presump-
tion is that the difficulties of vacuum polarization are
not so easily circumvented.!

An alternative procedure discussed in B is to assume
that the function K, (2, 1) used above is incorrect and
is to be replaced by a modified function K’ having no
singularity on the light cone. The effect of this is to
provide a convergence factor C(p*—m?) for every inte-
gral over electron momenta.”® This will multiply the
integrand of (32) by C(p*—m?)C((p+ q)*>—m?), since the
integral was originally 8(p.— ps+q)d*pad*ps and both
ba and p, get convergence factors. The integral now
converges but the result is unsatisfactory.?

One expects the current (31) to be conserved, that is
¢uJu=0 or ¢.J,,=0. Also one expects no current if a,
is a gradient, or ¢,=g¢, times a constant. This leads to
the condition J,,q,=0 which is equivalent to ¢,J,,=0
since J,, is symmetrical. But when the expression (32)
is integrated with such convergence factors it does not
satisfy this condition. By altering the kernel from K to
another, K’, which does not satisfy the Dirac equation
we have lost the gauge invariance, its consequent cur-
rent conservation and the general consistency of the
theory.

One can see this best by calculating J,.q, directly
from (32). The expression within the spur becomes
(p+q—m)'q(p—m) 'y, which can be written as the
difference of two terms: (p—m)ly,— (p+q—m)y,.
Each of these terms would give the same result if the
integration d‘p were without a convergence factor, for

18Tt would be very interesting to calculate the Lamb shift
accurately enough to be sure that the 20 megacycles expected
from vacuum polarization are actually present.

19 This technique also makes self-energy and radiationless scat-
tering integrals finite even without the modification of 8, to f, for
the radiation (and the consequent convergence factor C(k?) for
the quanta). See B.

20 Added to the terms given below (33) there is a term
T(N—2124-3¢)8uy for C(R2)=—N(k2—N?)71, which is not gauge
invariant. (In addition the charge renormalization has — 7/6 added
to the logarithm.)
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the first can be converted into the second by a shift of
the origin of p, namely p'=p+gq. This does not result
in cancelation in (32) however, for the convergence
factor is altered by the substitution.

A method of making (32) convergent without spoiling
the gauge invariance has been found by Bethe and by
Pauli. The convergence factor for light can be looked
upon as the result of superposition of the effects of
quanta of various masses (some contributing nega-
tively). Likewise if we take the factor C(p*—m?)
=—=N(pPP—m*—N)"! so that (P*—m?)"IC(P*—m?)
= (p*—m?) ' — (pP*—m*—N*)! we are taking the differ-
ence of the result for electrons of mass m and mass
(AN+m?)%. But we have taken this difference for each
propagation between interactions with photons. They
suggest instead that once created with a certain mass
the electron should continue to propagate with this
mass through all the potential interactions until it
closes its loop. That is if the quantity (32), integrated
over some finite range of p, is called J,,(m?) and the
corresponding quantity over the same range of p, but
with m replaced by (m?+ A2} is J,,(m2+\?) we should
calculate

J#,.P=f [/ wo(m?) = T (w22 JG(N)dN,  (32')
0

the function G(\) satisfying JSo*G(A\)dA=1 and
Jo*G(\)NdA=0. Then in the expression for J,,” the
range of p integration can be extended to infinity as the
integral now converges. The result of the integration
using this method is the integral on d\ over G(A) of
(see Appendix C)

¢ 1 N
Jwf=——(q.q»— 8,49 ( ——In—
T 3 m?

dm>+2¢° 9 1
175 C0) 2D o
3q* tanf/ 9

with ¢?=4m? sin?6.

The gauge invariance is clear, since ¢,(¢.g,— ¢?6,,) =0.
Operating (as it always will) on a potential of zero
divergence the (g.¢,—0.,9%)a, is simply —¢%a,, the
D’Alembertian of the potential, that is, the current pro-
ducing the potential. The term —3(In(A*/m?))(q.q,
—@%,,) therefore gives a current proportional to the
current producing the potential. This would have the
same effect as a change in charge, so that we would have
a difference A(e?) between ¢* and the experimen-
tally observed charge, ¢4 A(e?), analogous to the dif-
ference between m and the observed mass. This charge
depends logarithmically on the cut-off, A(e?)/e?=
—(2¢%/3w) In(\/m). After this renormalization of charge
is made, no effects will be sensitive to the cut-off.

After this is done the final term remaining in (33),
contains the usual effects® of polarization of the vacuum.

2 E. A. Uehling, Phys. Rev. 48, 55 (1935), R. Serber, Phys.
Rev. 48, 49 (1935).
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It is zero for a free light quantum (¢*=0). For small ¢?
it behaves as (2/15)¢? (adding —# to the logarithm in
the Lamb effect). For ¢*>(2m)* it is complex, the
imaginary part representing the loss in amplitude re-
quired by the fact that the probability that no quanta
are produced by a potential able to produce pairs
((g%)*>2m) decreases with time. (To make the neces-
sary analytic continuation, imagine m to have a small
negative imaginary part, so that (1—¢?/4m?)* becomes
—i(g?/4m>—1)} as @* goes from below to above 4m2.
Then =w/2+iu where sinhu=+(g2/4m?—1)} and
—1/tanf=1 tanhu=+1i(g*—4m?)¥(g*)—*.)

Closed loops containing a number of quanta or poten-
tial interactions larger than two produce no trouble.
Any loop with an odd number of interactions gives zero
(I, reference 9). Four or more potential interactions give
integrals which are convergent even without a con-
vergence factor as is well known. The situation is
analogous to that for self-energy. Once the simple
problem of a single closed loop is solved there are
no further divergence difficulties for more complex
processes.”

8. LONGITUDINAL WAVES

In the usual form of quantum electrodynamics the
longitudinal and transverse waves are given separate
treatment. Alternately the condition (94,/dx,)¥=0 is
carried along as a supplementary condition. In the
present form no such special considerations are neces-
sary for we are dealing with the solutions of the equation
—[PA,=4mj. with a current j, which is conserved
dj,/0x,=0. That means at least [ ?(dA4,/dx,)=0 and
in fact our solution also satisfies A4 ,/dx,=0.

To show that this is the case we consider the ampli-
tude for emission (real or virtual) of a photon and show
that the divergence of this amplitude vanishes. The
amplitude for emission for photons polarized in the p
direction involves matrix elements of <,. Therefore
what we have to show is that the corresponding matrix
elements of ¢,y,=¢ vanish. For example, for a first
order effect we would require the matrix element of ¢
between two states p; and p.=p;+¢q. But since
q=p2—p1 and (a2p1u1)=m(122u1)= (‘1221)2141) the matrix
element vanishes, which proves the contention in this
case. It also vanishes in more complex situations (essen-
tially because of relation (34), below) (for example, try
putting e;=g¢, in the matrix (15) for the Compton
Effect).

