CaltechAUTHORS
  A Caltech Library Service

Nonlinear water waves in channels of arbitrary shape

Teng, Michelle H. and Wu, Theodore Y. (1992) Nonlinear water waves in channels of arbitrary shape. Journal of Fluid Mechanics, 242 . pp. 211-233. ISSN 0022-1120. http://resolver.caltech.edu/CaltechAUTHORS:TENjfm92

Full text is not posted in this repository.

Use this Persistent URL to link to this item: http://resolver.caltech.edu/CaltechAUTHORS:TENjfm92

Abstract

The generalized channel Boussinesq (gcB) two-equation model and the forced channel Korteweg-de Vries (cKdV) one-equation model previously derived by the authors are further analysed and discussed in the present study. The gcB model describes the propagation and generation of weakly nonlinear, weakly dispersiveand weakly forced long water waves in channelsof arbitrary shape that may vary both in space and time, and the cKdV model is applicable to unidirectional motions of such waves, which may be sustained under forcing at resonance of the system. These two models are long wave approximations of a hierarchy set of section-mean conservation equations of mass, momentum and energy, which are exact for inviscid fluids. Results of these models are demonstrated with four specific channel shapes, namely variable rectangular, triangular, parabolic and semicircular sections, in which case solutions are obtained in closed form. In particular, for uniform channels of equal mean water depth, different cross-sectional shapes have a leading-order effect only on the variations of a K-factor of the coefficient of the term bearing the dispersive effects in the model equations. For this case, the uniform-channel analogy theorem enunciated here shows that long waves of equal (mean) height in different uniform channels of equal mean depth but distinct K-shape factors will propagate with equal veolcity and with their effective wavelengths appearing K times of that in the rectangular channel, for which K=1. It also shows that the further channel shape departs from the rectangular, the greater the value of K. Based on this observation, the solitary and cnoidal waves in a K-shaped channel are compared with experiments on wave profiles and wave velocities. Finally, some three-dimensional features of these solitary waves are presented for a triangular channel.


Item Type:Article
Additional Information:"Reprinted with the permission of Cambridge University Press." (Received 9 August 1991 and in revised form 3 February 1992). We appreciate very much the stimulating discussions of Dr George T. Yates and other members of the Engineering Science group at Caltech. We are also indebted to Professor M.C. Shen for his comments and suggestions. This work was jointly supported by NSF Grant MSM-8706045 and its successor 4DMS-8901440 and by ONR Grant N00014-89-J-1971.
Record Number:CaltechAUTHORS:TENjfm92
Persistent URL:http://resolver.caltech.edu/CaltechAUTHORS:TENjfm92
Alternative URL:http://dx.doi.org/10.1017/S0022112092002349
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:353
Collection:CaltechAUTHORS
Deposited By: Theodore Yao-tsu Wu
Deposited On:06 Jun 2005
Last Modified:05 Jul 2008 02:54

Repository Staff Only: item control page