Search for the Standard Model Higgs boson in the $H \to WW(\star) \to \ell\nu\ell\nu$ decay mode with 4.7 fb$^{-1}$ of ATLAS data at $\sqrt{s} = 7$ TeV

ATLAS Collaboration*

1. Introduction

The Higgs boson is the only elementary particle in the Standard Model (SM) of particle physics that has not yet been observed. It is intimately related to the Higgs mechanism [1–3] which in the SM gives mass to all other massive elementary particles. The search for this particle is a centrepiece of the Large Hadron Collider (LHC) physics programme.

Indirect limits on the Higgs boson mass of $m_H < 158$ GeV at 95% confidence level (CL) have been set using global fits to precision electroweak results [4]. Direct searches at LEP and the Tevatron have excluded a SM Higgs boson in the mass range 114.4 GeV [5] and in the regions 147 GeV < m_H < 179 GeV and 100 GeV < m_H < 106 GeV [6], respectively.

The results of searches in various channels using data corresponding to an integrated luminosity of approximately 5 fb$^{-1}$ have been reported recently by the ATLAS Collaboration, excluding the mass range 112.9–115.5 GeV, 131–238 GeV, and 251–466 GeV [8]. The analysis described in this Letter uses the full 2011 dataset, which after requiring that all detector components are fully functional corresponds to 4.7 fb$^{-1}$ of proton–proton (pp) collisions at $\sqrt{s} = 7$ TeV. The selection criteria described in Ref. [9] are modified to gain sensitivity at low m_H and to cope with increased instantaneous luminosities. The previous cut-based approach is extended by adding events with two jets and by fitting for the presence of a signal using a transverse mass variable. A similar search has been performed by the CMS Collaboration [10].

2. Data and simulated samples

The data used for this analysis were collected in 2011 using the ATLAS detector, a multi-purpose particle physics experiment with a forward-backward symmetric cylindrical geometry and near 4π coverage in solid angle [11]. It consists of an inner tracking system surrounded by a thin superconducting solenoid, electromagnetic and hadronic calorimeters, and an external muon spectrometer incorporating large superconducting air-core toroid magnets. The combination of these systems provides charged particle measurements together with highly efficient and precise lepton measurements over the pseudorapidity range $|\eta| < 2.5$. Jets are reconstructed over the full coverage of the calorimeters, $|\eta| < 4.9$; this calorimeter coverage also provides a precise measurement of the missing transverse momentum.

* E-mail address: atlas.publications@cern.ch.

© 2012 CERN. Published by Elsevier B.V. All rights reserved.
The data used in the present analysis were collected using inclusive single-muon and single-electron triggers. The single-muon trigger required the transverse momentum of the muon with respect to the beam line, p_T, to exceed 18 GeV; for the single-electron trigger the threshold varied from 20 to 22 GeV. The trigger object quality requirements were tightened throughout the data-taking period to cope with the increasing instantaneous luminosity.

In this analysis, the signal contributions that are considered include the dominant gluon fusion production process ($gg \to H$, denoted as ggF), the vector-boson fusion production process ($q\bar{q} \to ggH$, denoted as VBF) and the Higgs-strahlung process ($q\bar{q} \to WH/ZH$, denoted as WH/ZH). For the decay of the Higgs boson, only the $H \to WW^{(*)} \to \ell\nu\ell'\nu'$ mode is considered, with final states featuring two charged leptons ($\ell = e, \mu$, including small contributions from leptonic τ decays). The branching fraction for this decay, as a function of m_H, is taken from the HDECAY [12] program.

The signal cross section is computed to next-to-next-to-leading order (NNLO) [13–18] in QCD for the ggF process. Next-to-leading order (NLO) electroweak (EW) corrections are also applied [19, 20], as well as QCD soft-gluon resummations up to next-to-next-to-leading log (NNLL) [21]. These calculations are detailed in Refs. [22–24], and assume factorisation between QCD and EW corrections. Full NLO QCD and EW corrections [25–27] and approximate NNLO QCD corrections [28] are used to calculate the cross sections for VBF signal production. The cross sections of the associated WH/ZH production processes are calculated up to NNLO QCD corrections [29,30] and NLO EW corrections [31].

