Recent searches for NP in a similar final state are presented to the enhanced production of events with bottom-quark jets. Furthermore, in some scenarios, the SUSY partners of the principal sources of the SM background are events, events with a top quark, comprising pair initiates a decay chain that terminates with the lightest SUSY particle (LSP) and SM particles. If the LSP only interacts weakly, as in the case of a dark-matter candidate, it escapes detection, potentially yielding significant. Many extensions of the standard model (SM) predict that events in high-energy proton-proton collisions can contain large missing transverse energy, at least three jets, and at least one, two, or three b-jet quarks. The study is performed using a sample of proton-proton collision data collected at \( \sqrt{s} = 7 \text{ TeV} \) with the CMS detector at the LHC in 2011. The integrated luminosity of the sample is 4.98 fb\(^{-1}\). The observed number of events is found to be consistent with the standard model expectation, which is evaluated using control samples in the data. The results are used to constrain cross sections for the production of supersymmetric particles decaying to b-quark-enriched final states in the context of simplified model spectra.

Results are presented from a search for physics beyond the standard model based on events with large missing transverse energy, at least three jets, and at least one, two, or three b-jet quarks. The study is performed using a sample of proton-proton collision data collected at \( \sqrt{s} = 7 \text{ TeV} \) with the CMS detector at the LHC in 2011. The integrated luminosity of the sample is 4.98 fb\(^{-1}\). The observed number of events is found to be consistent with the standard model expectation, which is evaluated using control samples in the data. The results are used to constrain cross sections for the production of supersymmetric particles decaying to b-quark-enriched final states in the context of simplified model spectra.

I. INTRODUCTION

Many extensions of the standard model (SM) predict that events in high-energy proton-proton collisions can contain large missing transverse energy (\( E_{\text{T}}^{\text{miss}} \)) and multiple, high-transverse momentum (\( p_T \)) jets. For example, in R-parity-conserving [1] models of supersymmetry (SUSY) [2], SUSY particles are created in pairs. Each member of the pair initiates a decay chain that terminates with the lightest SUSY particle (LSP) and SM particles. If the LSP only interacts weakly, as in the case of a dark-matter candidate, it escapes detection, potentially yielding significant \( E_{\text{T}}^{\text{miss}} \). Furthermore, in some scenarios [3], the SUSY partners of the bottom and top quarks can be relatively light, leading to the enhanced production of events with bottom-quark jets (b jets). Events of this type, with b jets and large \( E_{\text{T}}^{\text{miss}} \), represent a distinctive topological signature that is the subject of a search described in this paper.

We present a search for new physics (NP) in events with large \( E_{\text{T}}^{\text{miss}} \), no isolated leptons, three or more high-\( p_T \) jets, and at least one, two, or three b jets. The analysis is based on a sample of proton-proton collision data collected at \( \sqrt{s} = 7 \text{ TeV} \) with the Compact Muon Solenoid (CMS) detector at the CERN Large Hadron Collider (LHC) in 2011, corresponding to an integrated luminosity of 4.98 fb\(^{-1}\). Recent searches for NP in a similar final state are presented in Refs. [4–8]. Our analysis is characterized by a strong reliance on techniques that use control samples in data to evaluate the SM background.

The principal sources of the SM background are events with top quarks, comprising \( t\bar{t} \)-pair and single-top-quark events, events with a W or Z boson accompanied by jets, and nontop multijet events produced purely through strong-interaction processes. We hereafter refer to this last class of events as “QCD” background. Diboson (WW, ZZ, or WZ) events represent a smaller source of background. For events with a W boson or a top quark, significant \( E_{\text{T}}^{\text{miss}} \) can arise if a W boson decays into a charged lepton and a neutrino. The neutrino provides a source of genuine \( E_{\text{T}}^{\text{miss}} \). Similarly, significant \( E_{\text{T}}^{\text{miss}} \) can arise in events with a Z boson if the Z boson decays to two neutrinos. For QCD-background events, significant \( E_{\text{T}}^{\text{miss}} \) arises primarily from the mismeasurement of jet \( p_T \). A smaller component of the QCD background arises from events with semileptonic decays of b and c quarks.

We interpret our results in the context of simplified model spectra (SMS) [9–12], which provide a general framework to characterize NP signatures. They include only a few NP particles and focus on generic topologies. We consider the SMS scenarios denoted T1bbbb and T1tttt. Event diagrams are shown in Fig. 1. These two models are characterized by b-jet-enriched final states, large jet multiplicities, and large \( E_{\text{T}}^{\text{miss}} \) values, making our analysis sensitive to their production. For convenience, we express SMS phenomenology using SUSY nomenclature. In T1bbbb (T1tttt), pair-produced gluinos \( \tilde{g} \) each decay into two b-quark jets (t-t quark jets) and the LSP, taken to be the lightest neutralino \( \tilde{\chi}_0^0 \). The LSP is assumed to escape detection, leading to significant \( E_{\text{T}}^{\text{miss}} \). If the SUSY partner of the bottom quark (top quark) is much lighter than any other squark, with the gluino yet lighter, gluino decays are expected to be dominated by the three-body process shown in Figs. 1(a) and 1(b).

As benchmark NP scenarios, we choose the T1bbbb and T1tttt models with gluino mass \( m_{\tilde{g}} = 925 \text{ GeV} \) and LSP mass \( m_{\tilde{\chi}_0^0} = 100 \text{ GeV} \), with normalization to the next-to-leading order (NLO) plus next-to-leading-logarithm (NLL) cross section [13–17]. These two benchmark models lie near the boundary of our expected sensitivity.

In Secs. II and III we describe the detector and event selection. Section IV introduces the \( \Delta \phi_{\text{min}} \) variable, used in the evaluation of the QCD background. Our techniques

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
to evaluate the SM background from control samples in data are presented in Sec. V. In Sec. VI we describe our analysis framework, based on a likelihood method that simultaneously determines the SM background and tests the consistency of NP models with the data, taking into account possible NP contamination of control sample regions. The interpretation of our results is presented in Sec. VII. A summary of the analysis is given in Sec. VIII.

II. DETECTOR AND TRIGGER

A detailed description of the CMS detector is given elsewhere [18]. The CMS coordinate system is defined with the origin at the center of the detector and the z axis along the direction of the counterclockwise beam. The transverse plane is perpendicular to the beam axis, with \( \phi \) the azimuthal angle (measured in radians), \( \theta \) the polar angle, and \( \eta = -\ln[\tan(\theta/2)] \) the pseudorapidity. A superconducting solenoid provides an axial magnetic field of 3.8 T. Within the field volume are a silicon pixel and strip tracker, a crystal electromagnetic calorimeter, and a brass-scintillator hadron calorimeter. Muons are detected with gas-ionization chambers embedded in the steel flux-return yoke outside the solenoid. The tracker covers the region \( |\eta| < 2.5 \) and the calorimeters \( |\eta| < 3.0 \). The region \( 3 < |\eta| < 5 \) is instrumented with a forward calorimeter. The near-hermeticity of the detector permits accurate measurements of energy balance in the transverse plane.

The principal trigger used for the analysis selects events based on the quantities \( H_T \) and \( H_T^{miss} \), where \( H_T \) is the scalar sum of the transverse energy of jets and \( H_T^{miss} \) the modulus of the corresponding vector sum. Because of increasing beam collision rates, trigger conditions vary over the period of data collection. The most stringent trigger requirements are \( H_T > 350 \text{ GeV} \) and \( H_T^{miss} > 110 \text{ GeV} \). The efficiency of the \( H_T \) component for the final event selection is measured from data to be 86\% (99\%) for \( H_T \) values of 400 GeV (500 GeV). The efficiency of the \( H_T^{miss} \) component is 98\% for \( E_T^{miss} > 250 \text{ GeV} \). Appropriate corrections are applied to account for trigger inefficiencies and uncertainties in the various control and search regions of the analysis.

III. EVENT SELECTION

Physics objects are defined using the particle flow (PF) method [19], which is used to reconstruct and identify charged and neutral hadrons, electrons (with associated bremsstrahlung photons), muons, tau leptons, and photons, using an optimized combination of information from CMS subdetectors. The PF objects serve as input for jet reconstruction, based on the anti-\( k_T \) algorithm [20] with distance parameter 0.5. Jet corrections [21] are applied to account for residual effects of nonuniform detector response in both \( p_T \) and \( \eta \). The missing transverse energy \( E_T^{miss} \) is defined as the modulus of the vector sum of the transverse momenta of all PF objects. The \( E_T^{miss} \) vector is the negative of the same vector sum.

The basic event selection criteria are as follows:

1. at least one well-defined primary event vertex [22];
2. at least three jets with \( p_T > 50 \text{ GeV} \) and \( |\eta| < 2.4 \);
3. a lepton veto defined by requiring that there be no identified, isolated electron or muon candidate [23,24] with \( p_T > 10 \text{ GeV} \); electron candidates are restricted to \( |\eta| < 2.5 \) and muon candidates to \( |\eta| < 2.4 \);
4. \( \Delta\phi_{\text{min}} > 4.0 \), where the \( \Delta\phi_{\text{min}} \) variable is described in Sec. IV.

Electrons and muons are considered isolated if the scalar sum of the transverse momenta of charged hadrons, photons, and neutral hadrons surrounding the lepton within a cone of radius \( \sqrt{(\Delta\eta)^2 + (\Delta\phi)^2} = 0.3 \), divided by the lepton \( p_T \) value itself, is less than 0.20 for electrons and 0.15 for muons.

