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1 INTRODUCTION 

In this study we look at planetary convection from a 
large-scale perspective, that is, in statistical equilib­
rium. We focus on the physical process by which con­
vection adjusts unstable atmospheres. Our hypothesis 
is that atmospheric convection is a natural heat en­
gine. Our objective is to present a framework usefull 
for the basic conceptual understanding of the equilib­
rium state of convecting atmospheres. 

2 THEORY 

Since the warm moist adiabatic updraft and the cold 
moist adiabatic downdraft (that includes the falling 
precipitation) are the most important features of deep 
convective systems, these systems can be idealized as a 
Carnot heat engine. Here, it is important to note that 
the essential feature of a heat engine is the fact that 
heat must be absorbed by the working fluid at a higher 
temperature than heat is rejected. The flow does not 
have to be steady, and the working fluid can exchange 
mass with the environment. Indeed, this is what hap­
pens in most engineering heat engines (e.g. gas tur­
bines and internal combustion engines). In order for 
a real heat engine to approach the Carnot efficiency, 
the thermodynamic process must be thermally and 
mechanically reversible which does not occur in natu­
ral convection. However, since unstable systems drift 
towards states of maximum efficiency, nature proba­
bly strives towards the Carnot efficiency. 

We assume that convection is in quasi-equilibrium, 
and we follow the convecting air parcel around a 
streamline (in a closed cycle). Since the closed steady 
circulation might exist only in a statistical sense, we 
might imagine that we are following a hypothetical air 
parcel around an averaged streamline representing a 
collection of convective cells in statistical equilibrium. 
The energy cycle of a heat engine can be obtained by 
integrating Bernoulli's equation and the first law of 
thermodynamics around a streamline (Emanuel, 1986, 
1989), that is 

Tds- d(~lvl2 + cpT + L.,r + gz)- F · dl = 0, (I) 

where T is the absolute temperature, s the specific 
entropy, v the vector velocity, Cp the heat capacity 
of dry air at constant pressure, Lv the latent heat 
of vaporization of water, r the water vapor mixing 
ratio, g the gravity acceleration, z the height above 
a reference level, F the frictional force per unit mass, 
and Jz the incremental distance along the streamline. 

Integrating equation 1 around a closed cycle, we get 

(2) 

which states that in statistical equilibrium, friction is 
balanced by the heat input, Tds. Integrating the first 
law of thermodynamics, we get f Tds = f pda, where 
p is the pressure and a is the specific volume. This 
shows that the first term in equation 2 represents the 
net work done by the heat engine cycle. 

Since the net work done by the heat engine is equal 
to the total mechanical energy available for convec­
tion, we define 

I TCAPE = fTds, I (3) 

where TCAP E is the total convective available po­
tential energy from the heat engine. It is the energy 
that can be converted to kinetic energy by a heat en­
gine. It includes the available energy that is converted 
to kinetic energy by both the updraft and the down­
draft. 

In a thermodynamic diagram, equation 3 integrated 
around a Carnot cycle represents the area enclosed by 
the hot and the cold adiabats ( s2 and s1), and the hot 
and the cold isotherms (Th and Tc), respectively at the 
bottom and the top of a Carnot convective circulation. 
Thus, the only difference between our definition of to­
tal CAPE, and the "standard" meteorological defini­
tion, is that instead of using pressure levels as the limit 
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of the integration we use temperature. This is not a 
problem. We could have obtained the "standard" def­
inition of total CAPE by defining a heat engine cycle 
between two adiabats and two isobars. However, we 
argue that there might be no physical reasons for do­
ing that. 

It follows from the above that for a general convec­
tive heat engine, in statistical equilibrium conditions, 
we must have 

TCAP E- f F ·ll = 0, (4) 

which states that in statistical equilibrium, friction is 
balanced by TCAP E. Therefore, a zero total CAPE 
value is impossible in convecting atmospheres, except 
in a hypothetical planet in which the convective mo­
tions are inviscid. 