The Monte Carlo (MC) generators used to model signal and background processes are listed in Table 1. For most processes, separate programs are used to generate the hard scattering process and to model the parton showering and hadronisation stages. Wherever HERWIG [32] is used for the latter, JIMMY [33] is used for the simulation of the underlying event. The MLM matching scheme [34] is used for the description of the $W +$ jets and $Z/\gamma^* +$ jets processes.

The CT10 parton distribution function (PDF) set [47] is used for the MC@NLO samples, CTEQ6L1 [48] for the ALPGEN, SHERPA, and MadGraph samples, and MRSTMC1 [49] for the PYTHIA and AERMC samples. Acceptances and efficiencies are obtained from a full simulation [50] of the ATLAS detector using GEANT4 [51]. This includes a realistic treatment of the event pile-up conditions (the data are affected by the detector response to multiple pp collisions occurring in the same or different bunch crossings) in the 2011 data; from the first 2.3 fb$^{-1}$ to the last 2.4 fb$^{-1}$ of data taken, the average number of pp interactions per bunch crossing increased from 6.3 to 11.6.

3. Event selection

Events are required to have a primary vertex consistent with the beam spot position, with at least three associated tracks with $p_T > 400$ MeV. Overall quality criteria are applied in order to suppress non-collision backgrounds such as cosmic-ray muons, beam-related backgrounds, or noise in the calorimeters.

$H \to WW^{(*)} \to \ell\nu\ell'\nu'$ candidates (with $\ell = e, \mu$) are pre-selected by requiring exactly two oppositely charged leptons with p_T thresholds of 25 GeV and 15 GeV for the leading and sub-leading lepton, respectively. For muons, the range $|\eta| < 2.4$ is used; for electrons, the range $|\eta| < 2.47$ is used, with the region $1.37 < |\eta| < 1.52$ (corresponding to the boundary between barrel and end-cap calorimeters) excluded. The selected electron candidates are reconstructed using a combination of tracking and calorimetric information [52], while the muon candidates are identified by matching tracks reconstructed in the inner detector and in the muon spectrometers [53]. At least one of the selected leptons is required to match a triggering object. Leptons from heavy-flavour decays and jets satisfying the lepton identification criteria are suppressed by requiring the leptons to be isolated: the scalar sum of the jet's transverse momenta, including muons, electrons, photons, and clusters of calorimeter cells not associated with these leptons' transverse momenta, including muons, electrons, photons, and clusters of calorimeter cells not associated with these leptons' transverse momenta, is required to be less than approximately 0.15 times the lepton p_T.

The Drell–Yan process leads to two same-flavour, opposite-sign high-p_T leptons. In the ee and $\mu\mu$ channels (the channels are indicated by the charged lepton flavours), this background is suppressed by requiring the dilepton invariant mass to be greater than 12 GeV, and to differ from the Z-boson mass by at least 15 GeV. For the $e\mu$ channel, the dilepton invariant mass is required to be greater than 10 GeV.

Drell–Yan events and multijet production via QCD processes are suppressed by requiring large E_T^{miss}. The E_T^{miss} is the magnitude of \vec{p}_T^{miss}, the negative vector sum of the reconstructed objects' transverse momenta, including muons, electrons, photons, jets, and clusters of calorimeter cells not associated with these objects. The quantity E_T^{miss} is used in this analysis is defined as:

$E_T^{miss} \equiv E_T^{miss} \sin \Delta \phi_{min} \equiv \min(\Delta \phi, \pi)$. Here, $\Delta \phi$ is the angle between \vec{p}_T^{miss} and the transverse momentum of the nearest lepton or jet with $p_T > 25$ GeV. For the ee and $\mu\mu$ channels, the multijet and Drell–Yan events are suppressed by requiring $E_T^{miss} > 45$ GeV. In the $e\mu$ channel, Drell–Yan events originate predominantly from τ production, where the small leptonic τ decay branching fractions lead to a much smaller background. In this channel, the requirement is relaxed to $E_T^{miss} > 25$ GeV. After the isolation and E_T^{miss} cuts, the multijet background is found to be negligible.