To prove this in general, suppose a;, =1 to .V are a
set of plane wave disturbing potentials carrying mo-
menta ¢; (e.g., some may be emissions or absorptions of
the same or different quanta) and consider a matrix for
the transition from a state of momentum p, to p» such

2 There are loops completely without external interactions. For
example, a pair is created virtually along with a photon. Next they
annihilate, absorbing this photon. Such loops are disregarded on
the grounds that they do not interact with anything and are

thereby completely unobservable. Any indirect effects they may
have via the exclusion principle have already been included.
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as ay [[.=1¥t (p.—m)'a; where p;=p. 1+ ¢: (and in the
product, terms with larger ¢ are written to the left).
The most general matrix element is simply a linear
combination of these. Next consider the matrix be-
tween states po and py+¢ in a situation in which not
only are the a; acting but also another potential
a exp(—1q-x) where a=gq. This may act previoustoalla;,
in which case it gives ax[[(p:+ g—m)ta.(po+q—m)~'q
which is equivalent to +ax[[(p:i+g—m)'a; since
4+ (pot+q—m)~'q is equivalent to (Ppot+q—m)!
X (po+g—m) as po is equivalent to m acting on the
initial state. Likewise if it acts after all the potentials
it gives g(px—m)ay]](p:—m)'a; which is equivalent
to —an]](p:—m)'a; since py+q—m gives zero on the
final state. Or again it may act between the potential
a; and a4 for each k. This gives

N—-1 N—-1
2 ay I (pitg—m)'ai(ppt+q—m)™
=1 i=k+1
k—1
X q(pr—m)~'a, II (pi—m)'a;.
=1
However,

(prt-q—m)7'q(pr—m)!
=(pr—m)"'— (prtq—m)~!, (34)

so that the sum breaks into the difference of two sums,
the first of which may be converted to the other by the
replacement of £ by £—1. There remain only the terms
from the ends of the range of summation,

N—1 N-1

+ay I (pi—m)a;—an I (pi+q—m)a..

=1 =1

These cancel the two terms originally discussed so that
the entire effect is zero. Hence any wave emitted will
satisfy d4,/9dx,=0. Likewise longitudinal waves (that
is, waves for which A,=d¢/dx, or a=¢q) cannot be
absorbed and will have no effect, for the matrix ele-
ments for emission and absorption are similar. (We
have said little more than that a potential 4,=09¢/dx,
has no effect on a Dirac electron since a transformation
V' =exp(—i¢p)y removes it. It is also easy to see in
coordinate representation using integrations by parts.)

This has a useful practical consequence in that in
computing probabilities for transition for unpolarized
light one can sum the squared matrix over all four
directions rather than just the two special polarization
vectors. Thus suppose the matrix element for some
process for light polarized in direction e, is e,M . If the
light has wave vector g, we know from the argument
above that ¢,M,=0. For unpolarized light progress-
ing in the z direction we would ordinarily calculate
M2+ M 2. Butwecanaswell sum M2+ M 2+ M 2— M2
for ¢.M, implies M,= M, since g,=gq. for free quanta.
This shows that unpolarized light is a relativistically
invariant concept, and permits some simplification in
computing cross sections for such light.
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Incidentally, the virtual quanta interact through
terms like +y,- - - v,k~2d*k. Real processes correspond to
poles in the formulae for virtual processes. The pole
occurs when k2=0, but it looks at first as though in the
sum on all four values of g, of v, --v, we would have
four kinds of polarization instead of two. Now it is clear
that only two perpendicular to k are effective.

The usual elimination of longitudinal and scalar vir-
tual photons (leading to an instantaneous Coulomb
potential) can of course be performed here too (although
it is not particularly useful). A typical term in a virtual
transition is +y,---v.k2d‘k where the represent
some intervening matrices. Let us choose for the values
of u, the time ¢, the direction of vector part K, of &,
and two perpendicular directions 1, 2. We shall not
change the expression for these two 1, 2 for these are
represented by transverse quanta. But we must find
(ver v)—(vg **vx). Now R=kyy,—Kvyg, where
K=(K-K)}, and we have shown above that % replacing
the v, gives zero.”® Hence Ky is equivalent to ksy, and

(yer - v)—(vx - ve) = (K= k8)/K)) (v - - 70),

so that on multiplying by k—2d* = d*k(k— K?)~! the net
effect is — (v, - -v:)d*k/K? The v, means just scalar
waves, that is, potentials produced by charge density.
The fact that 1/K? does not contain k4 means that k4
can be integrated first, resulting in an instantaneous
interaction, and the @*K/K? is just the momentum
representation of the Coulomb potential, 1/7.

9. KLEIN GORDON EQUATION

The methods may be readily extended to particles of
spin zero satisfying the Klein Gordon equation,*

De\b"‘ miy=19(4 Il‘lb)/axﬂ-—*— 14 ,,61///6:)0,,— A AW.

% A little more care is required when both v,’s act on the same
particle. Define x=Fksy:+Kvk, and consider (k---x)+4(x---k).
Exactly this term would arise if a system, acted on by potential x
carrying momentum — &, is disturbed by an added potential &k of
momentum =+ k (the reversed sign of the momenta in the inter-
mediate factors in the second term x-- -k has no effect since we
will later integrate over all k). Hence as shown above the result is
zero, but since (k---x)4(x---R)=kl(ye - v)—K*(vK* - YK)
we can still conclude (yg- - - vg) =k2K (e * - v0)-

2 The equations discussed in this section were deduced from the
formulation of the Klein Gordon equation given in reference 5,
Section 14. The function ¢ in this section has only one component
and is not a spinor. An alternative formal method of making the
equations valid for spin zero and also for spin 1 is (presumably)
by use of the Kemmer-Duffin matrices 8,, satisfying the commu-

tation relation
Byﬂv3v+ ﬁaBpr = 5uvﬂ¢+ Bnﬁg-

If we interpret a to mean a,B,, rather than a,v,, for any g, all
of the equations in momentum space will remain formally identical
to those for the spin 1/2; with the exception of those in which a
denominator (p—m)~! has been rationalized to (p+m)(p*—m?)*
since p? is no longer equal to a number, p-p. But p* does equal
(p-p)p so that (p—m)™! may now be interpreted as (mp-+m?
+p2—p-p)(p-p—m?)~tm~L. This implies that equations in co-
ordinate space will be valid of the function K,(2, 1) is given as
K.(2,1)=[(GVotm) —m 1 (V24 02) FI14(2, 1) with Vo= 8,8/,
This is all in virtue of the fact that the many component wave
function ¥ (5 components for spin 0, 10 for spin 1) satisfies
(iV—m)y = Ay which is formally identical to the Dirac Equation.
See W. Pauli, Rev. Mod. Phys. 13, 203 (1940).

(35)
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The important kernel is now 7,(2, 1) defined in (I, Eq.
(32)). For a free particle, the wave function ¥/(2) satisfies
+ [Py —m2y=0. At a point, 2, inside a space time region
it is given by

V)= f [W(1)a,(2, 1)/dx,
(@9 am) 2 DNV,

(as is readily shown by the usual method of demon-
strating Green’s theorem) the integral being over an
entire 3-surface boundary of the region (with normal
vector N,). Only the positive frequency components of
¥ contribute from the surface preceding the time corre-
sponding to 2, and only negative frequencies from the
surface future to 2. These can be interpreted as electrons
and positrons in direct analogy to the Dirac case.

