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Particle-Hole Symmetry and the Bose Glass to Superfluid Transition
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The generic Hamiltonian describing the zero temperature transition between the insulating Bose glass
phase and the superfluid phase lacks particle-hole symmetry, but a statistical version of this symmetry
is believed to be restored at the critical point. We show that the renormalization group relevance
of particle-hole asymmetry may be explored in a controlled fashion only for small time dimensions,
e, < 1, where we find a stable particle-hole asymmetric and an unstable particle-hole symmetric fixed
point, but we provide evidence that the two merge for some fiajte= % which tends to confirm
symmetry restoration at the physical = 1.

PACS numbers: 74.20.Mn, 05.30.Jp, 05.70.Jk, 64.70.Pf

The zero temperature superfluid-insulator transition of + lz Viihi(a — 8), (1)
bosons in a random external potential [1] is an interest- 245
ing and incompletely understood example of a quantum

phase tranzl_tlonz. Expenrlnenta:jreallzatlr(])ns incltide in g wherea! anda; are the boson creation and annihilation
orous media ranular and amorphous superconduc- S At : .
p 2], 9 P P %perators with 4i; = a;rai and commutation relations

tors [3], and perhaps the pinning of flux lines by columnar_ ™~ -~ ) . .
defects in high temperature superconductors [4]. [ai,a;] = ‘.S"f' _The second is the Josephson junction
carray Hamiltonian

Through general arguments [1] and detailed Mont
Carlo simulations [5], much is now understood about the
basic phenomenology of this phase transition. However, _ - T A
important questions concerning the nature of the transi- Hy = IZJ:J"’ Cosei ~ ¢)) ;’u’n’
tion in general dimensiong, remain unresolved. In par- 1
ticular, the detailed critical behavior i = 3, especially + = ZVi,-ﬁiﬁj, (2)
the existence, or lack thereof, of an upper critical dimen- 29
sion d., is not known. Classically these issues may be
addressed by expanding in= d. — d. However, be- where; and 7; are the phase and number operators at
cause the disorder seen by the bosons is static, it entesiie i, with commution relation§;, ;] = i8;;. In both
the effective classicald + 1)-dimensional description of modelsJ;; > 0 is the (possibly random) hopping matrix
the problem in the form of 1xolumnsor rods For a element between sitesand j, u; is the random external
special case the critical behavior was analyzed by Doropotential at sitei, and V;; is the interparticle repulsion.
govtsev and by Boyanovsky and Cardy (DBC) [6] within We will take on-site repulsion onlyV;; = u¢d;;. We
a newdoubledimensionality expansion is;, the dimen- write w; = w — €;, where u is the chemical potential
sion of time, ande = 4 — d — €,. This technique was and the disorder averade; ., = 0.
extended to the dirty boson problem in a naive way in [7], The mapping between the two sets of operators is
and a mechanism for the onset of mean-field theory abovgpntained in the corresponden&é = ﬁil/zeil?)f with the
d. = 4 was proposed, however, a number of technicafurther constraint that we restrict the Hilbert space to
details remained unresolved. Here we will show that astates withs; = 0. A particle-hole transformation on
proper accounting for particle-hole symmetry not only re-3{, is implemented via¢; — —¢; and A; — ny —
solves these problems, but produces an entirely new fixegl where n, is an arbitrary integer. We observe that
point not accounted for in [7], which is proposed to be 31, (,,) = H, (1 — nouo) + % uong is, up to a constant,

the one that actually describes the transition at the phyﬁjeriodic in w with periodicity2u0 =3, V. It then fol-

ical e, = 1. The mechanism for the onset of mean-field|,\s that 7, is particle-hole symmetriéf ¢; = 0 and
theory abovel. = 4 remains unchanged. w/uo is integer or half integer. We say that; has