Table 1

<table>
<thead>
<tr>
<th>Process</th>
<th>Generator</th>
<th>m_H (GeV)</th>
<th>σ (pb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggF</td>
<td>POWHEG [36,37] +</td>
<td>125</td>
<td>0.347</td>
</tr>
<tr>
<td>VBF</td>
<td>PYTHIA [38]</td>
<td>240</td>
<td>0.265</td>
</tr>
<tr>
<td>WH/ZH</td>
<td>PYTHIA</td>
<td>240</td>
<td>0.187</td>
</tr>
<tr>
<td>$q\bar{q} \to WW$</td>
<td>MC@NLO + HERWIG</td>
<td>125</td>
<td>0.275</td>
</tr>
<tr>
<td>$g + g$</td>
<td>GGZW1W [40] + HERWIG</td>
<td>240</td>
<td>0.204</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>MC@NLO + HERWIG</td>
<td>157</td>
<td>0.103</td>
</tr>
<tr>
<td>$tW/t\tau/Wq$</td>
<td>AcrerMC [41] + PYTHIA</td>
<td>85</td>
<td>0.067</td>
</tr>
<tr>
<td>inclusive W</td>
<td>ALPGEN [42] + PYTHIA</td>
<td>32 \times 103</td>
<td></td>
</tr>
<tr>
<td>inclusive Z/γ^*</td>
<td>ALPGEN [42] + PYTHIA</td>
<td>15 \times 103</td>
<td></td>
</tr>
<tr>
<td>ZZ</td>
<td>SHERPA [43]</td>
<td>5.6</td>
<td>0.092</td>
</tr>
<tr>
<td>WZ</td>
<td>MC@NLO</td>
<td>18.0</td>
<td>0.035</td>
</tr>
<tr>
<td>Wγ</td>
<td>ALPGEN</td>
<td>345</td>
<td>0.021</td>
</tr>
<tr>
<td>Wγ'</td>
<td>MadGraph [45,46]</td>
<td>6.5</td>
<td>0.018</td>
</tr>
</tbody>
</table>
the 2-jet channel also including higher jet multiplicities. In addition, criteria that depend on the jet multiplicity are applied to the pre-selected sample. The data are subdivided into 0-jet, 1-jet and 2-jet channels. For the same-flavour channels, for a SM Higgs boson with \(m_H = 125 \text{ GeV} \) is superimposed (multiplied by a factor 10 for better visibility).

Fig. 1 shows the multiplicity distribution of jets reconstructed using the anti-\(k_t \) algorithm [54], with radius parameter \(R = 0.4 \), for all events satisfying the pre-selection criteria described above. Only jets with \(p_T > 25 \text{ GeV} \) and \(|\eta| < 4.5 \) are considered. This threshold is increased to 30 GeV in the region 2.75 \(< |\eta| \) \(< 3.25 \), which corresponds to the boundary between two calorimeter systems and is more sensitive to reconstruction issues arising from event pile-up. The background rate and composition depend significantly on jet multiplicity, as does the signal topology: without accompanying jets, the signal originates almost entirely from the ggF process (with the \(p_T \) definition modified to include all selected jets). In addition, the following jet-related cuts are applied: the two highest-\(p_T \) jets in the event, the “tag” jets, are required to lie in opposite pseudorapidity hemispheres \((|\eta_1| \times |\eta_2| < 0) \), with no additional jets within \(|\eta| < 3.2 \); the tag jets must be separated in pseudorapidity by a distance \(|\Delta \eta| \) of at least 3.8 units; finally, the invariant mass of the two tag jets, \(m_{\tau\tau} \), must be at least 500 GeV.