The right-hand side of (35) can be considered as a
source of new waves and a series of terms written down
to represent matrix elements for processes of increasing
order. There is only one new point here, the term in
A,A, by which two quanta can act at the same time.
As an example, suppose three quanta or potentials,
a, exp(—1qa-%), b, exp(—igs-x), and ¢, exp(—ig.-x) are
to act in that order on a particle of original momentum
pou SO that po=pPo+¢q. and ps=Ps+¢s; the final mo-
mentum being p.=py+g.. The matrix element is the
sum of three terms (p?=p,p,) (illustrated in Fig. 7)

(perctpo-¢) (B —m*) " (po- b+ pa-b)

X (paz_mz)_l(Pa' a+?0 : (1) (36)
—(perc+po-c) (P —m*)"2(b-a)
— (¢ b)(pa2—m*) " (pa- atpo-a).

The first comes when each potential acts through the
perturbation 18(4 )/dx,+14,0¢/dx,. These gradient
operators in momentum space mean respectively the
momentum after and before the potential 4, operates.
The second term comes from b, and @, acting at the
same instant and arises from the 4,4, term in (a).
Together b, and @, carry momentum ¢s,+¢a, so that
after b-a operates the momentum is po+ga+¢s or po.
The final term comes from ¢, and b, operating together
in a similar manner. The term 4,4, thus permits a new
type of process in which two quanta can be emitted (or
absorbed, or one absorbed, one emitted) at the same
time. There is no a-¢ term for the order a, b, ¢ we have
assumed. In an actual problem there would be other
terms like (36) but with alterations in the order in
which the quanta a, b, ¢ act. In these terms a-c¢ would
appear.

As a further example the self-energy of a particle of
momentum p, is

(&/2mim) f [2p—)u((p— kP—m)
X (29— B)u— 8, JREC (),

where the 8,,=4 comes from the 4,4, term and repre-
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sents the possibility of the simultaneous emission and
absorption of the same virtual quantum. This integral
without the C(k?) diverges quadratically and would not
converge if C(k?) = —\?/(k*—\?). Since the interaction
occurs through the gradients of the potential, we must
use a stronger convergence factor, for example C(%?)
=\ (k2—\2)~2, or in general (17) with /e*NG(\)d\=0.
In this case the self-energy converges but depends
quadratically on the cut-off A and is not necessarily
small compared to m. The radiative corrections to
scattering after mass renormalization are insensitive to
the cut-off just as for the Dirac equation.

When there are several particles one can obtain Bose
statistics by the rule that if two processes lead to the
same state but with two electrons exchanged, their
amplitudes are to be added (rather than subtracted as
for Fermi statistics). In this case equivalence to the
second quantization treatment of Pauli and Weisskopf
should be demonstrable in a way very much like that
given in I (appendix) for Dirac electrons. The Bose
statistics mean that the sign of contribution of a closed
loop to the vacuum polarization is the opposite of what
it is for the Fermi case (see I). It is (pp=po+q)

&
Jup=—

f[(Pb#+Pap) (va+?av) (paz_‘ mz)“‘

2mwim

X (pbz__. mz)—l — 5”@‘12__ m2)—1

b (b= m) Y,

giving,

P 1 N 1 dmi—g 9
P LR |
T 6 m* 9 3q? tané

the notation as in (33). The imaginary part for (g2)}> 2m
is again positive representing the loss in the probability
of finding the final state to be a vacuum, associated with
the possibilities of pair production. Fermi statistics
would give a gain in probability (and also a charge
renormalization of opposite sign to that expected).

/c ‘/Ec
b-c+X
)

/

10

P
e’ ¢
\es
28 S
Pq ax
- p—XX ]
o ¥ a-b
P
b. c.

a.

F1c. 7. Klein-Gordon particle in three potentials, Eq. (36).
The coupling to the electromagnetic field 1s now, for example,
po-a—+ pa-a, and a new possibility arises, (b), of simultaneous inter-
action with two quanta a¢-b. The propagation factor is now
(p-p—m*)1 for a particle of momentum p,.
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10. APPLICATION TO MESON THEORIES

The theories which have been developed to describe
mesons and the interaction of nucleons can be easily
expressed in the language used here. Calculations, to
lowest order in the interactions can be made very easily
for the various theories, but agreement with experi-
mental results is not obtained. Most likely all of our
present formulations are quantitatively unsatisfactory.
We shall content ourselves therefore with a brief sum-
mary of the methods which can be used.

The nucleons are usually assumed to satisfy Dirac’s
equation so that the factor for propagation of a nucleon
of momentum p is (p— M)~! where M is the mass of the
nucleon (which implies that nucleons can be created in
pairs). The nucleon is then assumed to interact with
mesons, the various theories differing in the form as-
sumed for this interaction.

First, we consider the case of neutral mesons. The
theory closest to electrodynamics is the theory of vector
mesons with vector coupling. Here the factor for emis-
sion or absorption of a meson is gy, when this meson is
“polarized” in the p direction. The factor g, the
“mesonic charge,” replaces the electric charge e. The
amplitude for propagation of a meson of momentum ¢
in intermediate states is (¢?— u?)™! (rather than g2 as it
is for light) where u is the mass of the meson. The neces-
sary integrals are made finite by convergence factors
C(g*— p?) as in electrodynamics. For scalar mesons with
scalar coupling the only change is that one replaces the
v, by 1 in emission and absorption. There is no longer
a direction of polarization, u, to sum upon. For pseudo-
scalar mesons, pseudoscalar coupling replace v, by
Ys=1v:YyYsYe For example, the self-energy matrix of
a nucleon of momentum p in this theory is

(/1) [ 1600~ k= M)ty =) iC e ),

Other types of meson theory result from the replace-
ment of v, by other expressions (for example by
2(vw¥y»—7»vu) with a subsequent sum over all uand v
for virtual mesons). Scalar mesons with vector coupling
result from the replacement of v, by u~'q where ¢q is the
final momentum of the nucleon minus its initial mo-
mentum, that is, it is the momentum of the meson if
absorbed, or the negative of the momentum of a meson
emitted. As is well known, this theory with neutral
mesons gives zero for all processes, as is proved by our
discussion on longitudinal waves in electrodynamics.
Pseudoscalar mesons with pseudo-vector coupling corre-
sponds to v, being replaced by p~'ysg while vector
mesons with tensor coupling correspond to using
(2u) M (vug—q7vu). These extra gradients involve the
danger of producing higher divergencies for real proc-
esses. For example, v;q gives a logarithmically divergent
interaction of neutron and electron.?® Although these
divergencies can be held by strong enough convergence

2 M. Slotnick and W. Heitler, Phys. Rev. 75, 1645 (1949).
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factors, the results then are sensitive to the method used
for convergence and the size of the cut-off values of A.
For low order processes u~'y;q is equivalent to the
pseudoscalar interaction 2M u~'y; because if taken be-
tween free particle wave functions of the nucleon of
momenta p; and p.=p,+q, we have

(@ysqus) = (@ays(pa— 1)) = — (Waprysins)
— (lixysprer) = — 2M (s

since v anticommutes with p, and p. operating on the
state 2 equivalent to- M as is p; on the state 1. This
shows that the +y; interaction is unusually weak in the
non-relativistic limit (for example the expected value
of vs for a free nucleon is zero), but since vs*=1 is not
small, pseudoscalar theory gives a more important inter-
action in second order than it does in first. Thus the
pseudoscalar coupling constant should be chosen to fit
nuclear forces including these important second order
processes.” The equivalence of pseudoscalar and pseudo-
vector coupling which holds for low order processes
therefore does not hold when the pseudoscalar theory
is giving its most important effects. These theories will
therefore give quite different results in the majority of
practical problems.