To identify \( b \) jets, we use the combined-secondary-vertex algorithm at the medium working point [25]. This algorithm combines information about secondary vertices, track impact parameters, and jet kinematics to separate \( b \) jets from light-flavored-quark, charm-quark, and gluon jets. To increase sensitivity to NP scenarios, which often predict soft \( b \) jets, we use all tagged \( b \) jets with \( p_T > 30 \text{ GeV} \). The nominal \( b \)-jet-tagging efficiency is about 75\% for jets with a \( p_T \) value of 100 GeV, as determined from a sample of \( b \)-jet-enriched dijet events [25]. (For \( b \) jets with \( p_T = 30 \text{ GeV} \), this efficiency is about 60\%. The corresponding misidentification rate is about 1.0\%.) We correct the simulated efficiencies for \( b \)-jet tagging and misidentification to match the efficiencies measured with control samples in the data. The \( b \)-tagging correction factor depends slightly on the jet \( p_T \) and has a typical value of 0.95. The uncertainty on this correction factor varies from 0.03 to 0.07 for \( b \) jets with \( p_T \).
from 30 to 670 GeV, and is taken to be 0.13 for $b$ jets with $p_T > 670$ GeV.

We define five signal regions, which partially overlap, to enhance sensitivity in different kinematic regimes. The five regions correspond to different minimum requirements on $H_T$, $E_T^{\text{miss}}$, and the number of $b$ jets. $H_T$ is calculated using jets with $p_T > 50$ GeV and $|\eta| < 2.4$. The five regions, denoted 1BL, 1BT, 2BL, 2BT, and 3B, are specified in Table I and have been chosen without considering the data to avoid possible bias. The regions are selected based on expected signal and background event yields in simulation, to provide maximal sensitivity for discovery of the NP scenarios considered in this paper or, in the case of non-discovery, to best set limits on their parameters. Throughout this paper, we use the generic designation “SIG” to refer to any or all of these five signal regions.

The distributions of the number of tagged $b$ jets for the 1BL, 1BT, and 2BT samples (i.e., for the three different sets of selection criteria on $H_T$ and $E_T^{\text{miss}}$), except without the requirement on the number of $b$ jets, are shown in Fig. 2. The results are presented in comparison with Monte Carlo (MC) simulations of SM processes. Results from the benchmark T1bbbb and T1tttt NP models mentioned in Sec. I are also shown. The simulated $t\bar{t}$, $W +$ jets, and $Z +$ jets events are produced at the parton level with the MADGRAPH5.1.1.0 [26] event generator. Single-top-quark events are generated with the POWHEG [27] program. The PYTHIA6.4.22 program [28] is used to produce diboson and QCD events. For all simulated samples, PYTHIA6.4 is used to describe parton showering and hadronization. All samples are generated using the CTEQ6 [29] parton distribution functions. The description of the detector response is implemented using the GEANT4 [30] program. The $t\bar{t}$ sample is normalized to the measured cross section [31]. The other simulated samples are normalized using the most accurate cross-section calculations currently available, which is generally NLO. The jet energy resolution in the simulation is corrected to account for a small discrepancy with respect to data [21]. In addition, the simulated samples are reweighted to describe the probability distribution observed in data for overlapping pp collisions within a bunch crossing (“pileup”).

### Table I. The definition of the signal (SIG) regions.

<table>
<thead>
<tr>
<th>Signal region</th>
<th>$H_T$ (GeV)</th>
<th>$E_T^{\text{miss}}$ (GeV)</th>
<th>$N_{\text{jets}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1b-loose 1BL</td>
<td>$&gt;400$</td>
<td>$&gt;250$</td>
<td>$\geq 1$</td>
</tr>
<tr>
<td>1b-tight 1BT</td>
<td>$&gt;500$</td>
<td>$&gt;500$</td>
<td>$\geq 1$</td>
</tr>
<tr>
<td>2b-loose 2BL</td>
<td>$&gt;400$</td>
<td>$&gt;250$</td>
<td>$\geq 2$</td>
</tr>
<tr>
<td>2b-tight 2BT</td>
<td>$&gt;600$</td>
<td>$&gt;300$</td>
<td>$\geq 2$</td>
</tr>
<tr>
<td>3b</td>
<td>3B</td>
<td>$&gt;400$</td>
<td>$&gt;250$</td>
</tr>
</tbody>
</table>

As examples illustrating the characteristics of events with at least one, two, or three tagged $b$ jets, the $E_T^{\text{miss}}$ distributions of events in the 1BL, 2BT, and 3B samples are shown in Fig. 3. The numbers of events in the different signal regions

---

**FIG. 2 (color online).** The distributions of the number of tagged $b$ jets for event samples selected with the (a) 1BL, (b) 1BT, and (c) 2BT requirements, except for the requirement on the number of $b$ jets. The hatched bands show the statistical uncertainty on the total SM background prediction from simulation. The open histograms show the expectations for the T1bbbb (solid line) and T1tttt (dashed line) NP models, both with $m_{\tilde{g}} = 925$ GeV, $m_{\tilde{q}_{SP}} = 100$ GeV, and normalization to NLO + NLL.
are listed in Table II for data and simulation. The simulated results are for guidance only and are not used in the analysis.

IV. THE $\Delta \phi_{\text{min}}$ VARIABLE

Our method to evaluate the QCD background is based on the $\Delta \phi_{\text{min}}$ variable. This method presumes that most $E_T^{\text{miss}}$ in a QCD event arises from the $p_T$ mismeasurement of a single jet.

The $\Delta \phi_{\text{min}}$ variable is a modified version of the commonly used quantity $\Delta \phi_{\text{min}} \equiv \min(|\Delta \phi|)$ ($i = 1, 2, 3$), the minimum azimuthal opening angle between the $E_T^{\text{miss}}$ vector and each of the three highest-$p_T$ jets in an event. Misreconstruction of a jet primarily affects the modulus of its transverse momentum but not its direction. Thus QCD-background events are characterized by small values of $\Delta \phi_{\text{min}}$. The $\Delta \phi_{\text{min}}$ variable is strongly correlated with $E_T^{\text{miss}}$ as discussed below. This correlation undermines its utility for the evaluation of the QCD background from data. To reduce this correlation, we divide the $\Delta \phi$ by their estimated resolutions $\sigma_{\Delta \phi,i}$ to obtain $\Delta \phi_{\text{min}}’ = \min(\Delta \phi_i/\sigma_{\Delta \phi,i})$.

The resolution $\sigma_{\Delta \phi,i}$ for jet $i$ is evaluated by considering the $p_T$ resolution $\sigma_{p_T}$ of the other jets in the event. The uncertainty $\sigma_{\Delta \phi}$, on the component of the $E_T^{\text{miss}}$ vector perpendicular to jet $i$ is found using $\sigma_{\Delta \phi,i}^2 = \sum_n (\sigma_{p_T,n} \sin \alpha_n)^2$, where the sum is over all other jets in the event with $p_T > 30$ GeV and $\alpha_n$ is the angle between jet $n$ and the direction opposite jet $i$. The situation is depicted in Fig. 4 for an event with exactly three jets with $p_T > 30$ GeV. Our estimate of the $\Delta \phi$ resolution is $\sigma_{\Delta \phi,i} = \arctan(\sigma_{\Delta \phi}/E_T^{\text{miss}})$. [Note: $\arcsin(\sigma_{\Delta \phi}/E_T^{\text{miss}})$ is technically more correct in this expression; we use $\arctan(\sigma_{\Delta \phi}/E_T^{\text{miss}})$ because it is computationally more robust while being equivalent for the small angles of interest here.] For the jet $p_T$ resolution, it suffices to use the simple linear parametrization $\sigma_{p_T} = 0.10 p_T$ [21].

Figure 5(a) shows the ratio of the number of events with $\Delta \phi_{\text{min}} > 0.3$ to the number with $\Delta \phi_{\text{min}} < 0.3$ as a function of $E_T^{\text{miss}}$, for a simulated QCD sample selected with the 1 BL requirements except for those on $E_T^{\text{miss}}$ and $\Delta \phi_{\text{min}}$. $\Delta \phi_{\text{min}} > 0.3$ or a similar criterion is commonly used to reject QCD background; see, e.g., Refs. [5–8]. The strong correlation between $\Delta \phi_{\text{min}}$ and $E_T^{\text{miss}}$ is evident. The corresponding result based on $\Delta \phi_{\text{min}}$ is shown in Fig. 5(b). For the latter figure we choose $\Delta \phi_{\text{min}} = 4.0$ in place of $\Delta \phi_{\text{min}} = 0.3$, which yields a similar selection efficiency. For values of $E_T^{\text{miss}}$ greater than about 30 GeV, the distribution based on $\Delta \phi_{\text{min}}$ is seen to be far less dependent on $E_T^{\text{miss}}$ than that based on $\Delta \phi_{\text{min}}$. Figure 5(c) shows the result corresponding to Fig. 5(b) for events with zero tagged b jets. Comparing Figs. 5(b) and 5(c), it is seen that the ratio $N(\Delta \phi_{\text{min}} > 4.0)/N(\Delta \phi_{\text{min}} < 4.0)$ has an approximately constant value of about 0.13 (for $E_T^{\text{miss}} > 30$ GeV) irrespective of the number of b jets.