In order to introduce the notion of particle-hole sym- ‘giatistical particle-hole symmetry at these same val-
metry we contrast two closely related models of soft-corg o of w if € are nonzero, but have agven proba-

bosons hopping on a lattice with or without disorder. Theyjiry gistribution. In this case all bulk averages will

first is the boson Hubbard model, be particle-hole symmetric even though the microscopic
| Hamiltonian is not. We will term the transition in the
Hy = — _ZJZ.].[&[T&]. + a}a,-] - Zﬂiﬁi presence of a statistical particle-hole symmetym-
2 i 7 mensurate all other cases beingicommensurate The

0031-900796/76(16)/2977(4)$10.00 © 1996 The American Physical Society 2977



VOLUME 76, NUMBER 16 PHYSICAL REVIEW LETTERS 15 ARIL 1996

Hamiltonian #H can neither be periodic nor particle- where K = 1/2uq, ¢;(7) is now a classical imaginary

hole symmetric, statistically or otherwise, due to thetime dependent phase, agig7) = /%" obeys periodic

constrainti; = 0. boundary conditions irr. The partition function is then
These models have three possible phases [1]. Fagiven by the functional integraZ = [ D¢ exp(—L,).

weak disorder and hopping there are incompressible MoBy relaxing the condition |;| = 1, using a |¢|*

insulating phases with an intege particles per site weighting function instead, adopting a conveniently

that survive over a finite interval centered gn= nguy.  rescaled continuum notation, and generalizing to gen-

For stronger disorder there is a compressible insulatingral time dimensione,, we obtain the field theoretic

Bose glass phase in which localization effects dominateaction

Finally, for stronger hopping there is a superfluid phase.

Of interest to us is the Bose glass to superfluid transition. | 1

It has been argued [8] that the critical point always has £ = f ddxf dffr{ — =V, — gx) Py + = |Vy|?

statistical particle-hole symmetry, i.e., that this symmetry 2 2

is restored on scales of the order of diverging correlation + 1 r(x)|yl? + u|¢|4}, 4)

length. The idea is that in a disordered system close to the 2

critical point large correlated volumes behave essentially

as single coarse-grained lattice sites with large numberg,ore . s replaced by the randone,-dimensional

of particles. As their volume diverges the distinction

) . 4 : vector g(x) = go + dg(x), and we takedg(x) to be
between adding and removing a particle disappears, a isotropically distributed Gaussian random variable,

particle-hole symmetry is asymptotically restored. It isy g — !
y X gM(X)BgV(x Mav =Ag8(x —x')6,,. Similarly, r(x) —
the goal of this paper to understand this phenomeno|;1 L osgt =y + 6r(x) contains the fully particle-hole

guantitatively. .
. . . . ymmetrlc part of the disorder (corresponding to disor-
We work with the effectivedld + 1)-dimensional clas- der in J,; even whene; = 0), and is taken to be inde-

sical action obtained from the Trotter decomposition of . . . .
" : o _ ' pendent ofég(x) with Gaussian correlations determined
the partition functionz = tr[exp(— 8 H,)] [9,10]: by [67(x)8r(x)]a = A,8(x — x'). This differs from

B the coherent state formulation of (1) used in [7] in that
L, = ] dr{ - ZJ”. codi(r) — ¢;(7)] thereg(x) = 1, i.e.,, A, = 0, and the|V, > term is ab-
0 i ' sent. We may now use the standard replica trick to av-
+ kS0, di(r) — in 2}’ 3 erage over the disorder, finally obtaining the Lagrangian
Z[ ¢ (T) L ] ( ) LP — £1P + £2P’ where

|
1 1
£1P = fdd ]de { 87-|V ¢a|2 + ¢a(g0 : V7)¢a + Eexlvwalz + Er0|¢’a|2 + M|¢a|4}s
a=1

