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Particle-Hole Symmetry and the Bose Glass to Superfluid Transition
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The generic Hamiltonian describing the zero temperature transition between the insulating Bos
phase and the superfluid phase lacks particle-hole symmetry, but a statistical version of this sym
is believed to be restored at the critical point. We show that the renormalization group rele
of particle-hole asymmetry may be explored in a controlled fashion only for small time dimens
et ø 1, where we find a stable particle-hole asymmetric and an unstable particle-hole symmetric
point, but we provide evidence that the two merge for some finiteet ø 2

3 , which tends to confirm
symmetry restoration at the physicalet ­ 1.

PACS numbers: 74.20.Mn, 05.30.Jp, 05.70.Jk, 64.70.Pf
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The zero temperature superfluid-insulator transition
bosons in a random external potential [1] is an intere
ing and incompletely understood example of a quant
phase transition. Experimental realizations include4He in
porous media [2], granular and amorphous supercond
tors [3], and perhaps the pinning of flux lines by column
defects in high temperature superconductors [4].

Through general arguments [1] and detailed Mon
Carlo simulations [5], much is now understood about t
basic phenomenology of this phase transition. Howev
important questions concerning the nature of the tran
tion in general dimensions,d, remain unresolved. In par
ticular, the detailed critical behavior ind $ 3, especially
the existence, or lack thereof, of an upper critical dime
sion dc, is not known. Classically these issues may
addressed by expanding ine ­ dc 2 d. However, be-
cause the disorder seen by the bosons is static, it en
the effective classicalsd 1 1d-dimensional description of
the problem in the form of 1Dcolumnsor rods. For a
special case the critical behavior was analyzed by Do
govtsev and by Boyanovsky and Cardy (DBC) [6] with
a newdoubledimensionality expansion inet, the dimen-
sion of time, ande ­ 4 2 d 2 et . This technique was
extended to the dirty boson problem in a naive way in [
and a mechanism for the onset of mean-field theory ab
dc ­ 4 was proposed, however, a number of techni
details remained unresolved. Here we will show tha
proper accounting for particle-hole symmetry not only r
solves these problems, but produces an entirely new fi
point not accounted for in [7], which is proposed to b
the one that actually describes the transition at the ph
ical et ­ 1. The mechanism for the onset of mean-fie
theory abovedc ­ 4 remains unchanged.

In order to introduce the notion of particle-hole sym
metry we contrast two closely related models of soft-co
bosons hopping on a lattice with or without disorder. T
first is the boson Hubbard model,
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where â
y
i and âi are the boson creation and annihilatio

operators with n̂i ­ â
y
i âi and commutation relations

fâi , â
y
j g ­ dij. The second is the Josephson junctio

array Hamiltonian
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Vijn̂i n̂j , (2)

where f̂i and n̂i are the phase and number operators
site i, with commution relationsff̂i, n̂jg ­ idij. In both
modelsJij . 0 is the (possibly random) hopping matri
element between sitesi andj, mi is the random external
potential at sitei, and Vij is the interparticle repulsion.
We will take on-site repulsion only,Vij ­ u0dij. We
write mi ­ m 2 ei , where m is the chemical potential
and the disorder averagefeigav ­ 0.

The mapping between the two sets of operators
contained in the correspondenceâ

y
i ­ n̂

1y2
i eif̂i with the

further constraint that we restrict the Hilbert space
states with n̂i $ 0. A particle-hole transformation on
HJ is implemented viaf̂i ! 2f̂i and n̂i ! n0 2

n̂i , where n0 is an arbitrary integer. We observe tha
HJ smd ­ HJ sm 2 n0u0d 1

1
2 u0n2

0 is, up to a constant,
periodic in m with periodicity u0 ­

P
j Vij . It then fol-

lows that HJ is particle-hole symmetricif ei ; 0 and
myu0 is integer or half integer. We say thatHJ has
a statistical particle-hole symmetry at these same va
ues of m if ei are nonzero, but have aneven proba-
bility distribution. In this case all bulk averages wi
be particle-hole symmetric even though the microsco
Hamiltonian is not. We will term the transition in the
presence of a statistical particle-hole symmetrycom-
mensurate, all other cases beingincommensurate. The
© 1996 The American Physical Society 2977
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Hamiltonian HB can neither be periodic nor particle
hole symmetric, statistically or otherwise, due to t
constraintn̂i $ 0.