The measured results for $N(\Delta \phi_{\text{min}} > 4.0)/N(\Delta \phi_{\text{min}} < 4.0)$ with zero b jets, for events with $H_T > 400$ GeV,

FIG. 3 (color online). The distributions of $E_T^{\text{miss}}$ for event samples selected with the (a) 1BL, (b) 2BT, and (c) 3B requirements, except for the requirement on $E_T^{\text{miss}}$. The simulated spectra are normalized as in Fig. 2. The hatched bands show the statistical uncertainty on the total SM background prediction from simulation. The rightmost bin in all plots includes event overflow. The open histograms show the expectations for the T1bbbb (solid line) and T1tttt (dashed line) NP models, both with $m_b = 925$ GeV, $m_{LSP} = 100$ GeV, and normalization to NLO + NLL.
500 GeV, and 600 GeV, are shown in Fig. 6. By requiring that there not be a $b$ jet, we reduce the contribution of top-quark events, which is helpful for the evaluation of QCD background (Sec. VA). The data in Fig. 6 are collected with a prescaled $H_T$ trigger, allowing events to be selected at low $E_T^{\text{miss}}$ without a trigger bias. The data in Fig. 6(a) are seen to somewhat exceed the simulated predictions. The trend is visible in Fig. 6(b) to a lesser extent. This modest discrepancy arises because the $\Delta \phi_{\text{miss}}$ distribution is narrower in the simulation than in data. Since our method to evaluate the QCD background is based on the measured distribution, this feature of the simulation does not affect our analysis. The data in Fig. 6 are seen to exhibit the general behavior expected from the simulation. The region below around 100 GeV is seen to be dominated by the QCD background.

V. BACKGROUND EVALUATION

In this section we describe our methods to evaluate the SM background from control samples in data. Each of the three main backgrounds—from QCD, $Z +$ jets, and top-quark and $W +$ jets events (where “top quark” includes both $t\bar{t}$ and single-top-quark events)—is evaluated separately. We group top-quark and $W +$ jets events together because they have a similar experimental signature. Note that our final results for the total SM background are derived from a global likelihood procedure that incorporates our background evaluation procedures into a single fit, and that also accounts for possible NP contributions to the control regions in a consistent manner. The global likelihood procedure is described in Sec. VI.

QCD background is evaluated using the $\Delta \phi_{\text{miss}}$ variable. Background from $Z +$ jets events is evaluated by scaling the measured rates of $Z \rightarrow \ell^+ \ell^-$ ($\ell = e$ or $\mu$) events. To estimate the top-quark and $W +$ jet background, we employ two complementary techniques. One, which we call the nominal method, is simple and almost entirely data based, while the other, which we call the $E_T^{\text{miss}}$-rewetting method, combines results based on data with information from simulation to examine individual sources of top-quark and $W +$ jets background in detail.

### A. QCD background

The low level of correlation between $\Delta \phi_{\text{miss}}$ and $E_T^{\text{miss}}$ allows us to employ a simple method to evaluate the QCD background from data. As discussed in Sec. IV, the ratio $N(\Delta \phi_{\text{miss}} \geq 4.0)/N(\Delta \phi_{\text{miss}} < 4.0)$ is approximately independent of $E_T^{\text{miss}}$, and also of the number of $b$ jets, for QCD events. Furthermore, the $E_T^{\text{miss}}$ distribution below 100 GeV is expected to be dominated by QCD events, especially for events with zero $b$ jets (Fig. 6). We therefore measure $N(\Delta \phi_{\text{miss}} \geq 4.0)/N(\Delta \phi_{\text{miss}} < 4.0)$ in a low $E_T^{\text{miss}}$ region of the zero-$b$-jet sample and assume this equals $N(\Delta \phi_{\text{miss}} \geq 4.0)/N(\Delta \phi_{\text{miss}} < 4.0)$ for QCD events at all $E_T^{\text{miss}}$ values, also for samples with $b$ jets such as our signal samples.

To perform this measurement, we divide the data into sideband and signal regions in the $\Delta \phi_{\text{miss}}$-$E_T^{\text{miss}}$ plane, as illustrated schematically in Fig. 7. We use the low-$E_T^{\text{miss}}$ interval defined by $50 < E_T^{\text{miss}} < 100$ GeV and $\Delta \phi_{\text{miss}} > 4.0$. We call this interval the low sideband (LSB) region. We also define low $\Delta \phi_{\text{miss}}$ (LDP) intervals $\Delta \phi_{\text{miss}} < 4.0$. We do this not only for the $50 < E_T^{\text{miss}} < 100$ GeV region, but also for the signal (SIG) regions and for a sideband (SB) region defined by $150 < E_T^{\text{miss}} < 250$ GeV. We denote these

<table>
<thead>
<tr>
<th></th>
<th>1BL</th>
<th>1BT</th>
<th>2BL</th>
<th>2BT</th>
<th>3B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>478</td>
<td>11</td>
<td>146</td>
<td>45</td>
<td>22</td>
</tr>
<tr>
<td>Total SM MC</td>
<td>496 ± 7</td>
<td>13.3 ± 0.6</td>
<td>148 ± 2</td>
<td>36.8 ± 0.9</td>
<td>15.0 ± 0.2</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>257 ± 2</td>
<td>3.6 ± 0.2</td>
<td>111 ± 1</td>
<td>26.7 ± 0.4</td>
<td>12.6 ± 0.2</td>
</tr>
<tr>
<td>Single-top quark</td>
<td>26.0 ± 1.0</td>
<td>0.8 ± 0.2</td>
<td>9.1 ± 0.5</td>
<td>2.7 ± 0.3</td>
<td>0.88 ± 0.09</td>
</tr>
<tr>
<td>$W +$ jets</td>
<td>80.0 ± 1.0</td>
<td>2.8 ± 0.2</td>
<td>7.7 ± 0.3</td>
<td>2.2 ± 0.2</td>
<td>0.38 ± 0.05</td>
</tr>
<tr>
<td>$Z \rightarrow \nu \bar{\nu}$</td>
<td>104 ± 2</td>
<td>5.3 ± 0.4</td>
<td>13.8 ± 0.7</td>
<td>3.5 ± 0.3</td>
<td>0.80 ± 0.10</td>
</tr>
<tr>
<td>Diboson</td>
<td>1.8 ± 0.1</td>
<td>0.10 ± 0.02</td>
<td>0.27 ± 0.04</td>
<td>0.05 ± 0.02</td>
<td>0.02 ± 0.01</td>
</tr>
<tr>
<td>QCD</td>
<td>28.0 ± 6.0</td>
<td>0.70 ± 0.20</td>
<td>6.0 ± 1.0</td>
<td>1.7 ± 0.6</td>
<td>0.29 ± 0.07</td>
</tr>
</tbody>
</table>

TABLE II. The number of data events and corresponding predictions from MC simulation for the signal regions, with normalization to $4.98 \text{ fb}^{-1}$. The uncertainties on the simulated results are statistical.
FIG. 5 (color online). QCD-simulation results: (a) The ratio of the number of events that pass the criterion $\Delta \phi_{\text{min}} \geq 0.3$ ($N_{\text{pass}}$) to the number that fail ($N_{\text{fail}}$) as a function of $E^\text{miss}_T$, for events selected with the 1BL requirements except for those on $E^\text{miss}_T$ and $\Delta \phi_{\text{min}}$; (b) The analogous ratio of events with $\Delta \phi_{\text{min}} \geq 4.0$ to those with $\Delta \phi_{\text{min}} < 4.0$; and (c) the same as (b) for events with zero $b$ jets. The QCD-background estimate is based on the relative flatness of the distributions in (b) and (c) for $E^\text{miss}_T \geq 30$ GeV, as illustrated schematically by the horizontal dashed lines.

FIG. 6 (color online). The ratio $N(\Delta \phi_{\text{min}} = 4.0)/N(\Delta \phi_{\text{min}} < 4.0)$, denoted $N_{\text{pass}}/N_{\text{fail}}$, as a function of $E^\text{miss}_T$ for the zero-$b$-jet sample, for events selected with the basic event-selection criteria of the analysis except for the requirements on $E^\text{miss}_T$ and the number of $b$ jets. The results are shown for (a) $H_T > 400$ GeV, (b) $H_T > 500$ GeV, and (c) $H_T > 600$ GeV. The histograms show simulated predictions for the QCD and total SM background.
FIG. 7 (color online). Schematic diagram illustrating the regions used to evaluate the QCD background. The low sideband (LSB) and low sideband-low $\Delta \phi_{\text{min}}$ (LSB-LDP) regions correspond to $50 < E_T^{\text{miss}} < 100$ GeV. The sideband (SB) and sideband-low $\Delta \phi_{\text{min}}$ (SB-LDP) regions correspond to $150 < E_T^{\text{miss}} < 250$ GeV. The signal (SIG) and signal-low $\Delta \phi_{\text{min}}$ (SIG-LDP) regions have $E_T^{\text{miss}}$ ranges corresponding to those in Table I. The designation “SIG” generically refers to any of the regions 1BL, 2BL, and 3B, which require $E_T^{\text{miss}} > 250$ GeV, but implicitly include the tight kinematic signal regions 1BT and 2BT, which require $E_T^{\text{miss}} > 500$ GeV and $300$ GeV, respectively. For each choice of signal region, the condition on the number of $W & Z$ events is used in Sec.VC. The ratio $N_{\text{SIG-LDP}}/N_{\text{LSB-LDP}}$ is found to depend on the number of primary vertices (PV) in the event and thus on the LHC instantaneous luminosity. Before evaluating Eqs. (1) and (2), we therefore reweight the events in the prescaled sample to have the same PV distribution as the standard sample.