A transverse mass variable, \(m_T \) [58], is used in this analysis test for the presence of a signal. This variable is defined as:

\[
 m_T = \sqrt{(E_T^{\ell\ell} + E_T^{\text{miss}})^2 - \left| p_T^{\ell\ell} + p_T^{\text{miss}} \right|^2}, \tag{1}
\]

where \(E_T^{\ell\ell} = \sqrt{p_T^{\ell\ell \|^2} + m_{\ell\ell}^2} \). The predicted numbers of signal and background events at each stage of the low \(m_T \) selection procedure outlined above are presented in Table 2. Fig. 2 shows the distributions of the transverse mass after all the low \(m_T \) selection criteria in the 0-jet and 1-jet analyses, for all lepton flavours combined. No distribution is shown for the 2-jet channel as only a single event (with \(m_T = 131 \text{ GeV} \)) is selected in the data.

4. Background normalisation and control samples

For the 0-jet and 1-jet analyses, all the main backgrounds from SM processes producing two isolated high-\(p_T \) leptons (WW, top, WW + single top, and Drell–Yan) are estimated using partially data-driven techniques based on normalising the MC predictions to the data in control regions dominated by the relevant background source. Only the small background from diboson processes other than WW is estimated using MC simulation. For the 2-jet analysis, the WW and Drell–Yan backgrounds are also estimated using MC simulation. The backgrounds from fake leptons, which include true leptons from heavy flavour decays in jets, are fully estimated from data. The control samples are obtained from the data with selections similar to those used in the signal region but with some criteria reversed or modified to obtain signal-depleted, background-enriched samples. This helps to reduce the sensitivity of the background predictions to the systematic uncertainties detailed in Section 5. In the following, such control samples are described for the WW, Z/\(\gamma^* \) + jets, top, and W + jets backgrounds. The quoted uncertainties on the background estimates are those associated with the low \(m_T \) selection.

In the 0-jet channel, backgrounds from top quark decays are suppressed by rejecting events containing a b-tagged jet, as determined using a b-tagging algorithm which uses a combination of impact parameter significance and secondary vertexing information and exploits the topology of weak decays of b- and c-hadrons [55]. The algorithm is tuned to achieve an 80% b-jet identification efficiency in \(t\bar{t} \) events while yielding a light-jet tagging rate of approximately 6% [56]. The total transverse momentum, \(p_T^{\text{jet}} \), defined as the magnitude of the vector sum \(p_T^{\text{jet}} = p_T^1 + p_T^2 + p_T^3 + p_T^{\text{miss}} \), is required to be smaller than 30 GeV to suppress \(t\bar{t} \), single-top, and Drell–Yan background events with jets with \(p_T \) below threshold. The \(\tau\tau \) invariant mass, \(m_{\tau\tau} \), is computed under the assumption that the reconstructed leptons are \(\tau \) lepton decay products, that the neutrinos produced in the \(\tau \) decays are collinear with the leptons [57], and that they are the only source of \(E_T^{\text{miss}} \). Events in which the computed energies of both putative \(\tau \) leptons are positive (the collinear approximation does not always yield physical solutions) are rejected if \(|m_{\tau\tau} - m_Z| < 25 \text{ GeV} \).

The 2-jet selection follows the 1-jet selection described above (with the \(p_T^{\text{jet}} \) definition modified to include all selected jets). In addition, the following jet-related cuts are applied: the two highest-\(p_T \) jets in the event, the “tag” jets, are required to lie in opposite pseudorapidity hemispheres \((|\eta_1| \times |\eta_2| < 0) \), with no additional jet within \(|\eta| < 3.2 \); the tag jets must be separated in pseudorapidity by a distance \(|\Delta \eta| \) of at least 3.8 units; finally, the invariant mass of the two tag jets, \(m_{\tau\tau} \), must be at least 500 GeV.
erating a region with a modified criterion, 20 GeV < $E_{\text{miss}}^{\ell\ell}$ < 45 GeV. The number of events in this region, with non-$Z/\gamma^{\ast} + $ jets contributions subtracted using the MC prediction, is then scaled by the ratio of events counted in the $E_{\text{miss}}^{\ell\ell}$ < 45 GeV region to that in the 20 GeV < $E_{\text{miss}}^{\ell\ell}$ < 45 GeV region, for $|m_{\ell\ell} - m_Z|$ < 15 GeV. Biases in the method are evaluated and corrected for using simulated events. The acceptance of the $\Delta\phi_{\ell\ell}$ selection criterion is taken from data. The resulting uncertainty on the $Z/\gamma^{\ast} + $ jets background in the signal region amounts to 38% and 33% in the 0-jet and 1-jet channels, respectively.

