N TRANSITION

matical “cause’” of the transition. As T falls"y rises,
until the enormous number of possible orientations of a
very long ring more than compensates for the small
contribution of each (y<1, for / large).

There is no doubt of the geometrical fact of large
numbers of orientations for long rings, even if these
rings may never use the same atom twice (i.e., cannot
cross themselves).’® Therefore there can be no doubt

18 For example, the number of ways in which a single polygon
which does not cross itself can still be oriented in an infinite
medium = constant X/ss1, but the value of / is reduced.
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that (1-A), and its more complete expression (17), will
show a transition from this cause. But the order of the
transition need not be the same as that of the approxi-
mate evaluations we have made. They neglect the geo-
metrical correlations. For example, if a large chain of
K atoms is already formed, are the remaining N—K
atoms more (or perhaps less) likely to be contiguous
and therefore more easily able to make other chains,
than if these N — K atoms were chosen at random from
among the N? Our assumption in deriving (5-A) was
that it was equally likely either way.
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The properties of liquid helium at very low temperatures (below 0.5°K) are discussed from the atomic
point of view. It is argued that the lowest states are compressional waves (phonons). Long-range motions
which leave density unaltered (stirrings) are impossible for Bose statistics since they simply permute the
atoms. Motions on an atomic scale are possible, but require a minimum energy of excitation. Therefore
at low temperature the specific heat varies as 7% and the flow resistance of the fluid is small. The arguments.
are entirely qualitative—no calculation of the energy of excitation nor of the low-temperature viscosity
is given. In an appendix an expression, previously given, for the partition function is modified to include

the effects of phonons.

INTRODUCTION

ISZA! has suggested the very fruitful concept
that He IT might be thought of as a mixture of
two fluids, “superfluid” and “normal.” At zero temper-
ature the helium is pure superfluid. With rising temper-
ature some sort of “excited molecules” form. These
constitute the “normal fluid” which behaves very much
like a gas. The proportion of normal fluid increases at
first slowly, and then rapidly, with temperature until
at the transition temperature of 2.19°K (A point) the
liquid, now He I, contains no more superfluid.
Landau? has made even more detailed suggestions.
He suggests that there are two kinds of “excited
molecules,” phonons or quanta of longitudinal com-
pressional waves (sound) and “rotons.” The latter are
not well understood. It is suggested that they have a
minimum energy A needed to excite them. For this
reason below 0.5°K there are practically only phonons.
The rotons can become excited when more energy is
available; i.e., at higher temperature. This idea is in
agreement with the fact that below 0.5°K the specific
heat varies as 7% in just the manner (and with the
correct coefficient) to be expected if only longitudinal
sound waves could be excited.

1L, Tisza, Phys. Rev. 72, 838 (1947). An excellent summary of
the theories of helium II is to be found in R. B. Dingle, Supple-
ment to Phil. Mag. 1, 112 (1952).

2 L. Landau, J. Phys. US.S.R. 5, 71 (1941).

Tisza’s view is frankly phenomenological. No serious
attempt is made to justify the description from first
principles. Landau has made such an attempt by
studying the quantum mechanics of a continuous liquid
medium. The role of the statistics is not clear in his
arguments, however. Furthermore, the magnitudes of
energy and inertia that the “rotons” appear to have
correspond to a few atoms. A complete understanding
of the “roton” state can therefore only be achieved by
way of an atomic viewpoint.

A more complete study of liquid helium from first
principles might attempt to answer at least three
important questions:

(a) Why does the liquid make a transition between
two forms, He I and He II?

(b) Why are there no states of very low energy,
other than phonons, which can be excited in helium II
(i.e., below 0.5°K)? ,

(c) What is the nature of the excitations which
constitute the ‘“normal fluid component” at higher
temperatures, say from 1 to 2.2°K?

The first question was answered in a preceding
paper.? We showed that London’s suggestion, that it is
the analog of the transition in an ideal Bose gas, is
correct.

In this note we hope to make a qualitative argument
from first principles to answer the second question.

3R. P. Feynman, Phys. Rev. 91, 1291 (1953), hereafter called I.
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(We have not yet found the answer to the third.*) It is
to be understood, therefore, that we are aiming here
to explain the properties of the liquid only at extremely
low temperatures.

We take, as a model, helium atoms obeying the
Schrédinger equation and the symmetrical Einstein-
Bose statistics with forces between pairs similar to that
worked out by Slater and Kirkwood,* an attraction at
large distances and a strong repulsion at small.5 (It is
sufficient for qualitative purposes, if one wishes, to
imagine impenetrable spheres of radius about 2.7A
packed into a space so the mean spacing (cube root of
atomic volume) is about 3.6A.

At absolute zero the system is in the ground state.
Why this is not a solid has been explained by London.®
The large zero-point motions of the atoms are capable
of “melting” any ordered crystalline arrangement that
may be temporarily set up. We begin by describing
the wave function for this ground state.