P:_l fdfe,fe,l
L, zaﬁzl d°c | d¥7 | d¥ 7T

X A o (%, P 1grp(x, )P = AlgpaVitha — golthal’1(x,7) - [ Vb — ol 1(x, 7)), (5)

a, B being replica indices and the limi — 0 is to be | superconductor. As the transition is approached by uni-
taken at the end. Note that this Lagrangian does not havlermly raising the overall magnitude of thé;, these
the periodicity of (2) or (3), retaining a commensuratedroplets percolate to fill the system. A single droplet
transition only at, = 0, manifested now in an invariance has an approximately spatially uniform phasg(7),
of the action undef — —7. Note thatifA, = 0 aswell, with an effective single site “hydrodynamic” Lagran-
the Lagrangian becomes invariant undsparatetime  gian [1,11]
inversion for each replica, corresponding to exact particle- _ = f € 2y _ o2
hole symmetry which is unbroken by the disorder/jn Larop Varop | d7LV-¢@) = ip T (6)
This is precisely the model studied by DBC [6]. Our aimwhere Vg4, is the effective volume of the droplet,
now is to understand the relevance gy and A, at the « is the compressibility, andp the density of the
DBC fixed point. equivalent bulk superfluidf the droplet were infinitely
Consider first the nature of the insulating phases fofarge. Leté,, u = 1,..., €;, be orthogonal unit vectors
generale;. We adopt a picture in which regions of in 7 space. Thenp(Bé,) = ¢(0) + 27m, for some
the system with sufficiently large/;; are viewed as integer vectorm. The free energy may be computed
weakly coupled finite superfluid droplets in an insu-exactly by performing the Gaussian integrals over the
lating background, much like the grains in a granular¢$(7) and summing over ath. The result is
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L
pe

fdrop = fO - In Zexd_ﬁ2ier :BET?[K/—;Vdrop - l|2/2KVdr0p] + |/_3|2, (7)
1

I
wherel is another integer vector and is the background group (RG) analysis which involves first integrating out
free energy due to spatial fluctuations left out of (6).the components of the fieldg, with wave numbers
If e, =1 then, whenB — =, only that/ = [, which k in a shellk,/b < k < ky, Wherek, is the cutoff.
minimizes the exponent survives the sum. It is then easiNext, the momenta are rescaled to restore the original
to show that the number of particles in the droplet stickscutoff k4 ; frequencyw and the fieldsy; are also rescaled
at exactly/o(u) for the corresponding finite interval of in order to keepe, = ¢, = 1. In the limit » — 1 we
width 1/ Vgrop in w. The actual droplet density therefore generate RG flows, which to lowest nontrivial order for
has a staircase structure, but the steps become finer as the commensurate casg,= 0, are
volume increases. This is a rigorous manifestation of the _ —_
renormalized single site picture mentioned earlier. sy HmH _1)” _ 2Ar_ Lo, ALY,

If, however, e, < 1 only thel = 0 term survives the 1+7 1+7 8
sum when 8 — «, no matter how largep is. The L s _— 3
actual density and compressibility therefore always vanish =€ = 2m + 4 + 1204, + 0@, ..),
for a finite droplet. The Bose glass phase is thus— — — L .
indistinguishable from the Mott phase when < 1. A, =(e+ e)A, +8A, — 4im+ Duh, +0@,..),
To obtain a basic understanding of where the transi-._ _ _ 5
tion to superfluidity now occurs, consider a mean-fieldd; = Ag(e + €, + 10A, — 2) — 2A, + O(@,.. ),
calculation of the phase boundary. Thus we generalize (10)
(3) to generak, and take/;; = J/N independent of, j,
where N is the total number of sites. A single complex
Hubbard-Stratanovich fieldy/(7), may now be used to
decouple the hopping term [1], and wh&n— <0 a saddle
point evaluation becomes exact. The superfluid order p
rameterM = (¢'?) (taken real) must be determined self-
consistently from the effective single site Lagrangian,

where 7 =r/ky, u=Kqu, A, =KsA, and
A, = kxKqA,, Kq =2/(4m)?T(d/2), and m =1
is the number of boson species. For smglithe only
Fixed point occurs a\, = 0, and one obtains the usual
DBC random rod fixed point [6], i.e.exact particle-
hole symmetry is restored at criticality. However, for
_ € _ (= €; > €5 =[82m — 1) — 3(m + 2)e]/(13m + 16) this
L [ d TZ{ IM codi(7)] fixed point becomes unstable, and a new one with
A, = [(13m + 16)/8(2m — 1)](e, — €) is found.
For m =1 and € = 0 (corresponding tod = 3 at
= 1), one obtaing¢ = 8/29. This is an uncontrolled