In the $e\mu$ channel of the 0-jet analysis, the background is estimated using the MC simulation and cross-checked with data using a control region dominated by $Z \rightarrow \tau\tau$ decays, which is constructed by requiring 10 GeV < $m_{\ell\ell}$ < 80 GeV, $\Delta\phi_{\ell\ell}$ > 2.5, and $p_T^{\ell\ell}$ > 30 GeV. A $E_{\text{miss}}^{\ell\ell}$ threshold of 25 GeV is used to calculate the data/MC scale factor, matching the cut applied to this channel in the signal selection. The resulting scale factor is consistent with unity within the uncertainty of about 10%. Owing to the difficulty of constructing a control region for higher jet multiplicities, a similar cross-check cannot be performed for the 1-jet and 2-jet analyses.

4.3. Top control sample

The estimated number of top quark background events in the 0-jet signal region is extrapolated from the number of events satisfying the pre-selection criteria described in Section 3. This sample is dominated by top quark backgrounds, as shown in Fig. 1. The contribution of non-top-backgrounds to this sample is subtracted using estimates based on MC simulations. The scale factor used to propagate the $t\bar{t}$ contribution in this sample to the signal region is estimated as the square of the efficiency for one top quark decay to satisfy the jet veto criterion (estimated using another control sample, defined by the presence of an additional b jet), with a correction computed using simulated events to account for single-top-background contributions [59]. The overall efficiency for the requirements on $p_T^{\ell\ell}$, $m_{\ell\ell}$, and $\Delta\phi_{\ell\ell}$ is taken from simulation. The total uncertainty on the top quark background estimate in events with no jets is 22%.

In the 1-jet and 2-jet analyses, the top quark background MC prediction is normalised to the data using a control sample defined by reversing the b-jet veto and removing the requirements on $\Delta\phi_{\ell\ell}$ and $m_{\ell\ell}$. The resulting samples are dominated by top quark backgrounds (both $t\bar{t}$ and single-top production), with little contribution from other sources. Good agreement between data and MC for the numbers of events in the 1-jet and 2-jet control regions is observed (see Table 2). The total uncertainties on the estimated top quark background in the 1-jet and 2-jet signal regions amount to 23% and 40%, respectively.

4.4. $W+$ jets control sample

The $W+$ jets background contribution is estimated using a data sample of events where one of the two leptons satisfies the identification and isolation criteria described in Section 3, and the other lepton (denoted "anti-identified") fails these criteria while satisfying a loosened selection. All other selection criteria follow those applied in the signal region. The dominant contribution to this background comes from $W+$ jets production with jets faking electrons. The contamination in the signal region is then obtained by scaling the number of events in the data control sample by a normalisation "fake factor". The fake factor is estimated as a function of the anti-identified lepton p_T using an inclusive dijet data sample, after subtracting the residual contributions from real leptons arising from leptonic W and Z decays.

4.1. WW control sample

The WW background MC predictions in the 0-jet and 1-jet analyses, summed over lepton flavours, are normalised using control regions defined with the same selections as for the signal regions except that the $\Delta\phi_{\ell\ell}$ requirement is removed. In addition, the upper selection bound on $m_{\ell\ell}$ is replaced with a lower bound $m_{\ell\ell} > 80$ GeV ($m_{\ell\ell} > m_Z + 15$ GeV) for the $e\mu$ (ee and $\mu\mu$) final states. The numbers of events in the WW control regions in the data agree well with the MC predictions, as can be seen in Table 2. The total uncertainty on the predicted WW background in the signal region is 9% for the 0-jet and 22% for the 1-jet analyses.