DESCRIPTION OF THE GROUND-STATE WAVE
FUNCTION

Wave functions can be described qualitatively in
words by giving the amplitude for every configuration
of the atoms. The ground state has a positive amplitude
for  any configuration since the lowest state has no
nodes. The amplitude is negligible if any two atoms
are so close together that they overlap—that is, that a
large negative potential has set in. Thus for any atom
surrounded by neighbors, considered for a moment
fixed, the amplitude falls to zero when the atom moves
over to touch any of the neighbors and is probably
bound in such a way that it is maximum when the
atom is near the center of its “cage.” (This curvature
makes a strong kinetic energy tending to blow apart
the cage, an energy effect canceled by the long-range
attraction of the atoms.) Compressing the atom into a
smaller cage requires more kinetic energy, and expan-
sion works against the attractive potential so there is
some mean density of equilibrium. Fluctuations away
from that mean density are of amplitude distributed
in a Gaussian manner. For wavelengths exceeding the
atomic spacing they are analogous to zero-point fluctu-
ations of the vacuum electromagnetic field (but are
wholly longitudinal, scalar waves, of course).

There are a large number of configurations with
densities near the most likely density, in all of which
the atoms tend to keep separate from one another.
They differ from one another mainly in the location of
the atoms. The various configurations differ only in
that one may be “stirred” into another with a little
reshuffling or stirring of the atoms. We may take it

* Note added in proof:—This problem has now been solved. Its
solution will appear in a forthcoming publication.

47. C. Slater and J. G. Kirkwood, Phys. Rev. 37, 682 (1931).

5 For a detailed account of the properties of helium see W. H.
Keeson, Helium (Elsevier Publishing Company, Inc., Amsterdam,
1942).

8 . London, Nature 141, 643 (1938).
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that all' configurations which have nearly the same
type of density fluctuations and which can be essentially
just stirred from one to another have the same ampli-
tude in the ground state.

THE CHARACTER OF LOW-ENERGY STATES

We must next determine the character of the low-
energy states near the ground state. We aim to show
that the only states which differ from the ground state
by an infinitesimal energy are the phonons.

First we can take it that the lowest states are those
involving large numbers of atoms or large distances.
Consider, for example, a tiny region of the liquid, say
a cube 3 or 4 atomic spacings on a side. If the atoms
in this region are confined in this region (so we have a
submicroscopic sample of liquid He) the excitations
above the ground state will all involve one node some-
where among the configurations and hence a wave-
length of order of a. This must mean an excess kinetic
energy of the order #%/a*m, or at least of order #%/Na*m,
where NV is the number of atoms and  is the mass of
each—leaving an appreciable gap from the ground state.

This argument fails if in the ground state there are two (or
more) regions of configuration space in both of which the ampli-
tude is large and which are completely separated by a region of
very small amplitude. (Analogous to a particle in a potential
with two wells separated by a barrier.) If the nodal surface is
passed through the region of small amplitude (the barrier) very
little change in energy results. But we have seen that the states
of large amplitude are just all those in which the atoms are
reasonably well separated. We can assume that we can get
from one to any other without crossing any high potential barrier.
We suppose all possible rearrangements may be achieved without
the atoms coming too close together at any time. That this is
reasonable can be seen by comparing the size of the atoms to
their spacing. For example, if at some point they are locally
roughly on a cubic close-packed lattice, the nearest neighbors are
4.0A apart (corresponding to the observed atomic volume® of
45A3). The diameter of the atoms is 2.7A, the radius at which
Slater and Kirkwood’s potential passes from minus to plus. The
cube edge of the lattice is 5.6A, so a face-centered atom could
even pass between those at the corners of the cube! Clearly, if
they are allowed to vary their mutual distances a little, all kinds
of rearrangements can be made. It is likely that the condition
that there be no effective barrier between configurations is
equivalent to the condition that the He II is liquid in the lowest
state. We assume it valid for He II.

If we are to find extremely low-energy states we must
therefore look to excitations involving large groups of
atoms or long wavelengths. One possibility is in the
compression waves. Suppose the atoms are compressed
to a small excess density over a large volume and a
rarefaction left adjacently. The only way this fluctu-
ation could even out is for a considerable number of
atoms to move, each a little bit. This involves, effec-
tively, the motion of a large mass and can have low
kinetic energy. There is, therefore, little doubt that.
such compressional waves represent a true mode of
excitation in the helium, and a mode of very low energy.
If the speed of sound is called ¢ and the wave number
of the waves K, the frequency w=cK and quantum
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energy %cK can be as small as desired. Thus there is
no reason why we should not expect the specific heat,
varying as 7%, from these modes.”

We have assumed that the way to release a density
fluctuation in a given time which requires the least
kinetic energy is to move many atoms a short distance.
If only a fraction f of the atoms move, the velocity
required is 1/f times higher. This means a higher kinetic
energy if the kinetic energy varies as the velocity
squared.