FIG. 8 (color online). The distributions of $\Delta \phi_{\text{min}}$ in data and simulation for events selected with the (a) 1BL, (b) 2BT, and (c) 3B requirements, except for the requirement on $\Delta \phi_{\text{min}}$. The simulated spectra are normalized as in Fig. 2. The hatched bands show the statistical uncertainty on the total SM prediction from simulation. The open histograms show the expectations for the T1bbbb (solid line) and T1tttt (dashed line) NP models, both with $m_{\tilde{g}} = 925$ GeV, $m_{\tilde{t}_{1,2}} = 100$ GeV, and normalization to NLO + NLL. The SIG-LDP regions correspond to $\Delta \phi_{\text{min}} < 4.0$ and the signal (SIG) regions to $\Delta \phi_{\text{min}} > 4.0$. 
with the assumption that described in Sec. VII. The systematic uncertainty associated the subtracted values by their uncertainties, evaluated as SIG-LDP and SB-LDP regions is determined by varying of events with either a top quark or a boson from the SIG-LDP and SB-LDP regions is determined by varying in each case. The observed change in the QCD-background by more than a factor of 2. The efficiency is found to be negligible. The systematic uncertainty associated with the trigger efficiency is evaluated by taking uncertainty, as a symmetric systematic uncertainty. number. We assign the result, added in quadrature with its uncertainty is evaluated by taking closure discrepancy as the uncertainty. A third systematic uncertainty is dominated by statistical uncertainties for simulated samples treated as data, and for simulated samples that are re- weighted to account for discrepancies in the jet multiplicity distributions between data and simulation; we take the larger closure discrepancy as the uncertainty. A third systematic uncertainty is evaluated by taking ±100% of the shift in the result caused by the PV reweighting of \( N_{\text{LSB}}/N_{\text{LSB-LDP}} \). The systematic uncertainty associated with the trigger efficiency is found to be negligible.

As a cross-check, we vary the definition of the LSB by raising and lowering its lower edge by 10 GeV, which alters the number of events in the LSB by more than a factor of 2 in each case. The observed change in the QCD-background estimate is negligible.

Systematic uncertainties are summarized in Table III. The relative systematic uncertainties (%) for the QCD-background estimate in the signal regions. Because the 1BT QCD-background estimate is zero (Sec. V E), we do not present results for 1BT in this table.

<table>
<thead>
<tr>
<th></th>
<th>1BL</th>
<th>2BL</th>
<th>2BT</th>
<th>3B</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC subtraction</td>
<td>23</td>
<td>43</td>
<td>44</td>
<td>24</td>
</tr>
<tr>
<td>MC closure</td>
<td>37</td>
<td>41</td>
<td>150</td>
<td>45</td>
</tr>
<tr>
<td>LSB reweighting</td>
<td>7.9</td>
<td>7.9</td>
<td>9.8</td>
<td>7.9</td>
</tr>
<tr>
<td>Total</td>
<td>44</td>
<td>60</td>
<td>160</td>
<td>52</td>
</tr>
</tbody>
</table>

TABLE III. The relative systematic uncertainties (%) for the QCD-background estimate in the signal regions. Because the 1BT QCD-background estimate is zero (Sec. V E), we do not present results for 1BT in this table.

B. Z + jets background

Events with a Z boson and one or more b jets present an irreducible background when the Z decays to two neutrinos. We evaluate this background by reconstructing \( Z \rightarrow e^+ e^- \) events (\( \ell = e \) or \( \mu \)) and removing the \( \ell^+ \) and \( \ell^- \). Fits are performed to determine the \( Z \rightarrow \ell^+ \ell^- \) yields, which are then corrected for background and efficiency. The efficiency is evaluated with an MC closure test, namely, by determining the closure test is performed both for the standard sample in data is then applied to estimate the number of \( Z \rightarrow \ell^+ \ell^- \) events in the signal regions. The control sample is defined with the same loosened b-tagging definition, but without requiring the presence of a Z boson, and also by reversing the \( \Delta \phi_{\text{min}} \) requirement, i.e., we require \( \Delta \phi_{\text{min}} < 4.0 \), which yields a control sample with a b-jet content similar to that in the \( Z \rightarrow \ell^+ \ell^- \) and \( Z \rightarrow \nu \bar{\nu} \) events. All other selection criteria are the same as for the corresponding signal sample. The scale factors are given by the fraction of events in the control sample that passes the nominal b-tagging requirements. The scale factors have values around 0.30, 0.07, and 0.01 for the samples with \( \geq 1 \), \( \geq 2 \), and \( \geq 3 \) b jets, respectively. We verify that the output of the b-tagging algorithm is independent of the presence of a Z.

We validate our method with a consistency test, applying the above procedure to data samples with loosened restrictions on \( H_T \) and \( E_T^{\text{miss}} \). We find the number of predicted and observed \( Z \rightarrow \ell^+ \ell^- \) events to be in close agreement.

Systematic uncertainties are summarized in Table IV. We evaluate a systematic uncertainty on the scale factors by loosening and tightening the b-tagging criterion of the control sample and taking half the difference between

<table>
<thead>
<tr>
<th></th>
<th>1BL</th>
<th>1BT</th>
<th>2BL</th>
<th>2BT</th>
<th>3B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale factors</td>
<td>17</td>
<td>17</td>
<td>49</td>
<td>49</td>
<td>140</td>
</tr>
<tr>
<td>Nonresonant ( \ell^+ \ell^- ) background</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Acceptance</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Lepton-selection efficiency</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Trigger efficiency</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>MC closure</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>25</td>
<td>52</td>
<td>52</td>
<td>150</td>
</tr>
</tbody>
</table>

TABLE IV. The relative systematic uncertainties (%) for the \( Z \rightarrow \nu \bar{\nu} \) background estimate in the signal regions, determined for \( Z \rightarrow e^+ e^- (Z \rightarrow \mu^+ \mu^-) \) events.
the two results as an uncertainty. The size of the control sample changes by about ±30% in these variations. In addition, we use Δφ_{min} > 4.0 rather than Δφ_{min} < 4.0 to define the control sample and calculate the difference with respect to the nominal results. Finally, we evaluate the percentage difference between the number of predicted and observed events found with the consistency test described above. The three terms are added in quadrature to define the systematic uncertainty of the scale factors. We evaluate a systematic uncertainty associated with the nonresonant ℓ^+ℓ^- background to Z → ℓ^+ℓ^- events by comparing the fraction of fitted events in the Z → ℓ^+ℓ^- peak from the nominal fit with those found using either a loosened H_T or a loosened E_T^{miss} restriction. The rms of the three results is added in quadrature with the statistical uncertainty from the nominal fit to define the systematic uncertainty. The 1BL selection is used to determine this uncertainty for all signal regions. A systematic uncertainty for the acceptance is defined by recalculating the acceptance after varying the p_T and η ranges of the ℓ^+ and ℓ^- . The largest difference with respect to the nominal result is added in quadrature with the statistical uncertainty of the acceptance. A systematic uncertainty is defined for the lepton-selection efficiency, and analogously for the trigger efficiency, by recalculating the respective efficiency after varying the requirements on H_T, Δφ_{min}, the number of jets, and the number of b jets. (The number of jets is found using all jets with p_T > 50 GeV and |η| < 2.4.) We also use alternative signal and background shapes in the fits used to extract the Z → ℓ^+ℓ^- event yields. The maximum variations from each case are added in quadrature with the statistical uncertainty from the nominal method to define the systematic uncertainty. Finally, we evaluate a systematic uncertainty based on an MC closure test in the manner described in Sec. VA. We use the SB region to determine this uncertainty.

An analogous procedure to that described above is used to evaluate the number of Z → ν¯ν events N_{Z-ν¯ν}^{SB} in the SB regions (150 < E_T^{miss} < 250 GeV), along with the corresponding uncertainty.

### C. Top-quark and W + jets background (nominal)

For most signal regions, t¯t events are expected to be the dominant background (Table II). Backgrounds from single-top-quark and W + jets events are expected to be smaller but to have a similar signature. Almost all top-quark and W + jets background in our analysis arises either because a W boson decays leptonically to an e or a μ, with the e or μ unidentified, not isolated, or outside the acceptance of the analysis, or because a W boson decays to a hadronically decaying τ lepton. We find empirically, through studies with simulation, that the shape of the E_T^{miss} distribution is similar for all top-quark and W + jets background categories that enter the signal (Table I) or sideband (150 < E_T^{miss} < 250 GeV) regions, regardless of whether the W boson decays to e, μ, or τ, or whether a τ lepton decays hadronically or leptonically: The decay of the W boson in W + jets events generates an E_T^{miss} spectrum (from the neutrino) that is similar to the E_T^{miss} spectrum generated by the W boson produced directly in the decay of a top quark in top-quark events. Additional, softer neutrinos in events with a τ lepton do not much alter this spectrum. We also find that this shape is well-modeled by the E_T^{miss} distribution of a single-lepton (SL) control sample formed by inverting the lepton veto, i.e., by requiring that exactly one e or one μ be present using the lepton-identification criteria of Sec. III, in a sample whose selection is otherwise the same as the corresponding signal sample, except, to reduce the potential contribution of NP to the SL samples, we impose an additional restriction M_τ < 100 GeV on the SL samples (only), where M_τ is the transverse W-boson mass formed from the charged lepton and E_T^{miss} momentum vectors. As an illustration, Fig. 9 shows a comparison based on simulation of the E_T^{miss} distributions in the signal and SL samples, for events selected with the 1BL, 2BT, and 3B criteria.

The E_T^{miss} distributions of events in the SL samples with the 1BL, 2BT, and 3B requirements are shown in Fig. 10. The distributions are seen to be overwhelmingly composed of t¯t events (for example, according to simulation, top and W + jets events comprise over 98% of the events in the SB-SL samples for all SIG selections). The expected contributions of the benchmark T1bbbb NP scenario are found to be negligible, while those of the benchmark T1tttt scenario are seen to be small in Fig. 10 compared to Fig. 3.