This control region is used only for the low $m_{\ell\ell}$ selection in the 0-jet and 1-jet analyses. In the intermediate and high $m_{\ell\ell}$ selections, or in the 2-jet analysis, a high-statistics signal-depleted region cannot be isolated in the data; in these cases, the MC prediction is used.

4.2. $Z/\gamma^{\ast} + $ jets control sample

In the ee and $\mu\mu$ final states and separately in the 0-jet and 1-jet analyses, a $Z/\gamma^{\ast} + $ jets control region is constructed, after application of all selection criteria except that on $\Delta\phi_{\ell\ell}$, by consid-
Table 2
The expected numbers of signal and background events after the requirements of the low m_H selection listed in the first column, as well as the observed numbers of events. The signal is for $m_H = 125$ GeV. The $W +$ jets background is estimated entirely from data, whereas MC predictions normalised to data in control regions are used for the $W W$, $Z/\gamma^{*} +$ jets, $\ell\ell$, and tW/tb/tq/pq processes. Contributions from other background sources are taken from MC predictions. Only statistical uncertainties associated with the number of events in the MC samples and in the data control regions are shown. The expected numbers of signal and background events, and the observed numbers of events, are shown also in the control regions; here, with the exception of $W +$ jets, no normalisation scale factors are applied to the expected background contributions. The bottom part of the table lists the number of expected and observed events for each lepton channel after the $\Delta\phi_{H}$ cut.

<table>
<thead>
<tr>
<th>Lepton channels</th>
<th>0-jet ee</th>
<th>0-jet $\mu\mu$</th>
<th>1-jet ee</th>
<th>1-jet $\mu\mu$</th>
<th>1-jet $\ell\ell$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total bkg.</td>
<td>60 ± 5</td>
<td>116 ± 10</td>
<td>249 ± 12</td>
<td>19 ± 2</td>
<td>34 ± 4</td>
</tr>
<tr>
<td>Signal</td>
<td>4.0 ± 0</td>
<td>9.4 ± 0.1</td>
<td>25.7 ± 0.2</td>
<td>1.2 ± 0.1</td>
<td>2.5 ± 0.1</td>
</tr>
<tr>
<td>Observed</td>
<td>52</td>
<td>138</td>
<td>239</td>
<td>19</td>
<td>36</td>
</tr>
</tbody>
</table>

The W candidates are identified by requiring the transverse mass $m_{T}^{W} = \sqrt{2p_{T}\text{miss} \cdot (1 - \cos \Delta \phi)}$ to satisfy $m_{T}^{W} > 30$ GeV. In this expression, p_{T}^{W} is the lepton transverse momentum and $\Delta \phi$ is the difference in azimuth between the lepton and missing transverse momentum directions. The Z candidates are identified by requiring two opposite-sign leptons of the same flavour and $|m_{\ell\ell} - m_{Z}| < 15$ GeV. The small remaining lepton contamination, which includes $W\gamma$ and $W\gamma^{*}$ events, is subtracted using MC simulation. The fake factor uncertainty is the main uncertainty on the $W +$ jets background contribution. This uncertainty is dominated by differences in jet properties between dijet and $W +$ jets samples evaluated with simulated events, with smaller contributions originating from trigger effects and the subtraction of the contamination from real leptons from leptonic W and Z decays. The total uncertainty on this background is estimated to be approximately 60%.