There are cases, however, in which the kinetic energy
does not vary in this way. In a degenerate Fermi gas a
single atom excited by a small excess momentum p
above the Fermi surface of momentum p has an energy
((po+9)2— p®)/2m or (po/m)p. This linear dependence
of energy on momentum means that the group velocity
of such waves is energy independent. It is po/m. The
speed of sound calculated from the compressibility and
density of the ideal gas is 37%po/m. The single atoms
will run ahead of the sound. Fluctuations are reduced
by a process more like diffusion than sound. The specific
heat near 7'=0 varies as 7" instead of 7° because the
density of states for exciting single atoms exceeds that
for sound. As we shall see, for Bose helium there are
no states, except phonons, whose energy approaches
zero as their momentum approaches zero. The sound
has no competitor capable of discharging pressure.?

LOW-ENERGY STATES DISREGARDING STATISTICS

The Bose statistics play an essential part in the
discussion of other possible states of very low-excitation
energy. To make this role clear by contrast, we shall
first analyze the situation, disregarding the statistics.
More precisely we consider in this section an imaginary -
quantum liquid made of atoms which are, in principle,
distinguishable (‘“Bolzman” statistics). The ground
state for Bolzman statistics is the same as for Bose
statistics, since the lowest state is, in either case,
symmetrical.

We must try to find modes of excitation involving
long wavelengths which do not involve changes in
mean density. The density fluctuation modes have
already been considered. To simplify the argument
consider first the following crude model. We consider a
set of cells, each of which contains one atom. Each
atom is free to wander in its cell and may occupy
therefore some ground-state wave function, say constant
amplitude in the cell. We are to consider states which
can be made solely by rearranging the atoms among the
cells. No two atoms may go into the same cell, for that
corresponds to a density fluctuation, and we do not
wish to consider those.

7The partition function discussed previously (reference 3) is
extended to include a description of the phonons in the Appendix
ta this paper.

8 For an 7deal Bose gas, as T—0, the sound velocity approaches
zero, so that the expected 73 specific heat does not appear. It is
replaced by T3. Density fluctuations are much more restricted
in liquid helium than they are in the ideal gas. This is the origin
of many differences in behavior for the two cases.
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In the ground state, the amplitude is the same for
any rearrangement of the atoms among the cells. The
lowest states can now be analyzed as follows. We
neglect the statistics, that is, we assume Boltzmann
statistics to apply. We can describe a wave function
which corresponds to a very low excitation as follows:
Pick out a certain atom, A4, say. Put it in a given cell.
Then all rearrangements of the other atoms among the
other cells can be taken to have the same amplitude.
If atom 4 is in a different cell, the amplitude may be
different, but again independent of the arrangement of
the other atoms. We thus can specify this wave function
by giving just the amplitude for various positions of
atom 4. The function is independent of the position
of the others. We may take this as exp(iK-R4), where
R, is the position of the center of the cell in which
atom 4 is. We may, with enough accuracy, let R4 be
just the position of atom A. The K can be a long wave
fitting into the volume V in which the helium is con-
tained. The energy of this state is #2K2/2m’ where m’
is the effective mass needed to move atom A. This
energy can be very small, for K can be small.

This effective mass is not far from the mass of one helium atom.
It is discussed in a previous paper.? We summarize the argument
here. To push a single atom along, we need not go over any
potential barriers. The other atoms may move out of the way.
No matter where atom 4 is located the other atoms can arrange
themselves into a state of minimum energy and this minimum
energy is independent of the location of atom 4. However, as
A moves, the others must readjust themselves into the state of
minimum energy for the new position of 4. That is, in addition
to the kinetic energy of A there is a kinetic energy of the other
atoms which must move away to make room for 4.

Thus there would be low-lying states, of energy
7K?/2m'. The number of such states would be very
large, for the wave function could depend in similar
ways on the coordinates of other atoms also. [For
example, we could choose two atoms 4, B and have
the wave function vary with their location as
exp(K:-R4) exp(iK2-Rp) and be otherwise independ-
ent of the distribution of the others in the cells, etc. ]
The large density of low-lying states would result in a
large specific heat near absolute zero.

.

LOW STATES WITH SYMMETRICAL STATISTICS

However, if the atoms obey Bose statistics none of
these states can exist. For in our model, whether atom
A is at one location or another is merely an interchange
of which atom is which. This cannot change the wave
function. In fact, for the model of one atom in a cell
no excited state at all can exist for Bose particles
without excitation of the atom within the cell.

For the real liquid a similar situation holds—aside
from the phonons, there can be no low-lying state. The
wave function must have the property that any change,
that just means an interchange among the atoms, must
not alter the wave function. The excited state must
beé orthogonal to the ground state, of course. Starting
at any configuration and supposing the amplitude is
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the same as for ‘the ground state, we must find a new
configuration that represents a kind of stirring of the
old configuration (to omit phonon states) such that the
amplitude is now reversed in sign. It is clear that every
configuration is close to-the original one, albeit with
some- atoms interchanged. So it is hard to find a con-
figuration to give the minus amplitude which is suffici-
ently far-(in configuration space) from the original
positive amplitude configuration to have a slow rate of
decay and thus a low energy.