Multiplying equation 4 by the convective mass flux, 
Me, we get 

(5) 

where Fd = Me £ f · dl is the flux of energy mechan­
ically dissipated by the convective system. The con­
vective mass flux is given by Me= puw, where pis the 
updraft air density, w is the magnitude of the mean 
vertical velocity, and u is the fractional area covered 
by updrafts. At quasi-equilibrium the rate of energy 
dissipation by convection is equal to the flux of energy 
available for the heat engine, Fav, that is Fd = Fav. 
The flux of energy available for mechanical work can 
be written as Fav = fFin, where f is the thermody­
namic efficiency of the heat engine, and Fin is the heat 
input to the heat engine. Thus, at quasi-equilibrium 
we have that 

(6) 

For a Carnot engine, the thermodynamic efficiency is 
given by f = ( Th;:Tc ), where Th and Te are, respec­
tively, the temper;tures of the hot and cold reservoirs. 

The heat input to the convective heat engine can 
be written as Fin = Me(cpb.T + Lvb.r), where b.T 
and b.r are, respectively, the near surface temperature 
and moisture excess of the convective updrafts over 
the downdrafts. Thus, using equation 6 it follows that 

(7) 

Equation 7 shows that only a fraction f of the energy 
released by deep moist convection is available to be 
transformed into kinetic energy. 
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Now, we use dimensional analysis and physical ar­
guments to propose a similarity theory for the frac­
tional area covered by updrafts, u, valid for both dry 
and moist convection. In quasi-equilibrium condi­
tions, the entropy excess of the convective updrafts 
over the downdrafts, must be lost by the emission of 
infrared radiation to space by the subsiding air parcels 
(in between the top of convective updrafts and the 
root of the convective downdrafts). Thus, the magni­
tude of the mean vertical velocity of the subsiding air 
parcel is given by 

b.p 
Ws = (--), 

pgTr 
( 8) 

where b.p is the pressure thickness (convective mass 
flux weighted average) of the layer radiating to space 
(the subsiding layer), g is the gravity acceleration, and 
Tr is the radiative timescale. A rough estimate of Tr 

can be obtained by considering a slab of atmosphere of 
pressure thickness b.p and uniform density radiating 
like a black body (Houghton, 1986), in this case one 
gets 

( 
Cpb.p ) 

Tr = 8 T. 3 ' gur e 
(9) 

where the parameter Uris the Stefan-Boltzmann con­
stant, and Te is the actual mean temperature of the 
subsidence region (not the radiative equilibrium tem­
perature, it is the planet's effective temperature). 

Using the heat engine framework, we get 

fFin =Me TCAPE. (10) 

Using the continuity equation, we get 

(11) 

2$ F·dl 
where ( ~) :::: ( ~) is a mechanical dissipation of 
energy parameter. Substituting equation 8 into equa­
tion 11, we get 

(12) 

Defining Te := ( P~"w ), we get 

(13) 

where for physically possible solutions we must have 
0 < u < 1. Since in the derivation of the above equa­
tion we assumed (1- u):::::: 1, it is valid only for u <t: 1 
(i.e., for Te <t: Tr ). Note that the similarity theory 



predicts decreases in the fractional area covered by 
updrafts with decreases in the convective timescale 
and increases in the radiative timescale. 

Based on the above results, we get 

TCAPE = (~)fFin· (14) 

Equation 14 suggests that increases in the efficiency 
of the convective heat engine, lead to increases in 
TCAP E. This happens because increases in the ther­
mal efficiency of the convective heat engine lead to 
increases in the amount of energy that is available to 
be converted into mechanical work. Thus, the equi­
librium state is one of stronger circulations and larger 
dissipations. Increases in the radiative timescale, or 
decreases in the pressure thickness of the layer radi­
ating to space (a Chapman layer in a optically thick 
atmosphere) leads to increases in TCAPE. This hap­
pens because they both lead to decreases in the frac­
tional area covered by convective updrafts. Thus, 
larger TC APE values are necessary to maintain a 
given convective heat flux. 