5. Systematic uncertainties

Theoretical uncertainties on the signal production cross sections are determined following Refs. [60,61]. QCD renormalisation and factorisation scales are varied up and down independently by a factor of two. Independent uncertainties on the ggF signal production are assumed for the inclusive cross section and the cross section for production with at least one or two jets. The resulting uncertainties on the cross sections in exclusive jet multiplicity analyses are taken into account, as well as anti-correlations caused by transitions between jet multiplicities. The relative 0-jet (1-jet) cross section uncertainties depend on m_{H}, rising from ±21% (±31%) at $m_{H} = 125$ GeV and $m_{H} = 240$ GeV to ±42% (±31%) at $m_{H} = 600$ GeV [61–63]. The 2-jet analysis is mainly sensitive to the VBF process. The impact of the scale variations on the combined VBF signal cross section and jet veto acceptance is 4% [61]. In this analysis, around 25% of the signal events are produced via ggF, where the relative uncertainty is around 25%. For the high mass range, an additional uncertainty due to the Higgs lineshape description in the POWHEG MC generator is added in quadrature for both the ggF and the VBF channel and amounts to 150 \times (mH/1 TeV)3 [61,64–66]. The uncertainties associated with the underlying event and parton showering are taken into account in the acceptance uncertainty, but they are negligible compared to the scale uncertainties on the cross sections in exclusive jet bins.

PDF uncertainties are estimated, following Refs. [47,67–69], by the envelopes of error sets as well as different PDF sets, applied separately to quark–quark, quark–gluon, and gluon–gluon initiated processes. The relative PDF uncertainty on the dominant ggF signal process is about 8%; the VBF uncertainty varies from ±2% at $m_{H} = 125$ GeV to ±4% at $m_{H} = 600$ GeV. Uncertainties on the modelling of signal and background processes are estimated by using alternative generators, such as MC@NLO for the ggF process, ALPGEN for $W W$ production, and POWHEG for $t\bar{t}$ production. The uncertainties associated with the underlying event and parton showering are taken into account in the acceptance uncertainty, but they are negligible compared to the scale uncertainties on the cross sections in exclusive jet bins.

The main experimental uncertainties are related to the jet energy scale which is determined from a combination of test beam, simulation, and in situ measurements. The uncertainty on the jet
energy scale varies from 14% to 2% as a function of jet p_T and η for jets with $p_T > 25$ GeV and $|\eta| < 4.5$ [70]; for central jets it is at most 4%. An additional contribution from event pile-up is estimated to vary between 5% and 0.5%, depending on jet p_T and η, for jets with $p_T > 25$ GeV. The uncertainty on the jet energy resolution is estimated from in situ measurements. The resolution varies from 25% to 5%, and its uncertainty from 5% to 2%, as a function of jet p_T and η. The reconstruction, identification, and trigger efficiencies for electrons and muons, as well as their momentum scales and resolutions, are estimated using $Z \rightarrow \ell\ell$, $J/\psi \rightarrow \ell\ell$, and $W \rightarrow \ell\nu$ decays. With the exception of the uncertainty on the electron efficiency, which varies between 2% and 5% as a function of p_T and η, the resulting uncertainties are all smaller than 1%. Jet energy scale and lepton momentum scale uncertainties are propagated to the E_T^{miss} computation. Additional contributions arise from jets with $p_T < 20$ GeV as well as from low-energy calorimeter deposits not associated with reconstructed physics objects [71]; their effect on the total background event yield ranges from 1% to 8%. Finally, uncertainties on the modelling of event pile-up contributions are estimated by varying their effect on low-energy calorimeter deposits; the impact on the background yield varies between 1% and 5%. The efficiency of the b-tagging algorithm is calibrated using samples containing muons reconstructed in the vicinity of jets [56]. The resulting uncertainty on the b-jet tagging efficiency varies between 5% and 14% as a function of jet p_T. The uncertainty on the integrated luminosity is 3.9% [72,73].

In this analysis, a fit to the m_T distribution is performed in order to obtain the signal yield for each mass hypothesis. The m_T shapes for the individual backgrounds and signal do not exhibit a statistically significant dependence on the majority of the theoretical and experimental uncertainties. The remaining uncertainties that do produce statistically significant variations of the m_T shape have no appreciable effect on the final results. Hence, the uncertainty on the shape of the total background is dominated by the uncertainties on the normalisations of the individual backgrounds.