Based on these observations, we implement a template method in which the shape of the E_T^{miss} distribution in an SL sample is used to describe the shape of the E_T^{miss} distribution in the corresponding signal sample of Table I, for all top-quark and W + jets categories. An uncertainty for our presumption of the similarity of the E_T^{miss} spectra between different top and W + jet categories is evaluated through the closure test described below. We split each SB sample into a sideband E_T^{miss} region SB-SL defined by 150 < E_T^{miss} < 250 GeV, and a signal E_T^{miss} region SIG-SL by the corresponding E_T^{miss} requirement in Table I. The templates are normalized based on the number of top-quark plus W + jets events observed in the SB regions (150 < E_T^{miss} < 250 GeV) of samples selected with the requirements of Table I except for that on E_T^{miss}. A schematic diagram of the different regions used to evaluate the top and W + jets background with the nominal method is presented in Fig. 11. Contributions to the SB region from QCD and Z → ν¯ν events are taken from the data-based estimates of Secs. VA and VB. Small, residual contributions from other backgrounds such as diboson events are subtracted using simulation.

Our estimate of the top-quark and W + jets background in the SIG region is therefore

\[
N_{\text{SIG}}^{\text{top+W}} = N_{\text{SIG-SL}}^{\text{SB-SL}} \left( N_{\text{SB}} - N_{\text{Z-ν¯ν}}^\text{SB} - N_{\text{QCD}}^\text{SB} - N_{\text{other,MC}}^\text{SB} \right).
\]
FIG. 9 (color online). The distributions of $E_T^{\text{miss}}$ in simulated events selected with the (a) 1BL, (b) 2BT, and (c) 3B requirements, except for the requirement on $E_T^{\text{miss}}$. The square (triangle) symbols show the results for signal (single-lepton SL control) sample events. The small plots below the main figures show the ratio of the signal-to-SL sample curves. The event samples include $t\bar{t}$, $W$ + jet, and single-top-quark events.

FIG. 10 (color online). The distributions of $E_T^{\text{miss}}$ for the SL control sample for events selected with the (a) 1BL, (b) 2BT, and (c) 3B requirements, except for the requirement on $E_T^{\text{miss}}$. The simulated spectra are normalized as in Fig. 2. The hatched bands show the statistical uncertainty on the total SM prediction from simulation. The open dashed histogram shows the expectations for the T1tttt NP model with $m_{\tilde{g}} = 925$ GeV, $m_{\text{LSP}} = 100$ GeV, and normalization to NLO + NLL. (The corresponding contributions from the T1bbbb model are negligible and are not shown.)
uncertainty associated with subtraction of the QCD- and Z → ν ¯ν-background estimates in the SB region, evaluated by varying these estimates by their uncertainties. The systematic uncertainty associated with other backgrounds is evaluated by varying the MC-based background estimates in the SB region by their uncertainties, which we assume to be ±100% for these small terms. A final systematic uncertainty accounts for the uncertainty on the trigger efficiency.

D. Top-quark and W + jets background

We perform a second, complementary evaluation of the top-quark and W + jets background, which we refer to as the $E_{miss}^{T}$-rewetting method. The $E_{miss}^{T}$ distribution is determined separately for each of the three principal top-quark and W + jets background categories:

1. top-quark or W + jets events in which exactly one W boson decays into an $e$ or $\mu$, or into a $\tau$ that decays into an $e$ or $\mu$, while the other W boson (if any) decays hadronically;
2. top-quark or W + jets events in which exactly one W boson decays into a hadronically decaying $\tau$, while the other W boson (if any) decays hadronically;
3. $t\bar{t}$ events in which both W bosons decay into an $e$, $\mu$, or $\tau$, with the $\tau$ decaying either leptonically or hadronically.

For the 1BL selection, these three categories represent, respectively, approximately 44%, 49%, and 7% of the total expected background from top-quark and W + jets events, as determined from simulation.

1. Single $e$ or $\mu$ electron or muon events: Category 1
Category 1 top-quark and W + jets background is evaluated with the SL data control sample introduced in Sec. V C. To relate event yields in the SL and SIG samples, we use constraints derived from knowledge of the W-boson polarization. The polarization of the W boson governs the angular distribution of leptons in the W boson rest frame. Because forward-going leptons are boosted to higher momentum and backward-going leptons to lower momentum, the W-boson polarization is directly related to the lepton momentum spectrum in the laboratory frame. W-boson polarization is predicted to high precision in the SM, with calculations carried out to the next-to-next-to-leading order for $t\bar{t}$ events [33] and to NLO for W + jets events [34]. The results of these calculations are consistent with measurements [35–38].

To construct a distribution sensitive to the W-boson polarization in $W \rightarrow \ell \nu (\ell = e, \mu)$ events (we include $W \rightarrow \tau \nu \rightarrow \ell \nu \nu \nu$ events in this category), we calculate the angle $\Delta \theta_T$ between the direction of the $W$ boson in the laboratory frame and the direction of the $e$ or $\mu$ in the $W$ boson rest frame, all defined in the transverse plane.

Contamination of the SB region in the benchmark T1bbbb (T1tttt) NP scenario is predicted to be around 1% (1%) for the 1BL, 1BT, and 2BL selections, 4% (3%) for the 2BT selection, and 7% (5%) for the 3B selection. The likelihood procedure described in Sec. VI accounts for NP contributions to all control regions in a coherent manner.

Systematic uncertainties are summarized in Table V. We consider the systematic uncertainty associated with MC closure, evaluated as described in Sec. VA. The closure is evaluated separately for the nominal combined top-quark and W + jets simulated sample, with the W + jets cross section increased by 50% and the single-top-quark cross section by 100%, and with the W + jets cross section decreased by 50% and the single-top-quark cross section by 100%. (These variations account for uncertainties on the relative cross sections; they are based on the uncertainties of the NLO calculations and on comparisons between data and simulation.) We take the largest closure discrepancy as the uncertainty. We also consider the systematic uncertainty associated with subtraction of QCD and Z → ν ¯ν-background estimates in the SB region, evaluated by varying these estimates by their uncertainties. The systematic uncertainty associated with other backgrounds is evaluated by varying the MC-based background estimates in the SB region by their uncertainties, which we assume to be ±100% for these small terms. A final systematic uncertainty accounts for the uncertainty on the trigger efficiency.

D. Top-quark and W + jets background

We perform a second, complementary evaluation of the top-quark and W + jets background, which we refer to as the $E_{miss}^{T}$-rewetting method. The $E_{miss}^{T}$ distribution is determined separately for each of the three principal top-quark and W + jets background categories:

1. top-quark or W + jets events in which exactly one W boson decays into an $e$ or $\mu$, or into a $\tau$ that decays into an $e$ or $\mu$, while the other W boson (if any) decays hadronically;
2. top-quark or W + jets events in which exactly one W boson decays into a hadronically decaying $\tau$, while the other W boson (if any) decays hadronically;
3. $t\bar{t}$ events in which both W bosons decay into an $e$, $\mu$, or $\tau$, with the $\tau$ decaying either leptonically or hadronically.

For the 1BL selection, these three categories represent, respectively, approximately 44%, 49%, and 7% of the total expected background from top-quark and W + jets events, as determined from simulation.

1. Single $e$ or $\mu$ electron or muon events: Category 1
Category 1 top-quark and W + jets background is evaluated with the SL data control sample introduced in Sec. V C. To relate event yields in the SL and SIG samples, we use constraints derived from knowledge of the W-boson polarization. The polarization of the W boson governs the angular distribution of leptons in the W boson rest frame. Because forward-going leptons are boosted to higher momentum and backward-going leptons to lower momentum, the W-boson polarization is directly related to the lepton momentum spectrum in the laboratory frame. W-boson polarization is predicted to high precision in the SM, with calculations carried out to the next-to-next-to-leading order for $t\bar{t}$ events [33] and to NLO for W + jets events [34]. The results of these calculations are consistent with measurements [35–38].

To construct a distribution sensitive to the W-boson polarization in $W \rightarrow \ell \nu (\ell = e, \mu)$ events (we include $W \rightarrow \tau \nu \rightarrow \ell \nu \nu \nu$ events in this category), we calculate the angle $\Delta \theta_T$ between the direction of the $W$ boson in the laboratory frame and the direction of the $e$ or $\mu$ in the $W$ boson rest frame, all defined in the transverse plane.

TABLE V. The relative systematic uncertainties (%) for the nominal top-quark and W + jets background estimate in the signal regions.

<table>
<thead>
<tr>
<th>Category</th>
<th>1BL</th>
<th>1BT</th>
<th>2BL</th>
<th>2BT</th>
<th>3B</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC closure</td>
<td>4.6</td>
<td>15</td>
<td>5.4</td>
<td>4.6</td>
<td>2.8</td>
</tr>
<tr>
<td>Subtraction of QCD</td>
<td>13</td>
<td>19</td>
<td>8.2</td>
<td>20</td>
<td>8.0</td>
</tr>
<tr>
<td>Subtraction of Z → ν ¯ν</td>
<td>3.4</td>
<td>3.9</td>
<td>5.4</td>
<td>5.9</td>
<td>15</td>
</tr>
<tr>
<td>MC subtraction</td>
<td>0.6</td>
<td>0.6</td>
<td>0.2</td>
<td>0.4</td>
<td>0.1</td>
</tr>
<tr>
<td>Trigger efficiency</td>
<td>13</td>
<td>14</td>
<td>11</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
<td>28</td>
<td>15</td>
<td>24</td>
<td>20</td>
</tr>
</tbody>
</table>
The $p_T$ of the $W$ boson is given by the vector sum of the $E_T^{\text{miss}}$ and charged lepton $p_T$ vectors. When $\Delta \theta_T$ is small, the charged lepton is produced along the $p_T$ direction of the $W$ boson, typically resulting in a high-$p_T$ charged lepton and a low-$p_T$ neutrino (and therefore low $E_T^{\text{miss}}$) in the laboratory frame. Such events usually appear in the SL sample. Conversely, when $\Delta \theta_T$ is large, the charged lepton (neutrino) has lower (higher) $p_T$, typically leading to larger $E_T^{\text{miss}}$, a charged lepton that fails our $e$ or $\mu$ identification criteria, and an event that appears as background in the signal samples.