There are some possibilities of this kind which might at first
sight seem allowable. Consider among the atoms a set of adjacent
ones forming a large ring. Suppose / atoms are in the ring and
let us imagine the wave function is such that, if all move together
half an atomic spacing @, the phase changes by m, so when they
turn about another a/2 the phase changes by 2w, as required by
the Bose statistics. (For a shift of @ just changes each atom for
the oné behind.) The mass moving is 7'/, and the momentum is
#/a (for the wavelength is @) so that the energy is 3 (m/l) ™ (%/a)*
This may be made low by choosing / very large. (If it were not
for the Bose statistics we could have taken the wavelength to
be la and the energy would be even lower, varying as 1//.)

The argument for calculating this energy is incorrect, however.
By assuming that all the atoms must move together, degrees of
freedom (in which parts of the ring turn by themselves) have been
restricted. This tacitly adds a considerable energy by the uncer-
tainty principle.

To understand better the failure of the argument, consider by
the same reasoning the case that one had two equal rings parallel
to each other. We may argue as before that now the entire mass
2m'l moves together with momentum #%/e¢ and thus expect an
energy 3(2m'l)71(h/a)? for the energy of the lowest state. But
this is certainly wrong, for if we consider the rings as independent,
the lowest state but one is surely that one for which one of the
rings is excited and the other not (momentum O), an energy
1(m'l)7(#/a)?, larger than our previous lowest estimate! The
error for the first figure of §(2m/l)™(%/a)? consisted in this. In
describing the wave function, the possibility that the two rings
could turn independently was omitted. To force the rings to
move together would be to force the difference between their
displacements to be fixed at zero. Thus the momentum conjugate
to this difference coordinate would be very high, and the energy
associated with this coordinate very large. Thus the system does
not have just the energy estimated but, in fact, a very much
higher one. We have not completely specified the wave function.
We have not said what the amplitude is to be for configurations
in which only one of the rings moves.

In an analogous way, the estimate of energy for the single ring,
1 (m't)2(%/a)?, is incorrect. We have specified the amplitude for
the case that all of the atoms are simultaneously in the mid
positions. What is to be the amplitude if only a few move to
mid positions? (This may be accomplished without doing violence
to the potentials by using the atoms adjacent to the ring and by
turning on smaller rings of 4 or 5 atoms.) If the motion (all to 3
position) can be made up of smaller parts moving in concert, and
if these smaller parts could also have moved independently, the
energy cannot be lower than that corresponding to just one of
independent parts being excited.

Since we may well imagine that any motion of the
atoms could be made up of combinations of motions of
small groups (say 3 or 4 revolving about each other)
the lowest energy is the excitation of one of these small
groups. These we can identify with Tisza’s excited
molecules or Landau’s rotons (but see next paragraph).
Any such small ring of  atoms must, of course, have
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its first state of excitation of angular momentum 7% (or
p="/a) because of the statistics. Landau’s arguments?
that such angular momentum must have an excitation
energy was made in a way that does not involve the
statistics of the atoms. It is possibly equivalent to our
argument that large rings need not be considered if
their motion is analyzable in smaller parts. The central
importance of the statistics would not seem to be here,
but rather in the previous argument which shows that
no states corresponding to the slow linear motion of a
single atom are permitted.

It is not obvious whether the lowest excited state,
excluding the phonons, is actually a small ring of atoms
turning. The arguments do not exclude the possibility
that these are all higher than another type of mode;
namely, the rapid motion of a single atom. In our cell
model a state which depends on atom A as expiK- R4
with Ka=2r is, of course, possible. Another possibility
is the analog of the excitation of a single atom in a
cell. (This may be the same as the single atom motion.)
All of these states differ from the ground state by a
finite energy. But which is lowest is hard to determine.

Any such excitation can, of course, move through the
fluid. (In fact, the lowest state is that in which it has
equal amplitude of being anywhere in the fluid.) That
is, the wave function could vary as exp(iK - R), where R
is ‘the location of the center of excitation. Then the
energy of these excitations might have the form,
suggested by Landau,? A+ K?/2u, where A is the energy
needed to excite the ring or other excitation, and u is
a sort of effective mass.

Our primary purpose was to show that no states
close to the ground state exist, exclusive of the phonons.
We are not yet able to calculate the energy, nor to give
a clear picture of the other modes of excitation.

DESCRIPTION OF SOME PROPERTIES OF THE LIQUID

In concluding that only phonons exist at low temper-
ature, we concur with the opinion of the phenomeno-
logical theories. Therefore, a description of how some
of the properties of helium arise, according to this
model, will repeat much that has already been pointed
out by others.!* We limit ourselves, therefore, to a
very brief summary from a kinetic theory point of view.