These models have three possible phases [1].
weak disorder and hopping there are incompressible M
insulating phases with an integern0 particles per site
that survive over a finite interval centered onm ­ n0u0.
For stronger disorder there is a compressible insulat
Bose glass phase in which localization effects domina
Finally, for stronger hopping there is a superfluid pha
Of interest to us is the Bose glass to superfluid transiti
It has been argued [8] that the critical point always ha
statistical particle-hole symmetry, i.e., that this symme
is restored on scales of the order of diverging correlat
length. The idea is that in a disordered system close to
critical point large correlated volumes behave essentia
as single coarse-grained lattice sites with large numb
of particles. As their volume diverges the distinctio
between adding and removing a particle disappears,
particle-hole symmetry is asymptotically restored. It
the goal of this paper to understand this phenomen
quantitatively.

We work with the effectivesd 1 1d-dimensional clas-
sical action obtained from the Trotter decomposition
the partition functionZ ­ trfexps2bHJ dg [9,10]:

LJ ­
Z b

0
dt

Ω
2

X
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Jij cosffistd 2 fjstdg

1 K
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where K ­ 1y2u0, fistd is now a classical imaginary
time dependent phase, andcistd ; eifstd obeys periodic
boundary conditions int. The partition function is then
given by the functional integralZ ­

R
Df exps2LJ d.

By relaxing the condition jcij ­ 1, using a jcj4

weighting function instead, adopting a convenien
rescaled continuum notation, and generalizing to g
eral time dimensionet , we obtain the field theoretic
action

L ­
Z

ddx
Z

det t

Ω
2

1
2

cpf=t 2 gsxdg2c 1
1
2

j=cj2

1
1
2

rsxdjcj2 1 ujcj4
æ

, (4)

where mi is replaced by the randomet-dimensional
vector gsxd ­ g0 1 dgsxd, and we takedgsxd to be
an isotropically distributed Gaussian random variab
fdgmsxddgnsx0dgav ­ Dgdsx 2 x0ddmn. Similarly, rsxd 2

g2
0 2 dg2 ; r0 1 drsxd contains the fully particle-hole

symmetric part of the disorder (corresponding to dis
der in Jij even whenei ; 0), and is taken to be inde
pendent ofdgsxd with Gaussian correlations determine
by fdrsxddrsx0dgav ­ Drdsx 2 x0d. This differs from
the coherent state formulation of (1) used in [7] in th
theregsxd ; 1, i.e., Dg ­ 0, and thej=tcj2 term is ab-
sent. We may now use the standard replica trick to
erage over the disorder, finally obtaining the Lagrang
L p ­ L

p
1 1 L

p
2 , where
L
p

1 ­
pX

a­1

Z
ddx
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3 hDr jcasx, $tdj2 jcbsx, $t0dj2 2 Dgfcp
a=tca 2 g0jcaj2g sx, $td ? fcp

b=tcb 2 g0jcb j2g sx, $t0dj , (5)
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a, b being replica indices and the limitp ! 0 is to be
taken at the end. Note that this Lagrangian does not h
the periodicity of (2) or (3), retaining a commensura
transition only atg0 ­ 0, manifested now in an invarianc
of the action under$t ! 2 $t. Note that ifDg ­ 0 as well,
the Lagrangian becomes invariant underseparatetime
inversion for each replica, corresponding to exact partic
hole symmetry which is unbroken by the disorder inJij .
This is precisely the model studied by DBC [6]. Our ai
now is to understand the relevance ofg0 and Dg at the
DBC fixed point.

Consider first the nature of the insulating phases
general et . We adopt a picture in which regions o
the system with sufficiently largeJij are viewed as
weakly coupled finite superfluid droplets in an ins
lating background, much like the grains in a granu
ve

-

r

-
r

superconductor. As the transition is approached by u
formly raising the overall magnitude of theJij , these
droplets percolate to fill the system. A single dropl
has an approximately spatially uniform phase,fs$td,
with an effective single site “hydrodynamic” Lagran
gian [1,11]