Figure 12 shows the distribution of $\Delta \theta_T$ in data and simulation for SL events selected with the 1BL, 2BT, and 3B criteria, except with a loosened $E_T^{\text{miss}}$ requirement ($E_T^{\text{miss}} > 250 \text{ GeV}$) is used for the 2BT region to reduce statistical fluctuations. These results can be compared to those expected in the limit of perfect charged lepton reconstruction, indicated by the dashed histograms in Fig. 12, which show the corresponding simulated predictions, including simulation of the detector, for top-quark and the charged lepton and the corresponding simulated predictions, including simulated or does not meet the selection criteria of Sec. III.

To estimate the $E_T^{\text{miss}}$ distribution of category 1 events, we measure the $E_T^{\text{miss}}$ distribution of SL events in bins of $\Delta \theta_T$. The $E_T^{\text{miss}}$ distribution for each bin is then multiplied by an MC scale factor, determined as follows. The numerator equals the difference between the total yield from single-lepton processes (the dashed histograms in Fig. 12) and the subset of those events that enter the SL sample, both determined for that bin. The denominator equals the corresponding number of events that appear in the SL sample from all sources. The definition of the denominator therefore corresponds to the SL observable in data. The normalization of the $E_T^{\text{miss}}$ distribution in each $\Delta \theta_T$ bin is thus given by the corresponding measured yield, corrected by a scale factor that accounts for the $e$ or $\mu$ acceptance and reconstruction efficiency. The corrected $E_T^{\text{miss}}$ spectra from the different $\Delta \theta_T$ bins are summed to provide the total $E_T^{\text{miss}}$ distribution for category 1 events.

Systematic uncertainties are summarized in Table VI. To evaluate a systematic uncertainty associated with the relative $t\bar{t}$ and $W + \text{jets}$ cross sections, we vary the $W + \text{jets}$ cross section by $\pm 50\%$. From studies of $Z \rightarrow \ell^+ \ell^-$ events, the systematic uncertainty associated with the lepton reconstruction efficiency is determined to be $2\%$. A systematic uncertainty associated with the top-quark $p_T$ spectrum is evaluated by varying the $W$-boson $p_T$ distribution in the simulated $t\bar{t}$ sample. In these variations, the number of events in the upper 10% of the distribution changes by 2 standard deviations of the corresponding result in data. The systematic uncertainties associated with the jet energy
scale, jet energy resolution, and $b$-tagging efficiency are evaluated as described in Sec. VII. A systematic uncertainty to account for MC closure is evaluated as described in Sec. VC.

2. $\tau \to$ hadrons: Category 2

Category 2 top-quark and $W +$ jets background is evaluated using a single-muon data control sample. The muon in the event is replaced with a simulated hadronically decaying $\tau$ (a $\tau$ jet) of the same momentum. To account for the addition of the $\tau$ jet, the initial selection criteria are less restrictive than those of the nominal analysis. We require two or more jets, $E_T^{\text{miss}} > 100$ GeV, and do not place restrictions on $H_T$ or $\Delta \phi_{\text{miss}}$. To ensure compatibility with the triggers used to define this single-muon control sample, the minimum muon $p_T$ is set to 25 GeV, and the muon isolation requirement is also more stringent than the nominal criterion of Sec. III.

The visible energy fraction of the $\tau$ jet, namely, its visible energy divided by its $p_T$ value, is determined by sampling $p_T$-dependent MC distributions ("response templates") of the $\tau$ visible energy distribution, for a given underlying value of $\tau$ lepton $p_T$. The $\tau$ jet visible energy is added to the event. The modified event is then subjected to our standard signal region selection criteria. A normalization factor derived from simulation accounts for the relative rates of category 2 and single-muon control sample events.

The same systematic uncertainties are considered as for category 1 events. In addition, we evaluate an uncertainty for the $\tau$-jet visible energy by varying the $\tau$ energy scale by $\pm 3\%$ [39]. Systematic uncertainties are summarized in Table VI.

3. $t\bar{t}$ dilepton events: Category 3

The contribution of category 3 top-quark and $W +$ jets background events is determined using dilepton data control samples. When both leptons are electrons or both are muons, or when one is an electron and the other a muon (where the $e$ or $\mu$ can be from either a $W$ boson or $\tau$ decay), we use simulated predictions to describe the shape of the $E_T^{\text{miss}}$ distribution. The normalization is derived from data, by measuring the number of dilepton events that satisfy loosened selection criteria for each class of events ($ee$, $\mu\mu$, or $e\mu$) individually. The measured value is multiplied by an MC scale factor, defined by the number of corresponding $t\bar{t}$ dilepton events that satisfy the final selection criteria divided by the number that satisfy the loosened criteria.

When one or both of the leptons is a hadronically decaying $\tau$, we apply a procedure similar to that described for category 2 events. Data control samples of $e\mu +$ jets and $\mu\mu +$ jets events are selected with the loosened criteria of Sec. VD2. One or both muons is replaced by a $\tau$-jet using MC response templates. The signal-sample selection criteria are applied to the modified events, and the resulting $E_T^{\text{miss}}$ distributions are normalized by scaling the number of events in the respective control samples with factors derived from MC simulation.

The $E_T^{\text{miss}}$ distributions of all six dilepton categories are summed to provide the total category 3 prediction. A systematic uncertainty is evaluated based on MC closure in the manner described in Sec. VA.

E. Summary of the data-based background estimates

A summary of the background estimates is given in Table VII. The results from the three categories of Sec. VD are summed to provide the total $E_T^{\text{miss}}$-reweighting top-quark and $W +$ jets prediction. The estimates from the $E_T^{\text{miss}}$-reweighting method are seen to be consistent with those from the nominal method and to yield smaller uncertainties. Note that there are statistical correlations between the nominal and $E_T^{\text{miss}}$-reweighting methods because they both make use of the SIG-SL region of Fig. 11. However, the nominal method relies on the SB and SB-SL regions of Fig. 11, while the $E_T^{\text{miss}}$-reweighting method does not. The $E_T^{\text{miss}}$-reweighting method makes use of MC scale factors and data selected with lepton-based triggers (for category 2 and 3 events), while the nominal method does not. Furthermore, the systematic uncertainties of the two methods are largely uncorrelated (compare Tables V and VI).
TABLE VII. The SM background estimates from the procedures of Secs. VA, VB, VC, and VD in comparison with the observed number of events in data. The first uncertainties are statistical and the second systematic. For the total SM estimates, we give the results based on both the nominal and the $E_T^{\text{miss}}$-rewriting methods to evaluate the top-quark and $W + \text{jets}$ background.

<table>
<thead>
<tr>
<th></th>
<th>1BL</th>
<th>1BT</th>
<th>2BL</th>
<th>2BT</th>
<th>3B</th>
</tr>
</thead>
<tbody>
<tr>
<td>QCD</td>
<td>$28 \pm 3\pm 12$</td>
<td>$0.0 \pm 0.2\pm 0.3$</td>
<td>$4.7 \pm 1.3\pm 2.8$</td>
<td>$0.8 \pm 0.4\pm 1.2$</td>
<td>$1.0 \pm 0.5\pm 0.5$</td>
</tr>
<tr>
<td>$Z \rightarrow \nu\bar{\nu}$</td>
<td>$154 \pm 20\pm 32$</td>
<td>$2.4 \pm 1.9\pm 0.5$</td>
<td>$32 \pm 5\pm 20$</td>
<td>$6.2 \pm 2.0\pm 3.9$</td>
<td>$4.7 \pm 1.3\pm 6.5$</td>
</tr>
<tr>
<td>top-quark and $W + \text{jets}$:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nominal</td>
<td>$337 \pm 30\pm 63$</td>
<td>$6.5 \pm 3.3\pm 1.8$</td>
<td>$123 \pm 17\pm 19$</td>
<td>$22.8 \pm 6.9\pm 5.5$</td>
<td>$8.8 \pm 4.0\pm 1.8$</td>
</tr>
<tr>
<td>$E_T^{\text{miss}}$-rewriting</td>
<td>$295 \pm 16\pm 17$</td>
<td>$4.0 \pm 1.2\pm 1.5$</td>
<td>$116 \pm 8\pm 8$</td>
<td>$19.8 \pm 2.5\pm 2.2$</td>
<td>$13.6 \pm 3.2\pm 1.2$</td>
</tr>
<tr>
<td>Total SM:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nominal</td>
<td>$519 \pm 36\pm 72$</td>
<td>$8.9 \pm 3.8\pm 1.9$</td>
<td>$159 \pm 18\pm 28$</td>
<td>$29.8 \pm 7.2\pm 6.8$</td>
<td>$14.4 \pm 4.2\pm 6.8$</td>
</tr>
<tr>
<td>$E_T^{\text{miss}}$-rewriting</td>
<td>$477 \pm 26\pm 38$</td>
<td>$6.4 \pm 2.3\pm 1.6$</td>
<td>$153 \pm 10\pm 22$</td>
<td>$26.8 \pm 3.2\pm 4.6$</td>
<td>$19.3 \pm 3.5\pm 6.6$</td>
</tr>
<tr>
<td>Data</td>
<td>478</td>
<td>11</td>
<td>146</td>
<td>45</td>
<td>22</td>
</tr>
</tbody>
</table>

The data are generally in good agreement with the SM expectations. However, for 2BT, the data lie 1.1 and 2.2 standard deviations ($\sigma$) above the predictions (including systematic uncertainties) for the nominal and $E_T^{\text{miss}}$-rewriting methods, respectively. For 3B, the corresponding deviations are 1.2$\sigma$ and 0.7$\sigma$. Since these deviations are not significant, we do not consider them further.