First, consider the motion of an object, such as a
small sphere through the liquid. If the object is sta-
tionary at a fixed position R, the liquid may get into a
certain state which, omitting phonons for a moment,
is like the ground state (except that now part of the
space occupied by the object is not available to the
helium). Let the wave function of the helium be yr.
It is a function of all the helium atoms and depends,
say parametrically, on R. If R is changed, ¢ is also,
but the energy of the fluid is not changed. For, re-
arranging the fluid to a new shape at the same density
does not alter the energy. Now if we alter the R from
R, to R, nearby, we will only need to add a little
kinetic energy to push the helium atoms out of the
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way. The overlap of ¥, and Y&, will be nearly perfect
(except near the surface of the object which is a
different volume of space in the two cases; R=R; and
R=R5). The object can move therefore with an energy
equal to just the kinetic energy of itself and the liquid
which flows around it. The fluid will move so that the
curl of the velocity is zero, because circulation corre-
sponds to permutation of atoms, and the Bose statistics
will not permit such motions, as we have seen.?

What will be the losses of energy suffered by such an
object? If it loses energy it can do so only by exciting
the helium. First, can it excite the molecular excita-
tions? These take a certain energy A to excite, but a
massive object even moving very slowly may have
sufficient energy. On the other hand, for such an object
to change energy by A its momentum must change by
an enormous amount. To create an excitation of very
high momentum may take much more energy than A.
As Landau has shown? if the energy to excite a roton
of momentum p is taken to be of the form A4-$?/2u,
the laws of conservation of. energy and momentum
show that slowly moving objects [velocity less than
(2pA)¥] can produce no excitations. Likewise, objects
moving at velocities below that of sound cannot lose
energy by creating phonons. Therefore, at absolute
zero and for not too high velocity, a moving object
will suffer no viscous drag.

At low temperatures, there are, however, some
phonons already existing in the liquid. They can scatter
off of the object (changing their energy by the Doppler
effect) and in this way the object can lose a little energy.
A phonon of energy %w carries momentum #w/c and
behaves very much like a particle of mass %w/c? moving
at velocity ¢. The phonons act in most respects like a
gas of such particles, and the resistance suffered by our
object is just like the viscosity that would be suffered
by an object moving through such a gas.

The actual calculation of this energy loss means a
calculation of the viscous drag of such a gas. This
requires a knowledge of the mean free path for collision
among the phonons. The phonons scatter from one
another because the medium is not linear. The speed of
sound depends a little on the density. Therefore speak-
ing classically, if a wave is present, another wave
impinging finds the index of refraction varying sinus-

®For a liquid contained in a simply connected region, the
circulation vanishes everywhere if it vanishes locally. But in a
region of connectivity like the inside of a torus, although the
curl is everywhere zero, the circulation around the ring may not
be zero. Such a circulation cannot be compounded of smaller
independent units. Therefore, it should be possible to demonstrate
circulatory motions in such a vessel which will maintain them-
selves for a long time. Circulation may be created by rotating the
vessel containing He I and cooling to the temperature desired
below the N point. Stopping the rotating vessel should leave the
interior liquid with a nearly permanent angular momentum,
which could be demonstrated, for example, by its gyroscopic
effects. The liquid must be completely confined with no free
surface because the exchange of atoms between the rotating
liquid and the stationary gas above it might cause a rapid damping
of the angular momentum.
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oidally and is thereby scattered. The same thing
happens in the quantum mechanical system.

The mean free path should rise rapidly as the temper-
ature falls, because the density of phonons decreases
(the scattering cross section also decreases). Interesting
phenomena should result when this free path becomes
comparable to the dimensions of the apparatus.

If the viscosity is measured by connecting two
vessels with a capillary, a different situation arises. The
phonons cannot readily work their way through the
long capillary, but the bulk liquid can move through it.
There is work done on the phonons as the piston moves
down in one of the vessels, again by the Doppler effect
on the phonons bouncing off of the moving piston.
But this work just goes into increasing the phonon
energy—that is, the liquid in one vessel is heated, in
the other cooled. If isothermal conditions are main-
tained it goes as heat to the walls of the first container
and from the walls of the second. No net work is done
in this case and the viscosity appears to vanish. There
is essentially no energy loss because there is no real
viscous flow of our phonon “gas’ through the capillary.
The reason that, experimentally, resistance appears® if
the flow velocity exceeds a certain critical velocity is
not clear. Perhaps in passing sharp protuberances in the
capillary wall the velocity locally exceeds that needed
to create excitations or new phonons. It cannot very
well be a kind of turbulence because presumably the
velocity field should be always free of circulation.

In two volumes of liquid helium connected by a
capillary, the hotter one will exert the higher pressure
(fountain effect). The larger number and higher average
momentum of phonons in the hotter region results,
from wall bombardment, in a higher pressure there.
The pressure can only be released slowly by phonons
passing through the long capillary. This would be the
mechanism of heat conductivity through capillaries.
The rate of such conduction would depend on the
relative size of the capillaries and the phonon mean
free path.