Ldrop ­
1
2

kVdrop

Z
det tf=tfs$td 2 i $rg2 , (6)

where Vdrop is the effective volume of the droplet
k is the compressibility, and$r the density of the
equivalent bulk superfluidif the droplet were infinitely
large. Let êm, m ­ 1, . . . , et, be orthogonal unit vectors
in $t space. Thenfsbêmd ­ fs0d 1 2pmm for some
integer vectorm. The free energy may be compute
exactly by performing the Gaussian integrals over t
fs$td and summing over allm. The result is
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wherel is another integer vector andf0 is the background
free energy due to spatial fluctuations left out of (6
If et ­ 1 then, whenb ! `, only that l ­ l0 which
minimizes the exponent survives the sum. It is then e
to show that the number of particles in the droplet stic
at exactly l0smd for the corresponding finite interval o
width 1ykVdrop in m. The actual droplet density therefor
has a staircase structure, but the steps become finer a
volume increases. This is a rigorous manifestation of
renormalized single site picture mentioned earlier.

If, however,et , 1 only the l ­ 0 term survives the
sum when b ! `, no matter how large$r is. The
actual density and compressibility therefore always van
for a finite droplet. The Bose glass phase is th
indistinguishable from the Mott phase whenet , 1.

To obtain a basic understanding of where the tran
tion to superfluidity now occurs, consider a mean-fie
calculation of the phase boundary. Thus we genera
(3) to generalet and takeJij ; JyN independent ofi, j,
whereN is the total number of sites. A single comple
Hubbard-Stratanovich field,Ms $td, may now be used to
decouple the hopping term [1], and whenN ! ` a saddle
point evaluation becomes exact. The superfluid order
rameterM ­ keifl (taken real) must be determined se
consistently from the effective single site Lagrangian,

LMF ­
Z

det t
X

i

Ω
2 JM cosffis $tdg

1
1
2

Kf=tfis $td 2 i $mig2

æ
. (8)

By perturbing inM we obtain a Landau expansion for th
free energy in even powers ofM. We find a superfluid
phase forJ . Jcsj $mjd where

1yJc ­
Z

det t
Z

det eps $ede2s1y2Kdj $tj22et 1 $t?s $m2 $ed, (9)

where ps $ed is the single site distribution for the sit
disorder, $ei . For large values ofj $mj and bounded
disorder, one hasJc , expf2Aj $mjqg where q ­ s2 2

etdys1 2 etd and A ­ s1 2 etd s2 2 etd2qs2Kd1ys12etd.
In Fig. 1 we plot this boundary for variouset in the
absence of disorder. At the commensurate pointm ­
0 one has dynamical exponentz ­ 1, while on the
remainder of the line one hasz ­ 2. In the presence o
disorder the Mott lobes shrink roughly in proportion
the support ofps $ed, but the mean-field critical behavio
is unchanged. For finite range hopping andet ­ 1 a
finite width Bose glass phase appears between the M
and superfluid phases [1].

We now return to the doublee expansion in order
to go beyond a mean-field description of the transiti
Using (5) we carry out a momentum shell renormalizat
.
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group (RG) analysis which involves first integrating o
the components of the fieldsca with wave numbers
k in a shell kLyb , k , kL, where kL is the cutoff.
Next, the momenta are rescaled to restore the origi
cutoff kL; frequencyv and the fieldsci are also rescaled
in order to keepet ­ ex ; 1. In the limit b ! 1 we
generate RG flows, which to lowest nontrivial order fo
the commensurate case,$m ­ 0, are

Ùr ­ 2r 1
2sm 1 1du

1 1 r
2

2Dr

1 1 r
1 Osu2, D

2
r , D

2
gd ,

Ùu ­ eu 2 2sm 1 4du2 1 12uDr 1 Osu3, . . .d ,

Ù
Dr ­ se 1 etdDr 1 8D

2
g 2 4sm 1 1duDr 1 Osu3, . . .d ,

Ù
Dg ­ Dgse 1 et 1 10Dr 2 2d 2 2D

2
g 1 Osu3, . . .d ,

(10)

where r ­ ryk2
L, u ­ Kdu, Dr ­ KdDr , and

Dg ­ k2
LKdDg, Kd ­ 2ys4pddy2Gsdy2d, and m ­ 1

is the number of boson species. For smallet the only
fixed point occurs atDg ­ 0, and one obtains the usua
DBC random rod fixed point [6], i.e.,exact particle-
hole symmetry is restored at criticality. However, fo
et . ec

t ; f8s2m 2 1d 2 3sm 1 2degys13m 1 16d this
fixed point becomes unstable, and a new one w
D

p

g ­ fs13m 1 16dy8s2m 2 1dg set 2 ec
td is found.