In calculating the corrections to scattering of a nu-
cleon by a neutral vector meson field (y,) due to the
effects of virtual mesons, the situation is just as in
electrodynamics, in that the result converges without
need for a cut-off and depends only on gradients of the
meson potential. With scalar (1) or pseudoscalar (vys)
neutral mesons the result diverges logarithmically and
so must be cut off. The part sensitive to the cut-off,
however, is directly proportional to the meson poten-
tial. It may thereby be removed by a renormalization
of mesonic charge g. After this renormalization the re-
sults depend only on gradients of the meson potential
and are essentially independent of cut-off. This is in
addition to the mesonic charge renormalization coming
from the production of virtual nucleon pairs by a meson,
analogous to the vacuum polarization in electro-
dynamics. But here there is a further difference from
electrodynamics for scalar or pseudoscalar mesons in
that the polarization also gives a term in the induced
current proportional to the meson potential representing
therefore an additional renormalization of the mass of
the meson which usually depends quadratically on the
cut-off.

Next consider charged mesons in the absence of an
electromagnetic field. One can introduce isotopic spin
operators in an obvious way. (Specifically replace the
neutral vs, say, by 7ys and sum over ¢=1, 2 where
ni=74+7-, 1o=1i(r4—7_) and 7, changes neutron to
proton (74 on proton=0) and 7_ changes proton to
neutron.) It is just as easy for practical problems simply
to keep track of whether the particle is a proton or a
neutron on a diagram drawn to help write down the

2% H. A. Bethe, Bull. Am. Phys. Soc. 24, 3, Z3 (Washington,
1949).
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matrix element. This excludes certain processes. For
example in the scattering of a negative meson from ¢,
to ¢» by a neutron, the meson ¢gs must be emitted first
(in order of operators, not time) for the neutron cannot
absorb the negative meson ¢; until it becomes a proton.
That is,in comparison to the Klein Nishina formula (15),
only the analogue of second term (see Fig. 5(b)) would
appear in the scattering of negative mesons by neu-
trons, and only the first term (Fig. 5(a)) in the neutron
scattering of positive mesons.

The source of mesons of a given charge is not con-
served, for a neutron capable of emitting negative me-
sons may (on emitting one, say) become a proton no
longer able to do so. The proof that a perturbation ¢
gives zero, discussed for longitudinal electromagnetic
waves, fails. This has the consequence that vector me-
sons, if represented by the interaction v, would not
satisfy the condition that the divergence of the poten-
tial is zero. The interaction is to be taken? as v,— u~%q.q
in emission and as v, in absorption if the real emission
of mesons with a non-zero divergence of potential is to
be avoided. (The correction term u~2g,q gives zero in
the neutral case.) The asymmetry in emission and ab-
sorption is only apparent, as this is clearly the same
thing as subtracting from the original v, - -v,, a term
uq---q. That is, if the term —p~2¢,q is omitted the
resulting theory describes a combination of mesons of
spin one and spin zero. The spin zero mesons, coupled
by vector coupling ¢, are removed by subtracting the
term u~%q---q.

The two extra gradients ¢- - - ¢ make the problem of
diverging integrals still more serious (for example the
interaction between two protons corresponding to the
exchange of two charged vector mesons depends quad-
ratically on the cut-off if calculated in a straightforward
way). One is tempted in this formulation to choose
simply v, -y, and accept the admixture of spin zero
mesons. But it appears that this leads in the conven-
tional formalism to negative energies for the spin zero
component. This shows one of the advantages of the

7 The vector meson field potentials ¢, satisfy
—8/9x,(3¢,/9%,— de,/ %) — Wi ou= —4msy,

where s,, the source for such mesons, is the matrix element of
vu between states of neutron and proton. By taking the divergence
d/dx, of both sides, conclude that d¢,/dx,=4mru"2ds,/dx, so that
the original equation can be rewritten as

Dz‘f’u—l‘z‘l’n= —47’(3y+l-“2a/axu(asv/axv))-

The right hand side gives in momentum representation <,
— 1729,q,7, the left yields the (g°— p?) ! and finally the interaction
Suey in the Lagrangian gives the v, on absorption.

Proceeding in this way find generally that particles of spin one
can be represented by a four-vector %, (which, for a free particle
of momentum ¢ satisfies ¢-#=0). The propagation of virtual
particles of momentum ¢ from state » to p is represented by
multiplication by the 4-4 matrix (or tensor) Puy= (8uy— 1 2gugs)
X (¢?— )7L, The first-order interaction (from the Proca equation)
with an electromagnetic potential ¢ exp(—%k-x) corresponds to
multiplication by the matrix E,,= (g2 a+¢1-@)8uy— 208, — Q108
where ¢; and ¢»=¢,+% are the momenta before and after the
interaction. Finally, two potentials @, b may act simultaneously,
with matrix E'y,= —(a-b)8,,+bua,.
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method of second quantization of meson fields over the
present formulation. There such errors of sign are obvi-
ous while here we seem to be able to write seemingly
innocent expressions which can give absurd results.
Pseudovector mesons with pseudovector coupling corre-
spond to using vs(v,—u?q.q) for absorption and vy,
for emission for both charged and neutral mesons.

In the presence of an electromagnetic field, whenever
the nucleon is a proton it interacts with the field in the
way described for electrons. The meson interacts in the
scalar or pseudoscalar case as a particle obeying the
Klein-Gordon equation. It is important here to use the
method of calculation of Bethe and Pauli, that is, a
virtual meson is assumed to have the same ‘“mass” dur-
ing all its interactions with the electromagnetic field.
The result for mass u and for (u?+\2)} are subtracted
and the difference integrated over the function G(\)dA.
A separate convergence factor is not provided for each
meson propagation between electromagnetic interac-
tions, otherwise gauge invariance is not insured. When
the coupling involves a gradient, such as ys;q where ¢q is
the final minus the initial momentum of the nucleon,
the vector potential A must be subtracted from the
momentum of the proton. That is, there is an additional
coupling 754 (plus when going from proton to neu-
tron, minus for the reverse) representing the new possi-
bility of a simultaneous emission (or absorption) of
meson and photon.

Emission of positive or absorption of negative virtual
mesons are represented in the same term, the sign of the
charge being determined by temporal relations as for
electrons and positrons.

Calculations are very easily carried out in this way
to lowest order in g? for the various theories for nucleon
interaction, scattering of mesons by nucleons, meson
production by nuclear collisions and by gamma-rays,
nuclear magnetic moments, neutron electron scattering,.
etc., However, no good agreement with experiment re-
sults, when these are available, is obtained. Probably
all of the formulations are incorrect. An uncertainty
arises since the calculations are only to first order in g2,
and are not valid if g%/ hc is large.