+ KV 6i) — i ®)

By perturbing inM we obtain a Landau expansion for the €r
free energy in even powers 8f. We find a superfluid

phase for/ > J.(|i|) where 1.0
1/J. =[dffrfdffep(E)e_(1/2’0';'27””'([‘_;), 9) H
0.5 ..

where p(é) is the single site distribution for the site

disorder, €¢;. For large values of|x| and bounded SF
disorder, one hay, ~ exgd—A|wl|?] where g = (2 — 0.0 5 4
e)/(1 — &) andA = (1 — &) (2 — ) 91(2K)/1<). J

In Fig. 1 we plot this boundary for various, in the
absence of disorder. At the commensurate peint -0.5¢
0 one has dynamical exponent= 1, while on the
remainder of the line one has= 2. In the presence of
disorder the Mott lobes shrink roughly in proportion to -1.0-
the support ofp(€), but the mean-field critical behavior F|G. 1. The mean-field phase diagram for the nondisordered
is unchanged. For finite range hopping aad= 1 a  Josephson junction model, showing Bose glass/Mott (BG/M)

finite width Bose glass phase appears between the Mo#ind superfluid (SF) phases, with incommensurate line (IC) and
and superfluid phases [1]. commensurate point (C) fog, = 0.5,0.9, 1.0, with larger €.
W i to the doubl . . q corresponding to a smaller Mott lobe. Note that only one Mott
€ now return to .e ou e_e>_(panS|on In or 'e.r lobe persists fore, < 1. For e, = 1 the Mott lobe shown
to go beyond a mean-field description of the transitionjs actually repeated periodically, with one centered on each
Using (5) we carry out a momentum shell renormalizationinteger value ofu.
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estimate, ase: does not vanish withe, but its small

size is encouraging. We see then that “anomalous”

rescaling due to higher order diagrams actually makes

A, more relevant thamd,, and there appears a new

dirty boson fixed pointcorresponding to anontrivial

commensurate transition. To lowest ordef, u*, A7,

and the exponent remain unchanged from their DBC

values, but the dynamical exponent 1 + A, + A, =

[((m + 4)e + (Tm + 10)e,]/42m — 1) is substantially

larger than before, consistent with the expectation d

ate, = 1[1]. A
Finally, let us include thg, term. To linear order the 9

flow equation forgy = |go| is found to begy = go[1 + FIG. 2. Proposed behavior of the random rod (RR), incom-

A, — Kg]. This term becomesrelevant at the dirty  mensurate (IC), and commensurate dirty boson (C) fixed points
boson fixed point fore, = €,; = (4/3) 2m — 1)/(1 + as functions ofe,. HereG and Gy are commensurate and in-

m — €). Form = 1 ande = 0 one obtainse,; = 2/3 commensurate Gaussian fixed points. We propose that only C
. . .

This is again an uncontrolled estimate, but does indee?oﬁtg?cl)eblztfnf = 1, and that it describes the physical dirty bo-

indicate that the statistical symmetry is restored prior to '

e; = 1. For e, < €,;1 there is a new incommensurate

fixed point at nonzerg,. In order to locate it one should

choosez to keepgy, rather thare,, fixed during the RG

flow. The flow equation foA, becomes however, that, due to both the uncontrolled nature of the
double € expansion at the dirty boson fixed point and

jg = Ae + e —4+8A,]+ SKf, (11) the absence of separate Bose glass and Mott phases for
e, < 1, extrapolation of any of these results ég = 1
) o ) ) ) is highly suspect. The general scenario we propose,
while the remaining ones are identical to those in [7]. Thehowever, seems very natural and illuminating.
fixed point found in that work did not account far,, but This research was supported by the Sloan Foundation

TEA K * 2 2
we see that ifA, = O(e, e;) thend, = O(e”, €€, €7),  and the NSF under Grant No. DMR-9308205.
so the results given there are indeed correcte, €, ).

However, ase; grows, so does\,, eventually leading to
the merging with the dirty boson fixed point.
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