As an illustration, Fig. 13 presents the background predictions in comparison to data for the 1BL, 2BT, and 3B selections. These results are based on the nominal top-quark and $W + \text{jets}$ background estimate.

VI. LIKELIHOOD ANALYSIS

We perform a global likelihood fit that simultaneously determines the SM background and yield of a NP model, using the background estimation techniques of Sec. V. The likelihood analysis allows us to treat the SM backgrounds in a more unified manner than is possible through the collection of individual results in Table VII. Furthermore, it allows us to account for NP contributions to the control regions (“signal contamination”), as well as to the signal region, in a comprehensive and consistent manner.

It is difficult to account for signal contamination using the $E_T^{\text{miss}}$-rewriting method, in contrast to the nominal method. Therefore, signal contamination is evaluated for the nominal method only. Of the two NP scenarios we consider, one of them, the T1tttt model, exhibits non-negligible contamination of the SL samples, while the other, the T1bbbb model, does not. Since the T1bbbb model does not exhibit significant signal contamination, we employ both the nominal- and $E_T^{\text{miss}}$-rewriting-based likelihood fits for this model. For the T1tttt model, we employ only the likelihood fit based on the nominal method.

For the nominal method, the data are divided into 11 mutually exclusive bins, corresponding to the 11 observables listed in Table VIII, where each “observable” corresponds to the number of data events recorded for that bin. Note that the SB-SL events of Fig. 11 are divided into two components, one for electrons (denoted SB-Se) and the other for muons (denoted SB-Sm), because their trigger efficiencies and uncertainties differ. Similarly, the reconstruction efficiencies of $Z \rightarrow e^+e^-$ and $Z \rightarrow \mu^+\mu^-$ events differ, so we divide the $Z \rightarrow \ell^+\ell^-$ events of Sec. VB according to the lepton flavor. We further divide the $Z \rightarrow \ell^+\ell^-$ events according to whether they appear in the sideband ($150 < E_T^{\text{miss}} < 250$ GeV) or signal regions (Table I) of $E_T^{\text{miss}}$. The four $Z \rightarrow \ell^+\ell^-$ samples are denoted SIG-ee and SIG-$\mu\mu$ for events in the signal regions, and SB-ee and SB-$\mu\mu$ for events in the sideband region.

The likelihood model provides a prediction for the mean expected value of each observable in terms of the parameters of the signal and background components. The likelihood function is the product of 11 Poisson probability density functions, one for each observable, $\beta$ distributions [40] that parametrize efficiencies and acceptances, and $\beta'$ distributions [40] that account for systematic uncertainties and uncertainties on external parameters. (External parameters include such quantities as the acceptance $\mathcal{A}$ and scale factors between the samples with loose and nominal $b$-tagging requirements discussed in Sec. VB.) The new physics scenarios considered here can contribute significantly to the seven observables listed in the upper portion of Table VIII. In our model, the relative contributions of NP to these seven observables are taken from the NP model under consideration. The NP yield in the SIG bin is a free parameter. The NP contributions to the other six bins thus depend on the NP yield in the SIG bin.

Analogous procedures are used to define the likelihood function for the $E_T^{\text{miss}}$-rewriting method, with simplifications since there is no SB region in this case.

The likelihood function is used to set limits on NP models. Upper limits at 95% confidence level (C.L.) are evaluated taking into account the effects of variation of the external parameters and their correlations. All upper limits are determined using a modified frequentist technique (CL$_{\text{s}}$) [41,42].
The open histograms show the expectations for the T1bbbb NP models, both with $m_\tilde{g} = 925$ GeV, $m_{\text{LSP}} = 100$ GeV, and normalization to NLO + NLL.

### VII. LIMITS ON THE T1BBBBB AND T1TTTT MODELS

Simulated T1bbbb and T1tttt event samples are generated for a range of gluino and LSP masses using PYTHIA, with $m_{\text{LSP}} < m_\tilde{g}$. For increased efficiency when performing scans over the SMS parameter space (see below), we base simulation of the CMS detector response on the fast simulation program [43], accounting for modest differences observed with respect to the GEANT4 simulation.

Systematic uncertainties on signal efficiency are summarized in Table IX, using the T1bbbb benchmark model as an example. A systematic uncertainty associated with the jet energy scale is evaluated by varying this scale by its $p_T$-dependent uncertainties. A systematic uncertainty associated with unclustered energy is evaluated by varying the transverse energy in an event that is not clustered into a.

| TABLE IX. The relative systematic uncertainties (%) for the signal efficiency of the T1bbbb SMS model with $m_\tilde{g} = 925$ GeV and $m_{\text{LSP}} = 100$ GeV. |
|-------------|-------------|-------------|-------------|-------------|
| Jet energy scale | 2.1 | 11 | 2.1 | 3.5 | 1.9 |
| Unclustered energy | 0.2 | 0.8 | 0.2 | 0.2 | 0.2 |
| Jet energy resolution | 1.0 | 2.0 | 1.0 | 1.0 | 1.0 |
| Fileup | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
| $b$-jet tagging efficiency | 0.8 | 0.9 | 3.8 | 3.9 | 9.0 |
| Trigger efficiency | 3.6 | 3.6 | 3.6 | 3.6 | 3.6 |
| Parton distribution functions | 0.4 | 1.6 | 0.4 | 0.7 | 0.5 |
| Anomalous $E_T^{\text{miss}}$ | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
| Lepton veto | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 |
| Luminosity | 2.2 | 2.2 | 2.2 | 2.2 | 2.2 |
| Total uncertainty | 5.9 | 12 | 7.0 | 7.6 | 11 |

FIG. 13 (color online). The data-based SM background predictions for $E_T^{\text{miss}}$ in the (a) 1BL, (b) 2BT, and (c) 3B signal regions in comparison to data. The top-quark and $W + \text{jets}$ estimate is based on the nominal method. The hatched bands show the total uncertainty on the prediction, including systematic uncertainties. The uncertainties are correlated between bins. The open histograms show the expectations for the T1bbbb (solid line) and T1tttt (dashed line) NP models, both with $m_\tilde{g} = 925$ GeV, $m_{\text{LSP}} = 100$ GeV, and normalization to NLO + NLL.
physics object by $\pm 10\%$. The systematic uncertainties associated with the correction to the jet energy resolution, the pileup reweighting method mentioned in Sec. III, the $b$-jet tagging efficiency scale factor, and the trigger efficiency, are evaluated by varying the respective quantities by their uncertainties. The uncertainty for the trigger efficiency includes a 2.5% uncertainty for the plateau efficiency. Systematic uncertainties associated with the parton distribution functions are evaluated following the recommendations of Ref. [44]. The systematic uncertainty associated with anomalous $E_{T}^{miss}$ values, caused by beam background and reconstruction effects, is 1%. The systematic uncertainty associated with the lepton veto is determined from studies of $Z \rightarrow \ell^{+} \ell^{-}$ events in data to be 3.0%. The uncertainty in the luminosity determination is 2.2% [45].

We determine 95% C.L. upper limits on the SMS cross sections as a function of the gluino and LSP masses. Using the NLO + NLL cross section as a reference, we also evaluate 95% C.L. exclusion curves. The jet energy scale, unclustered energy, parton distribution function, and $b$-jet tagging efficiency uncertainties are evaluated for each scan point. Other uncertainties are fixed to the values in Table IX. For each choice of gluino and LSP mass, we use the combination of the top-quark and $W +\text{jets}$ background estimation method and the signal selection (Table I) that provides the best expected limit. We do not include results for points near the $m_{\tilde{g}} = m_{\tilde{\chi}}$ diagonal because of neglected uncertainties from initial-state radiation (ISR), which are large in this region. Specifically, we remove from consideration any point for which the signal efficiency changes by more than 50% when the ISR radiation in PYTHIA is (effectively) turned off.

For the T1bbbb model, the $E_{T}^{miss}$-reweighting method is always found to provide the best expected result: We therefore use this method to determine the T1bbbb limits. The $E_{T}^{miss}$-reweighting method incorporates an additional contrast to the nominal method, namely, the normalization of the SM prediction for the $E_{T}^{miss}$ distribution from the SIG-SL sample (Fig. 11), and not merely the $E_{T}^{miss}$ distribution shape. As a consequence, it has greater discrimination power against NP scenarios.

The results for T1bbbb are shown in Fig. 14(a). The 1BT selection is found to provide the best expected result in the bottom right corner of the distribution, corresponding to the region of large gluino-LSP mass splitting. The 2BT selection is best for the swath roughly parallel to the diagonal defined by gluino masses between around 650 and 900 GeV along the bottom edge of the plot. The 3B selection is generally best elsewhere. The solid contour shows the 95% C.L. exclusion curve for the reference cross section. The zigzagging structure around $m_{\tilde{g}} = 900$ GeV, $m_{\tilde{\chi}} = 450$ GeV is due to the transition from the region where 3B is the best expected selection to that where 2BT is best, in conjunction with the slight excess observed in data for the 2BT selection in comparison with the SM prediction for the $E_{T}^{miss}$-reweighting method (Sec. V E). The dashed contours represent the results when the reference cross section is varied by the theory uncertainty [46]. Our results improve those of Ref. [7] for large LSP mass values. For example, for gluino masses around 800 GeV, we extend the exclusion of the reference cross section from an LSP mass of about 400 GeV [7] to about 500 GeV, where these numerical values are given by the observed results minus the 1 standard deviation theory uncertainties.

Figure 14(b) shows the best expected results for the T1bbbb model. In this case, the dashed contours represent
The corresponding results for the T1tttt model are presented in Fig. 15. Our T1tttt results are based on the nominal top-quark and W + jets background estimation method for the reason stated in Sec. VI. In this case, the best expected selection is essentially always 3B. Note that the observed limits for T1tttt, shown in Fig. 15(a), are not as stringent as the expected limits, shown in Fig. 15(b), because of the slight excess of data events in the 3B sample for the nominal method, compared to the SM expectation (Table VII).