The author is particularly indebted to Professor H.
A. Bethe for his explanation of a method of obtaining
finite and gauge invariant results for the problem of
vacuum polarization. He is also grateful for Professor
Bethe’s criticisms of the manuscript, and for innumer-
able discussions during the development of this work.
He wishes to thank Professor J. Ashkin for his careful
reading of the manuscript.

APPENDIX

In this appendix a method will be illustrated by which the
simpler integrals appearing in problems in electrodynamics can
be directly evaluated. The integrals arising in more complex
processes lead to rather complicated functions, but the study of
the relations of one integral to another and their expression in
terms of simpler integrals may be facilitated by the methods
given here.
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As a typical problem consider the integral (12) appearing in
the first order radiationless scattering problem:

f vu(pr—k—m)a(py— k—m) v,k dRC(R),  (la)

where we shall take C(k?) to be typically —N\*(k2—X?)"! and
d*k means (2m)72dkidkodksdks. We first rationalize the factors
(p—k—m)"'=(p— k+m)((p— k)2—m?)~! obtaining,

f vu(br— k+m)a(pr— ktm)y, k- 2dkC(R?)
X ((pr—R)2—m?) " ((p2— k)2 —m?)~L.

The matrix expression may be simplified. It appears to be best to
do so after the integrations are performed. Since AB=24-B—BA
where 4 -B=A,B, is a number commuting with all matrices, find,
if R is any expression, and 4 a vector, since y,A= —Ay,+24,,

YulARvu= —Av Ry, +2RA. (3a)

(2a)

Expressions between two v,’s can be thereby reduced by induc-
tion. Particularly useful are

YuYu= 4
yuly,=—24
YuABy,=2(AB+BA)=44-B
v4ABCv,=—2CBA

(4a)

where A, B, C are any three vector-matrices (i.e., linear com-
binations of the four v’s).

In order to calculate the integral in (2a) the integral may be
written as the sum of three terms (since k=%,v,),

7#(1’2+m)a(91+m)7u-71 - [‘Yu’Yva(.Pl+m)’Yu

+vud2tm)ayovu Vot vuve@yevuts, (5a)
where
J(1;2;3)=f(1; kq; kokr) R?d*kC(R?)
X ((p2—R)2—m?) 1 ((pr— k)2 —m?)1.  (6a)

That is for Jy the (1; ko; kok,) is replaced by 1, for J; by k., and
for J; by kok,.

More complex processes of the first order involve more factors
like ((ps—k)2—m?)™! and a corresponding increase in the number
of k’s which may appear in the numerator, as kqsk,%,- - -. Higher
order processes involving two or more virtual quanta involve
similar integrals but with factors possibly involving k+ &’ instead
of just k, and the integral extending on k~2d*kC(k?) k'~2d*k'C(k").
They can be simplified by methods analogous to those used on
the first order integrals.

The factors (p— k)2—m? may be written

(B—R)?—m*=R—2p-k—A, (7a)
where A=m2—p? A;=m*—p,?, etc., and we can consider dealing
with cases of greater generality in that the different denominators
need not have the same value of the mass 7. In our specific prob-
lem (6a), p12=m? so that A;=0, but we desire to work with greater
generality.
Now for the factor C(k?)/k? we shall use —A2(k2—\%)71k2
This can be written as
A2
/(N R=kCR)=— [ dLe—L)*.  (8a)
Thus we can replace k2C(k?) by (k2—L)~2? and at the end inte-
grate the result with respect to L from zero to A2. We can for
many practical purposes consider A2 very large relative to m? or p2.
When the original integral converges even without the con-
vergence factor, it will be obvious since the L integration will then
be convergent to infinity. If an infra-red catastrophe exists in the
integral one can simply assume quanta have a small mass Amin
and extend the integral on L from Mpniy to A%, rather than from
zero to N2
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We then have to do integrals of the form

S @5 ks kb dtr(re— D)2 —2p, - k— 2
X (k’— 2?2 k—Ag)_l, (9a)

where by (1; ks;-ksk,) we mean that in the place of this symbol
either 1, or k,, or ksk, may stand in different cases. In more
complicated problems there may be more factors (k2—2p;-k—A;)™1
or other powers of these factors (the (k2— L)% may be considered
as a special case of such a factor with p;=0, A;=L) and further
factors like ksk-k,- - - in the numerator. The poles in all the factors
are made definite by the assumption that L, and the A’s have
infinitesimal negative imaginary parts.

We shall do the integrals of successive complexity by induction.
We start with the simplest convergent one, and show

Jake—L)y=@iL), (10a)
For this integral is S (2w) 2dksd*K(k2—K-K— L) where the
vector K, of magnitude K= (K- K)? is %, ks, k3. The integral on
k4 shows third order poles at k4= + (K24 L)} and ky= — (K2+ L)1
Imagining, in accordance with our definitions, that L has a small
negative imaginary part only the first is below the real axis. The
contour can be closed by an infinite semi-circle below this axis,
without change of the value of-the integral since the contribution
from the semi-circle vanishes in the limit. Thus the contour can
be shrunk about the pole ky=+ (K24 L)} and the resulting k4 inte-
gral is — 24 times the residue at this pole. Writing k= (K24 L)}«
and expanding (k—K2—L)3=¢3(e+2(K2+ L)} 3 in powers of
¢, the residue, being the coefficient of the term €7, is seen to be
6(2(K2+ L)})~% so our integral is

—(3i/327) ﬁ“’ 4rKdK (K2 L)52=(3/8i)(1/3L)

establishing (10a).
We also have f'k,d*k(k*—L)73=0 from the symmetry in the
k space. We write these results as

(Si)f(l; ko)d*k(R:— L)~*=(1;0) L7, (11a)
where in the brackets (1; k;) and (1; 0) corresponding entries are
to be used.

Substituting k=k’—p in (11a), and calling L—p?= A shows that

(8i) (15 ko)d*k(Ri=2p-k—8)=(1; po) (P*+4)71.  (128)

By differentiating both sides of (12a) with respect to A, or with
respect to p, there follows directly

(24i) f (1; ko boks)dth(R—2p-k—A)~
= _(1; Pu; Pw[’r—%‘sn(ﬂ‘}'A))(ﬁ‘*‘A)_z- (133)

Further differentiations give directly successive integrals in-
cluding more k factors in the numerator and higher powers of
(k2—2p-k—A) in the denominator.

The integrals so far only contain one factor in the denominator.
To obtain results for two factors we make use of the identity

a b= fo ! dx(ax+b(1—x))2, (14a)

(suggested by some work of Schwinger’s involving Gaussian inte-
grals). This represents the product of two reciprocals as a para-
metric integral over one and will therefore permit integrals with
two factors to be expressed in terms of one. For other powers of
a, b, we make use of all of the identities, such as

abi= j;’ 2xdx(ax+b(1—x))3, (152)

deducible from (14a) by successive differentiations with respect
to a or b.
To perform an integral, such as

(8i) [ (1; o)dk(R—2p1-k— ) (R —2py k=AD", (162)
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write, using (15a),

(k’—2p1-Ie——A;)"‘(k’—sz-lz—-Az)“=j;1 2xdx(k2—2p. k—Az)73,
where
pr=apr+(1—=x)p: and A,=xA1+(1—1x)A, (17a)

(note that A, is nof equal to m2— p,?) so that the expression (16a)
is (8i) So'2xdx S (1; ks)d*k(k2—2p,-k—A,)~3 which may now be
evaluated by (12a) and is

(162) = j; Y (15 pro)2xdr(Ba2+00) 71,

where p,, A, are given in (17a). The integral in (18a) is elementary,
being the integral of ratio of polynomials, the denominator of
second degree in x. The general expression although readily ob-
tained is a rather complicated combination of roots and logarithms.