For m ­ 1 and e ­ 0 (corresponding tod ­ 3 at
et ­ 1), one obtainsec

t ­ 8y29. This is an uncontrolled

FIG. 1. The mean-field phase diagram for the nondisorde
Josephson junction model, showing Bose glass/Mott (BG/
and superfluid (SF) phases, with incommensurate line (IC) a
commensurate point (C) foret ­ 0.5, 0.9, 1.0, with larger et

corresponding to a smaller Mott lobe. Note that only one M
lobe persists foret , 1. For et ­ 1 the Mott lobe shown
is actually repeated periodically, with one centered on ea
integer value ofm.
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estimate, asec
t does not vanish withe, but its small

size is encouraging. We see then that “anomalo
rescaling due to higher order diagrams actually ma
Dg more relevant thanDr , and there appears a ne
dirty boson fixed point, corresponding to anontrivial
commensurate transition. To lowest order,rp, up, Dp

r ,
and the exponentn remain unchanged from their DBC
values, but the dynamical exponentz ­ 1 1 D

p

r 1 D
p

g ­
fsm 1 4de 1 s7m 1 10detgy4s2m 2 1d is substantially
larger than before, consistent with the expectationz ­ d
at et ­ 1 [1].

Finally, let us include theg0 term. To linear order the
flow equation forg0 ­ jg0j is found to beÙg0 ­ g0f1 1

Dr 2 Dgg. This term becomesirrelevant at the dirty
boson fixed point foret $ et1 ­ s4y3d s2m 2 1dys1 1

m 2 ed. For m ­ 1 and e ­ 0 one obtainset1 ­ 2y3.
This is again an uncontrolled estimate, but does ind
indicate that the statistical symmetry is restored prior
et ­ 1. For et , et1 there is a new incommensurat
fixed point at nonzerog0. In order to locate it one should
choosez to keepg0, rather thanet, fixed during the RG
flow. The flow equation forDg becomes

Ù
Dg ­ Dgfe 1 et 2 4 1 8Dr g 1 8D

2
r , (11)

while the remaining ones are identical to those in [7]. T
fixed point found in that work did not account forDg, but
we see that ifDp

r ­ Ose, etd then Dp
g ­ Ose2, eet , e2

td,
so the results given there are indeed correct toOse, etd.
However, aset grows, so doesDp

g, eventually leading to
the merging with the dirty boson fixed point.

We also note that thej=tca j2 term which was ignored
in [7] has the flow equationÙet ­ 2s1 1 Dr det 1 Dg,
implying that it is of the same order asD

p

g at the fixed
point. A nonzeroet fixes the convergence problem
found in [7].

Finally, to see how the two fixed points merge w
write down flow equations in the intermediate regio
et1 . et . ec

t , where one must consider bothet and
g0 ; kLg0. We now choosez so that et 1 g0 ; 1.
We find then thatÙg0 ­ s2 1 2Dr 2 zdg0 with z ­ s1 1

Dr 1 Dgd 1 s1 1 Dr dg0. At the fixed point we there-
fore find gp

0 ­ s1 1 D
p

r 2 D
p

gdys1 1 D
p

rd, which van-
ishes precisely wheng0 becomes irrelevant at the dirt
boson fixed point.

To summarize, for smallet the unstable DBC fixed
point and stable incommensurate fixed point exist. F
ec

t , et , et1 there are three fixed points, with th
new commensurate dirty boson fixed point being mo
stable than the DBC fixed point, but less stable th
the incommensurate fixed point. Finally, foret . et1
the incommensurate fixed point merges with the di
boson fixed point, which is then completely stable. Th
provides a detailed scenario by which statistical partic
hole symmetry is restored (see Fig. 2). We cautio
2980
”
s

d

,

r

e
n

-
,

FIG. 2. Proposed behavior of the random rod (RR), inco
mensurate (IC), and commensurate dirty boson (C) fixed po
as functions ofet . HereG andGB are commensurate and in
commensurate Gaussian fixed points. We propose that on
is stable atet ­ 1, and that it describes the physical dirty bo
son problem.

however, that, due to both the uncontrolled nature of
double e expansion at the dirty boson fixed point an
the absence of separate Bose glass and Mott phase
et , 1, extrapolation of any of these results toet ­ 1
is highly suspect. The general scenario we propo
however, seems very natural and illuminating.
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