For tropical values of the various parameters ( f = 
0.10, Fin = 150, f).p = 4 X 104

, p = 1, g = 9.8, Tr = 
7.5 x 105

, and p. = 0.5, all in SI units) equation 12 
gives u = 1 x 10-4

• This is a reasonable value, 
since only about 3% of the tropics is covered by 
active deep convection, and only about 1% of the 
fractional area covered by deep convection might be 
covered by undiluted updrafts (Cotton and Anthes, 
1989). With the above parameters, equation 14 gives 
TCAP E = 2900] K g-1

, which is of the order of mag­
nitude of the observed value. 

Alternatively, for an atmosphere radiating as a black 
body from a layer of temperature Tc, one can use 
equation 9, getting 

I TCAPE = (~ )fFin·l (15) 

In this case, one should also use equations 9 and 12, 
getting 

u = 1 (Bur Tg )W(!!:in.)(- !l. 
~ pep p 

(16) 

Substituting TCAPE by ( 21~")w2 into equation 15, 
we get an expression for the magnitude of the mean 
convective velocity 

(17) 

Equation 15 shows that increases in the atmo­
sphere's heat capacity lead to linear increases in the 

equilibrium TCAP E value. It also shows that de­
creases in the atmosphere's "effective temperature" 
(Tc) lead to both, a linear increase in the equilibrium 
TCAP E value through increases in the heat engine 
efficiency, and a strong nonlinear increase through de­
creases in the emission of thermal radiation to space. 
This happens because they both lead to decreases in 
the fractional area covered by convective updrafts. 

In a typical tropical storm system the updrafts are 
about 2 K warmer than the downdrafts (Zipser, 1977). 
Thus, assuming f = 0.1, f).T = 2 K, f).r = 0.002 
(from the assumption that the surface temperature is 
299 K, and that both the updrafts and the downdrafts 
are saturated) we get TCAP E = 700] K g-1

• In a 
typical midlatitude storm system, f).T = 4 K (New­
ton, 1966), in this case we get TCAP E = 1650Jkg-1 • 

These results are of the same order of magnitude as 
the TCAP E values predicted by equation 14. 

3 CONCLUSIONS 

We postulate that, from the large-scale perspective, 
planetary convection works as a heat engine. The 
mechanical work produced by the heat engine is used 
to force convective motions that are, then, mechan­
ically dissipated into heat. On the large-scale, the 
convective motions are just strong enough so that 
the net work done by the heat engine is used exclu­
sively to overcome the mechanical dissipation oppos­
ing the convective circulations. The volume integral of 
the work produced by the planetary heat engine pro­
vides a measure of the quasi-equilibrium amount of 
total CAPE present on the planet's atmosphere. This 
CAPE value is a fundamental global number qualify­
ing the state of the planet in quasi-equilibrium condi­
tions. 

4 BIBLIOGRAPHY 

Emanuel, K. A., 1986. An Air-Sea Interaction The­
ory for Tropical Cyclones. Part 1: Steady-State 
Maintenance. J. Atmos. Sci., 43, 585-604. 

Emanuel, K. A., 1989. Polar Lows as Artie Hurri­
canes. Tellus, 41A, 1-17. 

Cotton, W. R., and R. A. Anthes, 1989. Storm and 
Cloud Dynamics. Academic Press, New York. 
883 pp. 

Houghton, J. T., 1986. The Physics of Atmospheres. 
Cambridge Univ. Press, Cambridge. 271 pp. 

Newton, C. W., 1966. Circulations in Large Sheared 
Cumulunimbus. Tellus, 18, 699-712. 

Zipser, E. J., 1977. Mesoscale and Convective-Scale 
Downdrafts as Components of Squall-Line Cir­
culation. Mon. Wea. Rev., 105, 1568-1589. 

21ST CONF. ON HURRICANES 197 