Other integrals can be obtained again by parametric differentia-
tion. For example differentiation of (16a), (18a) with respect to
A; or par gives

) [ (1; o kokr)d%(R = 2p1-k— Ba) (= 2py-k—Ar)

(18a)

= _j: (1; pza; Pzodar—480r(D2+A4s))
X2x(1—x)dx(p2+Az)72,

again leading to elementary integrals.

As an example, consider the case that the second factor is just
(k*—L)™% and in the first put p1=p, Ay=A. Then p.=uxp,
Az=xA+ (1—x)L. There results

(8i)f(l; kq; kokr)d'k(R2— L) 2(R2—2p-k—A)"?

= — [ (5 5p0; ¥popr—100: 22+ 22))
X2x(1—x)dx(22p*+A,)72.  (20a)

Integrals with three factors can be reduced to those involving
two by using (14a) again. They, therefore, lead to integrals with
two parameters (e.g., see application to radiative correction to
scattering below).

The methods of calculation given in this paper are deceptively
simple when applied to the lower order processes. For processes
of increasingly higher orders the complexity and difficulty in-
creases rapidly, and these methods soon become impractical in
their present form.

(19a)

A. Self-Energy
The self-energy integral (19) is
(©/7i) [Vulp—k—m) 1y, K 2d%C(RE),

so that it requires that we find (using the principle of (8a)) the
integral on L from 0 to A? of

f vu(p— ktm)y,dk(k— L) (ke —2p- k),
since (p—k)2—m?2=k?—2p-k, as p*=m? This is of the form (16a)
with A;=L, p1=0, A=0, p.=p so that (18a) gives, since
pz= (l*x)p: AZ:xL)
(81')‘['(1;Ie,,)d‘k(k’—L)‘”(k’—Zp-k)“1
= [ (15 (A= )po)22da((1 —)fmo+ 2 L),
or performing the integral on L, as in (8),

(8) f (1; ko) dkR2C(R2) (R2—2p- k)~
=j;‘ (1; (1—2)p,)2dz In

(19)

2N+ (1—x)2m?,
(1—x)2m?
Assuming now that AZ>m? we neglect (1—x)2m? relative to

xN\? in the argument of the logarithm, which then becomes
(A/m®(x/(1—x)?). Then since JSo'dxIn(x(1—x)2)=1 and
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Jo(1—x)dx In(x(1—2)"2) = —(1/4) find
(8i) (15 k) k(AR (R —2p - )

A2 P |
- (s 0 w-).
so that substitution into (19) (after the (p—k—m)™ in (19) is
replaced by (p—k-+m)(k2—2p-k)™) gives
(19) = (¢¢/8m) v, [ (p+m) (2 In(A\?/m?)+2)
—p(In(\/m?) —§)Jvu
= (¢¢/8m)[8m(In(N*/m?)+1) —p(2 In(A2/m?)+5) ],

using (4a) to remove the v,’s. This agrees with Eq. (20) of the text,
and gives the self-energy (21) when p is replaced by m.

(20)

B. Corrections to Scattering

The term (12) in the radiationless scattering, after rationalizing
the matrix denominators and using p.*=p.*=m? requires the
integrals (9a), as we have discussed. This is an integral with
three denominators which we do in two stages. First the factors
(kR2—2p1-k) and (k®—2p,-k) are combined by a parameter y;

(R2—2py- k)" {(R2—2ps- k)1 = fo ' dy(k2—2p, k)72,
from (14a) where

py=ypr+(1—y)p2. (21a)
We therefore need the integrals
(80) [ (1 ko Rokr)d (k= L)H(Ra=2p, B, (22a)

which we will then integrate with respect to y from 0 to 1. Next
we do the integrals (22a) immediately from (20a) with p=p,, A=0:

(222)= _‘[: J;l (15 %pya; ¥*pyapur
—380: (2%, + (1 —2) L)) 2x(1 — x)dx(x*p,*+ L(1 —x)) *dy.

We now turn to the integrals on L as required in (8a). The first
term, (1), in (1; kq; kok,) gives no trouble for large L, but if L
is put equal to zero there results x~2p,~2 which leads to a diverging
integral on x as x—0. This infra-red catastrophe is analyzed by
using Amin? for the lower limit of the L integral. For the last term
the upper limit of L must be kept as A2 Assuming Amin<&p, 2K\
the x integrals which remain are trivial, as in the self-energy case.
One finds

— (8) [ (R Mia?) AR C (R~ M) (R 2B (K= 2 )
= [ by (M) (232)
— 83) [ ko kR CRE) (K= 21 )R 2 )
=2 puatidy, (24a)
— (8) [ koo kdRCURE) (R= 21 B (R— 2y )
= [ bucbyebitdy— 15, [, dyIn(B D) +1o0r. (250)
The integrals on y give,
j; ' 2,7y In(P®Amin?) =4(m? sin26)? [9 In(mAmin™)
-/ ! ta.nozda], (26a)

., puet ity =002 sin20) (oot p20), @72)

. Buoturtitdy=00m® sin26y(prt pir) (pro-t par)
+47%404,(1—0 ctné),

fo " dy In(\3p,~%) =In(\/m?)+2(1— 6 ctné).

(28a)
(29a)
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These integrals on y were performed as follows. Since p2=p1+¢q
where ¢ is the momentum carried by the potential, it follows from
pr=pi?=m? that 2p;-g=—¢* so that since p,=p1+q(1—y),
p2=m?—g?y(1—7y). The substitution 2y—1=tana/tané where 6
is defined by 4m? sin?6 = g2 is useful for it means p,?=m? sec’a/sec?d
and p,2dy= (m? sin260)'do. where a goes from —8 to +.

These results are substituted into the original scattering formula
(2a), giving (22). It has been simplified by frequent use of the
fact that p operating on the initial state is m, and likewise p.
when it appears at the left is replacable by m. (Thus, to simplify:

Yub2apiyp= —2p1ap: by (4a),
==2(p:—q)a(p1+q) =—2(m—q)a(m+q).
A term like gag= —g¢?a+2(a-g)q is equivalent to just —g?a since
q=p:— pr1=m—m has zero matrix element.) The renormalization
term requires the corresponding integrals for the special case
g=0.

C. Vacuum Polarization

The expressions (32) and (32') for J,, in the vacuum polariza-
tion problem require the calculation of the integral

2
i) = =%, [Splruo—ta+m)v(o+ig+m ity

X((p—39)*—m)  (p+39)*—m)™, (32)
where we have replaced p by p—3q to simplify the calculation
somewhat. We shall indicate the method of calculation by studying
the integral,

10m) = [ poprd*p((p—4a)*—mt)H((p+1g)P—m) .