If temperature varies from one point to another in
the bulk liquid, then the phonon density varies. What
happens depends on the mean free path. If it is long
compared to the distances over which the variations
occur, the variations are almost immediately evened
out by the diffusion of phonons rushing from one place
to another (at the speed ¢). If the mean free path is
shorter than the distances involved in the variation, no
single photon can go directly from a high- to low-density
region. Instead, a cooperative movement sets in. If we
consider the analogy to a gas of phonon “particles,” a
pressure variation is released by body motion—that is,
by sound waves. The speed of this sound is 3—% times
the individual particle velocities. In our case, this
“second sound” representing waves of phonon density
(i.e., temperature) should travel at a velocity 3—%. At
low temperatures it will be experimentally hard to keep

‘the mean free path very small compared to the wave-
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length, so that second sound would show appreciable
damping and dispersion. At extremely low temperatures
-the free path may be larger than the apparatus. Then,
if a pulse of heat at one point creates extra phonons,
these will rush away at speed ¢ so that temperature rise
will begin at a distant point delayed only by the time
required for first sound to traverse the apparatus.?

- EFFECTS OF He? ATOMS AT LOW CONCENTRATIONS

If a foreign atom, say an atom of He?, is in the liquid,
our arguments indicate that it will move about essenti-
ally as a free particle, albeit with an effective mass m”’
larger than its true mass. (This #'* should be about one
atomic mass unit less than the effective mass m’ of a
He* atom.) Such He? atoms put into He* at low concen-
tration should behave as a perfect gas. Consider, as an
example, a concentration of 0.1 percent. The mean
spacing of the atoms is so large that the gas is not
degenerate, except at a few hundredths of a degree.
(The statistics can only be of importance if the atoms
can permute. This occurs only if exp(—m' D*%kT/2k?)
is not too small. Here, D is the mean spacing of the
atoms, which is 36A in our example.) The specific heat
contributed by the He® is then & per atom. This can
exceed the specific heat of the phonons (below 0.4° in
our example). A temperature pulse would then go
mainly into increasing the energy of the He® gas. The
speed of sound in this gas is of the order of the He? atom
velocity, and therefore the observed second sound
velocity should vary as (kT/m'’)} in this region.® A
more detailed analysis of the intermediate region in
which both He® and phonons contribute requires a
study of the collision cross sections for phonon-phonon,
phonon-He?, and He3-He® collisions. Higher concentra-
tions of He® require a study of the degenerate Fermi

"gas. The entire analysis of this paper fails to apply to
pure He?, because the ground state from which we
begin is different.

An atom of He?® should show an appreciably higher
free energy when dissolved in He?, than if that atom is
replaced by He*. This is because, as discussed in a
previous paper,® for pure He* the partition function is
the sum on all trajectories which start at some con-
figuration of the atoms z; and return to eny permu-
tation of the original configuration Pz;, With a He?
atom at z; say (and no others nearby), the- final
configuration is limited to only those permutations for
which this atom returns to z;. We can estimate the
effect as follows: Neglect the mass difference of He?
and He!. Consider the nondiagonal matrix element
(z'|e P2 |z) in which the final state differs from the
initial state only in that the atom z, is moved to another
site z'y. All the other atoms may go to some permutation
“of the original positions. From what we have said in I,
this should depend upon z; and z’; approximately

0T am indebted to F. G. Brickwedde for calling my attention
to this phenomenon.
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through a factor (8=1/kT),
(m'/2781)} exp[ —m' (z1—2'1)*/26%7], (n

since the atom acts essentially as a free particle of mass
m'. To get the partition function if the atom 1 is He?,
we must sum this over all possible sites z’;. At low
temperatures, where the diffusion distance (28%2/m’)}
exceeds the atomic spacing d=(V4)?}, this is approxi-
mately the integral of (1) over all z'; divided by V4,
the atomic volume. This gives V4! for He?!. For He?,
2’y must coincide with z; so (1) gives (m'/2wBA2)%.
The ratio of the partition function for He* to that in
which a He! atom is replaced by He® is therefore
(m'kT/2wh2)~3V 4~ (at low concentration). The extra
free energy per atom of He? is therefore (3/2)kT In(27%2/
m'"kTV 4%) at low temperatures. (Since He? is lighter
than He?, »/ is replaced by m'’.)1t

DISCUSSION

A number of problems are suggested by this work.

First, a detailed quantitative analysis of all of the
properties of liquid He? below 0.5°K should be under-
taken with the confidence that the problem is relatively
simple. Only the phonons should be involved. Their
wavelengths are long compared to atomic dimensions,

-and we have to do essentially with a continuous

medium. The statistical mechanical aspects are con-
sidered in the appendix. The mean free path for phonon
collisions could be computed if the nonlinearity of the
medium is included. Work in this direction has been
done by Landau and Khalatnikov.!? An extension could
be made to include the effects of small concentrations
of He?.