VIII. SUMMARY

In this paper, we present a search for an anomalous rate of events with three or more jets, at least one, two, or three tagged bottom-quark jets, no identified, isolated leptons, and large missing transverse energy \( E_{\text{miss}} \) arising from top-quark, W + jets, Z + jets, and QCD-multijet events, are evaluated from data. We introduce a variable \( \Delta \hat{\phi}_{\text{min}} \) that allows us to address the QCD-multijet background with a simple approach. The top-quark and W + jets background is evaluated with two complementary methods, which yield consistent results. In the \( E_{\text{miss}} \)-reweighting method to evaluate the top-quark and W + jets background, we introduce a technique based on the \( W \) polarization in \( t\bar{t} \) and \( W + \text{jets} \) events. Our analysis is performed in a likelihood framework in order to account for backgrounds, and for new physics contamination of the control regions, in a unified and consistent manner.

We find no evidence for a significant excess of events beyond the expectations of the standard model and set limits on new physics in the context of the \( b \)-jet-rich T1bbbb and T1tttt simplified model spectra, in which new strongly interacting particles decay to two \( b \)-quark jets, or two \( t \)-quark jets, plus an undetected particle. For the T1bbbb scenario, our results improve on those of Ref. [7] for large LSP masses.

ACKNOWLEDGMENTS

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes. This work was supported by the Austrian Federal Ministry of Science and Research; the Belgian Fonds de la Recherche Scientifique and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences,
Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport; the Research Promotion Foundation, Cyprus; the Ministry of Education and Research, Recurrent Financing Contract SF0690030s09 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucléaire et de Physique des Particules/CNRS, and Commissariat à l’Énergie Atomique et aux Énergies Alternatives/CEA, France; the Bundesministerium für Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Office for Research and Technology, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Korean Ministry of Education, Science and Technology and the World Class University program of NRF, Korea; the Lithuanian Academy of Sciences; the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Science and Innovation, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundação para a Ciência e a Tecnologia, Portugal; JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Science and Technological Development of Serbia; the Secretaría de Estado de Investigación, Desarrollo e Innovación y Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the National Science Council, Taipei; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the Science and Technology Facilities Council, UK; the U.S. Department of Energy, and the U.S. National Science Foundation. Individuals have received support from the Marie-Curie programme and the European Research Council (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); and the HOMING PLUS programme of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund.
SEARCH FOR SUPERSYMMETRY IN EVENTS WITH b-...
SEARCH FOR SUPERSYMMETRY IN EVENTS WITH $b\ldots$

(CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia
2Institut für Hochenergiephysik der OeAW, Wien, Austria
3National Centre for Particle and High Energy Physics, Minsk, Belarus
4Universiteit Antwerpen, Antwerpen, Belgium
5Vrije Universiteit Brussel, Brussel, Belgium
6Université Libre de Bruxelles, Bruxelles, Belgium
7Ghent University, Ghent, Belgium
8Université Catholique de Louvain, Louvain-la-Neuve, Belgium
9Université de Mons, Mons, Belgium
10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
12Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil
13Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
14University of Sofia, Sofia, Bulgaria
15Institute of High Energy Physics, Beijing, China
16State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
17Universidad de Los Andes, Bogota, Colombia
18Technical University of Split, Split, Croatia
19University of Split, Split, Croatia
20Institute Rudjer Boskovic, Zagreb, Croatia
21University of Cyprus, Nicosia, Cyprus
22Charles University, Prague, Czech Republic
23Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
24National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
25Department of Physics, University of Helsinki, Helsinki, Finland
26Helsinki Institute of Physics, Helsinki, Finland
27Lappeenranta University of Technology, Lappeenranta, Finland
28DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
72 University of Seoul, Seoul, Korea
73 Sungkyunkwan University, Suwon, Korea
74 Vilnius University, Vilnius, Lithuania
75 Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
76 Universidad Iberoamericana, Mexico City, Mexico
77 Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
78 Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
79 University of Auckland, Auckland, New Zealand
80 University of Canterbury, Christchurch, New Zealand
81 National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
82 National Centre for Nuclear Research, Swierk, Poland
83 Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
84 Laboratorio de Instrumentacion e Fisica Experimental de Particulas, Lisboa, Portugal
85 Petersburg Nuclear Physics Institute, Gatchina (St Petersburg), Russia
86 Institute for Nuclear Research, Moscow, Russia
87 Institute for Theoretical and Experimental Physics, Moscow, Russia
88 Moscow State University, Moscow, Russia
89 P. N. Lebedev Physical Institute, Moscow, Russia
90 State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
91 University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
92 Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid, Spain
93 Universidad Autonoma de Madrid, Madrid, Spain
94 Universidad de Oviedo, Oviedo, Spain
95 Instituto de Fisica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
96 CERN, European Organization for Nuclear Research, Geneva, Switzerland
97 Paul Scherrer Institut, Villigen, Switzerland
98 Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
99 Universitaet Zurich, Zurich, Switzerland
100 National Central University, Chung-Li, Taiwan
101 National Taiwan University (NTU), Taipei, Taiwan
102 Cukurova University, Adana, Turkey
103 Middle East Technical University, Physics Department, Ankara, Turkey
104 Bogazici University, Istanbul, Turkey
105 Istanbul Technical University, Istanbul, Turkey
106 National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
107 University of Bristol, Bristol, United Kingdom
108 Rutherford Appleton Laboratory, Didcot, United Kingdom
109 Imperial College, London, United Kingdom
110 Brunel University, Uxbridge, United Kingdom
111 Baylor University, Waco, USA
112 The University of Alabama, Tuscaloosa, Alabama, USA
113 Brown University, Providence, Rhode Island, USA
114 University of California, Davis, California, USA
115 University of California, Los Angeles, Los Angeles, California, USA
116 University of California, Riverside, Riverside, California, USA
117 University of California, San Diego, La Jolla, California, USA
118 University of California, Santa Barbara, Santa Barbara, California, USA
119 California Institute of Technology, Pasadena, California, USA
120 Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
121 University of Colorado at Boulder, Boulder, Colorado, USA
122 University of Colorado, Ithaca, New York, USA
123 Fairfield University, Fairfield, Connecticut, USA
124 Fermi National Accelerator Laboratory, Batavia, Illinois, USA
125 University of Florida, Gainesville, Florida, USA
126 Florida International University, Miami, Florida, USA
127 Florida State University, Tallahassee, Florida, USA
128 Florida Institute of Technology, Melbourne, Florida, USA
129 University of Illinois at Chicago (UIC), Chicago, Illinois, USA
130 The University of Iowa, Iowa City, Iowa, USA

S. Chatrchyan et al.

Johns Hopkins University, Baltimore, Maryland, USA
The University of Kansas, Lawrence, Kansas, USA
Kansas State University, Manhattan, Kansas, USA
Lawrence Livermore National Laboratory, Livermore, California, USA
University of Maryland, College Park, Maryland, USA
Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
University of Minnesota, Minneapolis, Minnesota, USA
University of Mississippi, University, Mississippi, USA
University of Nebraska-Lincoln, Lincoln, Nebraska, USA
State University of New York at Buffalo, Buffalo, New York, USA
Northeastern University, Boston, Massachusetts, USA
Northwestern University, Evanston, Illinois, USA
University of Notre Dame, Notre Dame, Indiana, USA
The Ohio State University, Columbus, Ohio, USA
Princeton University, Princeton, New Jersey, USA
University of Puerto Rico, Mayaguez, Puerto Rico
Purdue University, West Lafayette, Indiana, USA
Purdue University Calumet, Hammond, Indiana, USA
Rice University, Houston, Texas, USA
University of Rochester, Rochester, New York, USA
The Rockefeller University, New York, New York, USA
Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA
University of Tennessee, Knoxville, Tennessee, USA
Texas A&M University, College Station, Texas, USA
Texas Tech University, Lubbock, Texas, USA
Vanderbilt University, Nashville, Tennessee, USA
University of Virginia, Charlottesville, Virginia, USA
Wayne State University, Detroit, Michigan, USA
University of Wisconsin, Madison, Wisconsin, USA

aDeceased.
bAlso at Vienna University of Technology, Vienna, Austria
cAlso at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
dAlso at Universidade Federal do ABC, Santo Andre, Brazil
eAlso at California Institute of Technology, Pasadena, California, USA
fAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland
gAlso at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
hAlso at Suez Canal University, Suez, Egypt
iAlso at Zewail City of Science and Technology, Zewail, Egypt
jAlso at Cairo University, Cairo, Egypt
kAlso at Fayoum University, El-Fayoum, Egypt
lAlso at British University, Cairo, Egypt
mNow at Ain Shams University, Cairo, Egypt
nAlso at National Centre for Nuclear Research, Swierk, Poland
oAlso at Universite´ de Haute-Alsace, Mulhouse, France
pNow at Joint Institute for Nuclear Research, Dubna, Russia
qAlso at Moscow State University, Moscow, Russia
rAlso at Brandenburg University of Technology, Cottbus, Germany
sAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
A Also at Eotvos Lorand University, Budapest, Hungary
uAlso at Tata Institute of Fundamental Research-HECR, Mumbai, India
vAlso at University of Visva-Bharati, Santiniketan, India
wAlso at Sharif University of Technology, Tehran, Iran
xAlso at Isfahan University of Technology, Isfahan, Iran
yAlso at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Teheran, Iran
zAlso at Facoltà Ingegneria Università di Roma, Roma, Italy
aaAlso at Università della Basilicata, Potenza, Italy
bbAlso at Università degli Studi Guglielmo Marconi, Roma, Italy