The factors in the denominator, p2—p-q—m?+1q? and p2+p-g
—m?4-1q? are combined as usual by (8a) but for symmetry we
substitute x=%4(147), (1—x)=%(1—%) and integrate n from
—1to +1:

100)= [ popedtp(@—np-q—mi+1g)%dn/2.  (30a)

But the integral on p will not be found in our list for it is badly
divergent. However, as discussed in Section 7, Eq. (32) we do not
wish I(m?) but rather JSo®[I(m2)—I(m?+N2)JG(A\)d\. We can
calculate the difference I(m?)—I(m?+2?) by first calculating the
derivative I'(m?*+ L) of I with respect to m? at m?>4L and later
integrating L from zero to A. By differentiating (30a), with
respect to m? find,

+1
U+ D)= [ poprdip(tP=np-q—mi—L+1g)dn.
This still diverges, but we can differentiate again to get
+1
1"+ 1)=3 [ pupidtp@—np-q—mi—L+1g"dn
" (31a)
=) (ngogrD 238D )dn

(where D=1%(n?—1)g?*+m?+ L), which now converges and has been
evaluated by (13a) with p=39q and A=m?+ L—1q% Now to get
I’ we may integrate I'” with respect to L as an indefinite integral
and we may choose any convenient arbitrary constant. This is because
a constant C in I’ will mean a term —CM2 in I(m?)—I(m2+\?)
which vanishes since we will integrate the results times G(\)d\

and Jo®A2G(A\)dx=0. This means that the logarithm appearing on
integrating L in (31a) presents no problem. We may take

PomL)=8) [ (in'gogeDi+160r InDJdn+Coor,

a subsequent integral on L and finally on 5 presents no new
problems. There results

— 8i) [ peprdtp(p—19)'—m)H(p+3g)—m)t

1 dmr—g? 6 ) m]
— —_ )| - — - 1 In—
(IIﬂq-r 8grq ) [9 3q2 1 ant + 3 lnmz

+ 35, L (N2 +m2)In(N2m~241) — C'A2],

(32a)
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where we assume N\2>>m? and have put some terms into the arbi-
trary constant C’ which is independent of A? (but in principle could
depend on ¢?) and which drops out in the integral on G(N)d\. We
have set g?=4m? sin®4.

In a very similar way the integral with m? in the numerator can
be worked out. It is, of course, necessary to differentiate this m?
also when calculating I’ and I"’. There results

— i) [ meatp((p— gy~ m?)(p+ 3@ —m)
= 4mt(1—6 ctnb)— @2/3+2(\+m)In (w1 +1)— C'N),  (33a)

with another unimportant constant C"’. The complete problem re-
quires the further integral,

—(8i) f (1; 25)d*p((p—329)*—m*) (D +139)*—m?) ™
=(1,0)(4(1—0 ctnf)+2 In(\?m2)). (34a)

The value of the integral (34a) times m? differs from (33a), of
course, because the results on the right are not actually the inte-
grals on the left, but rather equal their actual value minus their
value for m?=m24 N2

Combining these quantities, as required by (32), dropping the
constants C’, C"’ and evaluating the spur gives (33). The spurs are
evaluated in the usual way, noting that the spur of any odd
number of y matrices vanishes and Sp(4B)=Sp(BA) for arbi-
trary A, B. The Sp(1)=4 and we also have

1SPL(Dr+m1) (Ppa—ms) J= p1+ po— s, (35a)
1SpL(Drtmy) (pa—ma) (bst+m3) (ps—ma) ]
= (p1* po—mamz)(ps- pa—msma)
— (p1+ pa—mams) (P2 pa—mamy)
+(p1+ pa—mims) (p2- ps—mams), (36a)

where p;, m; are arbitrary four-vectors and constants.

It is interesting that the terms of order A2 InX\? go out, so that
the charge renormalization depends only logarithmically on A2
This is not true for some of the meson theories. Electrodynamics
is suspiciously unique in the mildness of its divergence.

D. More Complex Problems

Matrix elements for complex problems can be set up in a
manner analogous to that used for the simpler cases. We give
three illustrations; higher order corrections to the Mgller scatter-

X

O

Fic. 8. The interaction between two electrons to order (e®/kc)?.
One adds the contribution of every figure involving two virtual
quanta, Appendix D.
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ing, to the Compton scattering, and the interaction of a neutron
with an electromagnetic field.

For the Mdller scattering, consider two electrons, one in state
u; of momentum p; and the other in state %; of momentum po.
Later they are found in states s, ps and #,, p4. This may happen
(first order in €2/hc) because they exchange a quantum of momen-
tum g=p;— ps=p,— P> in the manner of Eq. (4) and Fig. 1. The
matrix element for this process is proportional to (translating (4)
to momentum space)

(thay ptha) (shay ) 2 (37a)

We shall discuss corrections to (37a) to the next order in e?/hc.
(There is also the possibility that it is the electron at 2 which
finally arrives at 3, the electron at 1 going to 4 through the ex-
change of quantum of momentum p;— p,. The amplitude for this
process, (#yyputr)(tizy,me) (Ps—P2)~2, must be subtracted from
(37a) in accordance with the exclusion principle. A similar situa-
tion exists to each order so that we need consider in detail only
the corrections to (37a), reserving to the last the subtraction of
the same terms with 3, 4 exchanged.)

One reason that (37a) is modified is that two quanta may be
exchanged, in the manner of Fig. 8a. The total matrix element
for all exchanges of this type is

@/i) [ (s (pr— k= m)y,0) (ers (Pat- k= m) oy 0z)
Kg—R)d%, (38)

as is clear from the figure and the general rule that electrons of
momentum p contribute in amplitude (p—m)~! between inter-
actions v, and that quanta of momentum k& contribute k72, In
integrating on d*k and summing over p and », we add all alterna-
tives of the type of Fig. 8a. If the time of absorption, v,, of the
quantum k by electron 2 is later than the absorption, v,, of g—k&,
this corresponds to the virtual state p,+ k& being a positron (so
that (38a) contains over thirty terms of the conventional method
of analysis).

In integrating over all these alternatives we have considered all
possible distortions of Fig. 8a which preserve the order of events
along the trajectories. We have not included the possibilities
corresponding to Fig. 8b, however. Their contribution is

(@/i) [ (asys(r——m)y,a0)
X (Gayu(Petq—k—m) Ly u) k2 (g— k) 2d%k, (39a)

as is readily verified by labeling the diagram. The contributions of
all possible ways that an event can occur are to be added. This

y
ffr
T

F16. 9. Radiative correction to the Compton scattering term
(a) of Fig. 5. Appendix D.
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means that one adds with equal weight the integrals corresponding
to each topologically distinct figure.

To this same order there are also the possibilities of Fig. 8d
which give

(@/i) [ (@xr(Ba— k= m) 1y, (pr— k=m) st
X (ﬂ.‘y“uz) k"q’*d‘k .

This integral on k will be seen to be precisely the integral (12) for
the radiative corrections to scattering, which we have worked out.
The term may be combined with the renormalization terms result-
ing from the difference of the effects of mass change and the terms,
Figs. 8f and 8g. Figures 8e, 8h, and 8i are similarly analyzed.