A more difficult class of problem, and one which we
have left completely untouched, is the answer to
question (c) of the introduction. Namely, what is the
detailed nature of the excitations involved at the higher
temperatures of 1 to 2.2°K? Most of the experimental
work has been done in this region. The atomic view-
point cannot claim a real understanding of the situation
in liquid He IT until this problem is solved. (See note
added in proof.)*

There is a third group of problems which has not
been touched upon. They involve the question,

(d) What is the mechanism of the Rollin film?5

This seems to be a problem of the very low-temperature
behavior and should properly have been discussed in
this paper. A suggestion of Bijl, de Boer, and Michels'
involves the idea that the energy of a layer of the

11 To the effect considered in the text, there must be added the
large free-energy difference at absolute zero, which arises from the
difference in zero-point energy occasioned by the difference in
atomic mass. In first approximation, the wave function is unaltered
but the kinetic energy, — 72/2m) V2, is higher, for m is 3 instead
of 4. This difference 1 is, therefore, close to % of the mean kinetic
energy, per Het atom, in the ground state.

2 L. D. Landau and I M. Khalatnikov, J. Exptl. Theoret.
Physik (U.S.S.R.) 19, 637, 709 (1949).
13 Bijl, de Boer, and Mlchels Physica 8, 655 (1941).
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liquid depends strongly on the thickness of the layer,
decreasing for thicker layers, even up to 100 atoms
thick. If this view is correct, we should look for the
answer by studying the energy of the ground state, to
see if it is dependent on the shape of the container.
It is possible that such a dependence exists, even for
thick layers, because of the very long permutation
rings involved at low temperatures in the condensed
phase. These rings are long enough to wander over the
entire volume of the liquid, so that the energy may be
sensitive to the shape. We have not yet been able to
verify quantitatively the correctness of this idea.

Finally, the problem of critical flow velocities, and
the resistance to high-speed motions, remains unsolved.

The analysis of pure liquid He® requires a new start
because our physical arguments so far have depended
so strongly on the Bose statistics.

The author has profited from conversations with’

E. Wigner, H. A. Bethe, and R. F. Christy.

APPENDIX

In a previous paper,® I, an approximate partition
function was proposed for liquid helium. Without
modification it will not describe the phonon states
correctly. The necessary modifications are discussed
here.

In I, it was noted that the partition function of
helium is the integral over all configurations z; of the
quantity '

ven-wes [ eol - [[55(5)
+§ V(xi_xf)]d“}i‘)”x;(u), (2)

using the notation of that paper [I, Eq. (5)]. The
integral firp is taken over all trajectories x;(x) of the
atoms which start from the positions x;(0)=z; and end
up at some permutation x;(8)= Pz; of z; The sum is
taken on all permutations P. It was pointed out that
if a configuration z; contained atoms nearly overlapping,
or in some other unfavorable arrangement, the im-
portant . trajectories x;(#) would almost immediately
move to release the energy of the unfavorable arrange-
ment (for example, overlapping atoms would spring
apart). The time for this was generally much less than
B. Thus the various configurations could be given a
weight p(z1, Zs- - -zZy)=p(z"). The slower motions of
atomic diffusion contributed an additional exponential
factor, so an approximate expression [I Eq. (7)],

ml

3N/2
W (zV)= N 'K (———)
(z) 8 e

ml

28k?
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was proposed. The factor p was to be (for low tempera-
tures, large 8) nearly independent of 8, as it represents
the effect of rapid local motions. It is ¢(z¥)?, where ¢
is the ground-state wave function.

On the other hand, it was remarked (footnote 11 of I)
that general variations in density over large distances
would not be so rapidly released. We now consider in
detail the effect of these compressional waves.

To a sound wave of wave number K, and frequency
w=cK, where ¢ is the speed of sound, correspond
phonons of energy 7w. A density fluctuation of this
wavelength A=27K—! would take a time 7 of order
1/hw to decay (calling # “time” as in I). This time
will exceed B, for wavelengths N> 2xhc/kT=2w-17A/
T°K. Since this distance exceeds the atomic spacing
3.6A and the diffusion distance (28#2/m)}=4.8A/(T°K )},
there is clear separation of these waves from local
atomic motions. Therefore, an expression like (3) is
correct locally, for a density fluctuation over a small
region is rapidly released so that its effect can be
contained in p (by having p smaller for such fluctu-
ations). But a fluctuation over long distances will not
even out in a time 8 and is not correctly described in (3).

Choose a length 1/K, exceeding the atomic spacing,
but below the wavelength of sound excited at the given
temperature (%icK8>>1). For distances inside 1/K, no
new considerations are necessary, and (3) is locally
correct. For long distances it must bé altered. Let
n(R) be the average number density at R in the -
configuration z,—the average being taken over a region
of volume 1/K,®. We shall determine how the proba-
bility of this configuration depends on #(R) [the result
is (9) below ].