Finally the term Fig. 8c is clearly related to our vacuum
polarization problem, and when integrated gives a term propor-
tional to (#4ypuues) (#ayst1)J g~ 4. If the charge is renormalized the
term In(\/m) in J,, in (33) is omitted so there is no remaining
dependence on the cut-off.

The only new integrals we require are the convergent integrals
(38a) and (39a). They can be simplified by rationalizing the de-
nominators and combining them by (14a). For example (38a) in-
volves the factors (k2—2py-k)"1(k2*+2p,- k) 1k2(g*+ k2 —2q- k)2
The first two may be combined by (14a) with a parameter x, and
the second pair by an expression obtained by differentiation (15a)
with respect to b and calling the parameter y. There results a
factor (k2—2p,-k)2(k*+yg®—2yq-k)~* so that the integrals on
d*k now involve two factors and can be performed by the methods
given earlier in the appendix. The subsequent integrals on the
parameters x and y are complicated and have not been worked out
in detail.

Working with charged mesons there is often a considerable re-
duction of the number of terms. For example, for the interaction
between protons resulting from the exchange of two mesons only
the term corresponding to Fig. 8b remains. Term 8a, for example,
is impossible, for if the first proton emits a positive meson the
second cannot absorb it directly for only neutrons can absorb
positive mesons.

As a second example, consider the radiative correction to the
Compton scattering. As seen from Eq. (15) and Fig. 5 this scatter-
ing is represented by two terms, so that we can consider the cor-
rections to each one separately. Figure 9 shows the types of terms
arising from corrections to the term of Fig. 5a. Calling %k the
momentum of the virtual quantum, Fig. 9a gives an integral

fw(l’z— k—m) 'ex(pr+q1— k—m)'er(pr— k—m) 'y k%,

convergent without cut-off and reducible by the methods outlined
in this appendix.

The other terms are relatively easy to evaluate. Terms b and ¢
of Fig. 9 are closely related to radiative corrections (although
somewhat more difficult to evaluate, for one of the states is not
that of a free electron, (14 q)*#m?). Terms e, f are renormaliza-
tion terms. From term d must be subtracted explicitly the effect
of mass Am, as analyzed in Eqgs. (26) and (27) leading to (28)
with p’=p1+q, a=e,, b=e;. Terms g, h give zero since the
vacuum polarization has zero effect on free light quanta, ¢,2=0,
g22=0. The total is insensitive to the cut-off A.

The result shows an infra-red catastrophe, the largest part
of the effect. When cut-off at Amin, the effect proportional to
In(m/Amin) goes as

(e2/x) In(m/Amin) (1—26 ctn26), (40a)

times the uncorrected amplitude, where (p2— p1)?=4m? sin%. This
is the same as for the radiative correction to scattering for a
deflection p.—pi. This is physically clear since the long wave
quanta are not effected by short-lived intermediate states. The
infra-red effects arise?® from a final adjustment of the field from
the asymptotic coulomb field characteristic of the electron of

3 F, Bloch and A. Nordsieck, Phys. Rev. 52, 54 (1937).
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momentum p; before the collision to that characteristic of an
electron moving in a new direction p; after the collision.

The complete expression for the correction is a very complicated
expression involving transcendental integrals.

As a final example we consider the interaction of a neutron with
an electromagnetic field in virtue of the fact that the neutron may
emit a virtual negative meson. We choose the example of pseudo-
scalar mesons with pseudovector coupling. The change in ampli-
tude due to an electromagnetic field A=a exp(—ig-x) determines
the scattering of a neutron by such a field. In the limit of small ¢
it will vary as ga—aq which represents the interaction of a par-
ticle possessing a magnetic moment. The first-order interaction
between an electron and a neutron is given by the same calculation
by considering the exchange of a quantum between the electron
and the nucleon. In this case @, is ¢~* times the matrix element of
vu between the initial and final states of the electron, the states
differing in momentum by q.

The interaction may occur because the neutron of momentum
b1 emits a negative meson becoming a proton which proton inter-
acts with the field and then reabsorbs the meson (Fig. 10a). The
matrix for this process is (p.=p1+9),

f (vsk) (p2— k— M) 7'a(pr— k— M) (vsR) (R — u))'d'%k.  (41a)

Alternatively it may be the meson which interacts with the field.
We assume that it does this in the manner of a scalar potential
satisfying the Klein Gordon Eq. (35), (Fig. 10b)

_f('YﬁkZ)(Pl" kl*‘M)'l(‘Yakl) (kgz— yz)"l

X (ke a+tki-a)(R2—p?)"1d%:, (42a)
where we have put k.= ki+¢. The change in sign arises because
the virtual meson is negative. Finally there are two terms arising
from the vsa part of the pseudovector coupling (Figs. 10c, 10d)

J R = k=M sa) (= )%, (43)

and

f (vs@) (Pr— k— M) (vsk) (R*— ) 'd k. (442)
Using convergence factors in the manner discussed in the section
on meson theories each integral can be evaluated and the results
combined. Expanded in powers of ¢ the first term gives the mag-
netic moment of the neutron and is insensitive to the cut-off, the
next gives the scattering amplitude of slow electrons on neutrons,
and depends logarithmically on the cut-off.

The expressions may be simplified and combined somewhat
before integration. This makes the integrals a little easier and also
shows the relation to the case of pseudoscalar coupling. For
example in (41a) the final sk can be written as vys(k—p1+M)
since p1=M when operating on the initial neutron state. This is
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Fic. 10. According to the meson theory a neutron interacts with
an electromagnetic potential @ by first emitting a virtual charged

meson. The figure illustrates the case for a pseudoscalar meson
with pseudovector coupling. Appendix D.

(pr—k—M)~vs+2M+s since 5 anticommutes with p; and k. The
first term cancels the (§1—k—M)™! and gives a term which just
cancels (43a). In a like manner the leading factor vk in (41a) is
written as —2Mvy;—vs(p2— k— M), the second term leading to a
simpler term containing no (p.—k—M)~! factor and combining
with a similar one from (44a). One simplifies the vsk; and vsk:
in (42a) in an analogous way. There finally results terms like
(41a), (42a) but with pseudoscalar coupling 2Mv; instead of
vsk, no terms like (43a) or (44a) and a remainder, representing
the difference in effects of pseudovector and pseudoscalar coupling.
The pseudoscalar terms do not depend sensitively on the cut-off,
but the difference term depends on it logarithmically. The differ-
ence term affects the electron-neutron interaction but not the
magnetic moment of the neutron.

Interaction of a proton with an electromagnetic potential can
be similarly analyzed. There is an effect of virtual mesons on the
electromagnetic properties of the proton even in the case that the
mesons are neutral. It is analogous to the radiative corrections to
the scattering of electrons due to virtual photons. The sum of the
magnetic moments of neutron and proton for charged mesons is
the same as the proton moment calculated for the corresponding
neutral mesons. In fact it is readily seen by comparing diagrams,
that for arbitrary g, the scattering matrix to first order in the
electromagnetic potential for a proton according to neutral meson
theory is equal, if the mesons were charged, to the sum of the
matrix for a neutron and the matrix for a proton. This is true, for
any type or mixtures of meson coupling, to all orders in the
coupling (neglecting the mass difference of neutron and proton).