We may describe the motions x;(#) as local atomic
movements (within distances Ky') and general drift
motions of the center of gravity of the atoms in a
volume K¢3. It is convenient to' describe the initial
density distribution by imagining that it arose from an
initially uniform distribution of density #, by a dis-
placement. If the atoms originally at R were displaced
by Do(R), the density is #(R)=n,(1+V-D,), where
no="V 4! is the density averaged over the entire fluid.
As the trajectories in (2) move, there is a general drift
which we will describe by giving the displacement
D(R, %) as a function of #. What is the energy associ-
ated with this drift? First, to the kinetic energy of the
atoms due to local motion there is an extra contribution
from the general drift (m/2V,)(8D/du)? per unit
volume. Further, suppose a region temporarily has an
extra high local density. This will limit the path-space
volume available (and also -change the average mutual
potential energies). Therefore there will be an extra
factor accumulated in each little interval of time. This
we can write as a factor e~#4%4V for the volume dV in
time du. This E (the energy resulting from the com-
pression) depends just on the density, hence on V-D.
We expand it in powers of V-D. The constant term
may be omitted by changing the zero from which we
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measure energy. The linear term gives nothing for its
integral over all the liquid vanishes /'V-DdV=0 from
the conservation of mass. The quadratic term is
written conveniently as (1/2)mc?V 41(V-D)?, for ¢
defined this way becomes the speed of sound. Higher-
order terms produce phonon-phonon scattering, but we
neglect them here. Thus, in addition to the features
which go to make up (3) locally, there is a factor
controlling the large scale motions,

e [—ZV":WJ;BI ((%)2

+ K% (V- D)2)dVdu]§DD R, %), @)

where the D are to be summed over all displacement
fields such that* D(R, 0)=D,=D(R, 8), with

V- Do= VA%(R)—" 1.
This is best analyzed in momentum space. We put

D(R, )= f A(K, ) exp (K- R)&K (21)-%.

The A field can be separated into transverse components
A, and A, and a longitudinal component B=A-K/K.
Thus

v.-D= f KB(K, 1)e'< 2K (21)3, )

and (4) becomes

m B dB\? 0A1\?
oAl Yo ()
2V AR, on/ on

9As\ ? . ‘
+ (—a—) ]d3K(27r)”3du]S)A1( K, ) DA, DB. (6)
A

The transverse displacements act as free particle
motions, for there is no restoring force. They contribute
a factor (m/2wB%)* per mode. This is already contained
in (3) (but with =’ for m, which makes little difference
for the small fraction VaK¢® of modes involved). We
need not count them again in (6).

For each longitudinal mode, we must integrate an
expression of the form

md Br sdB\? .
— f [(———) + h262K2B2]du ] DB (u),
2V ah? 0 \ du

where 6 is the K-space volume per mode for all B(x)
which begin and end at By. This may be easily done by
a method explained in another connection by the

exp

“In principle the final displacements could differ from the
initial by an atomic spacing ¢ (because atoms may be permuted).
But the actual displacements permitted by (4) are very much
smaller than d, so that the only important term from (4) is that
for which the conﬁguratxon is restored atom by atom.
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author.!® There results (w=cK),

méw 3 mow wBh
Y o ()] o
27V 4k sinh (wBh) Vah 2

The complete partition function is the integral (2)
over all initial configurations. We therefore integrate
(7) over By to get the contribution from this mode.
The integral yields

[2 sinh(wB%) tanh (3wB%) T-#=[2 sinh (3w84) T

= exp(—3wBh)[1—exp(—wBh) 1™,
the usual partition function from such a mode. All the
modes together contribute

exp{ — f 1n[2 sinh (3wB%) J#*K(27)~2*V ,  (8)

the integral extending over all modes of wave number
less than K,. This factor in the partition function gives
the usual Debye specific heat, varying as 7% as long as
our temperatures are, as we have assumed small enough
that KochB>1.

Multiplication of the factors (7) for all modes tells
us that density fluctuations have a probability propor-
tional to

wren( )il ©

where KB, is the Fourier transform of the density
fluctuation [from (5)7],

exp [

KBy(K)=V 4 f (n(R)—ng)e®RPR.  (10)
Since, for large wp#, tanh(3wB%) is nearly 1, the density
fluctuations of short wavelength are independent of
the temperature. For these the factor (9) could just as
well be combined with the temperature independent
factor p to make a new effective p. This shows that
the results do not depend on the exact choice of K,.
For long waves tanh(3wB%) falls below 1 and wider
fluctuations are permitted than would be expected from
(3). A more accurate representation of (2) is then (3)
with p containing general variations in density, these
variations being weighed by multiplying by the factor
(9), normalized. A factor (m’/2mB#A?)V/2 should be
replaced by (8).

The purpose of this appendix is just to note that (3)
does not automatically contain the phonon effects, but
must be modified to include them. The study of such
questions as the nature of higher-energy excitations
and the character of the transition can presumably be
made using (3) without modification. It is convenient
that the sound wavelengths are so long that a nearly
complete separation can be made of the local behavior
and the behavior of the overlying compressional waves.

15 R. P. Feynman, Phys. Rev. 84, 108 (1951) Appendix C.
The explicit answer is given in R. P. Feynman, Revs. Modern

Phys. 20, 367 (1948) on page 386, by substituting v=0, ¢;=¢o
=By, b= —1iV s#2/mb, w=1wh. T=0.