Systematic uncertainties are evaluated for the control regions described in Section 4 in the same fashion as for the signal region. For the backgrounds normalised using these control regions, only the relative normalisation between the backgrounds in the signal and control regions is affected.

6. Results

The expected numbers of signal ($m_H = 125$ GeV) and background events at several stages of the low m_T selection are presented in Table 2. The rightmost column shows the observed numbers of events in the data. The uncertainties shown include only the statistical uncertainties on the predictions from simulation and on the normalisation of the dominant backgrounds. After all selections, the dominant background in the 0-jet channel comes from continuum WW production, with smaller contributions from top ($t\bar{t}$ and single-top) and $W +$ jets events. In the 1-jet and 2-jet channels, the WW and top backgrounds are comparable.

Table 3 shows the numbers of events expected from signal and background and observed in data, after application of all selection criteria. To reflect better the sensitivity of the analysis, an additional mass-dependent cut on m_T has been applied: 0.75 $m_T < m_H$ for $m_H = 125$ GeV and 0.6 $m_T < m_H$ for $m_H = 240$ GeV. The uncertainties shown in Table 3 as well as the systematic uncertainties discussed in Section 5, constrained by the use of the control regions discussed in Section 4. The uncertainties are those that enter into the fitting procedure described below. Table 4 shows the effect of the main sources of systematic uncertainty on the signal ($m_H = 125$ GeV) and background predictions for the three jet multiplicity analyses. Similarly to Table 3, the additional m_T cut is applied and the constraints from control regions are included.

The statistical analysis of the data employs a binned likelihood function $L(\mu, \theta)$ constructed as the product of Poisson probability terms in each lepton flavour channel. The mass-dependent cuts on m_T described above are not used. Instead, the 0-jet (1-jet) signal regions are subdivided into five (three) m_T bins. For the 2-jet signal region (where the small number of events remaining after the selection does not allow the use of shape information), and for the
WW and top control regions, only the results integrated over $m_{\tau\tau}$ are used. Because of event pile-up conditions changing throughout data-taking and leading to a progressively worsening E^miss_T resolution, separate likelihood terms are constructed (both for the signal and the control regions) for the first 2.3 fb$^{-1}$ and the remaining 2.4 fb$^{-1}$ dataset. A “signal strength” parameter, μ, multiplies the expected Standard Model Higgs boson production signal in each bin. Signal and background predictions depend on systematic uncertainties that are parameterised by nuisance parameters θ, which in turn are constrained using Gaussian functions. The expected signal and background event counts in each bin are functions of θ. The parameterisation is chosen such that the rates in each channel are log-normally distributed for a normally distributed ground is observed over the entire mass range (the lowest p-value observed is 0.15).

7. Conclusion

A search for the SM Higgs boson has been performed in the $H \to WW^{(*)\to l\ell\nu\nu}$ channel using the full data sample (4.7 fb$^{-1}$) of pp collision data from the Large Hadron Collider at $\sqrt{s} = 7$ TeV recorded in 2011 with the ATLAS detector. No significant excess of events over the expected background is observed over the entire mass range (the lowest p-value observed is 0.15).

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, Dänmarks and Lundbeck Foundation, Denmark; EPLANET and ERC, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNNS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

112 Department of Physics, Oklahoma State University, Stillwater, OK, United States
113 Palacký University, RCPTM, Olomouc, Czech Republic
114 Center for High Energy Physics, University of Oregon, Eugene, OR, United States
115 LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
116 Graduate School of Science, Osaka University, Osaka, Japan
117 Department of Physics, University of Oslo, Oslo, Norway
118 Department of Physics, Oxford University, Oxford, United Kingdom
119 (a) INFN Sezione di Pavia, (b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy
120 Department of Physics, University of Pennsylvania, Philadelphia, PA, United States
121 Petersburg Nuclear Physics Institute, Gatchina, Russia
122 (a) INFN Sezione di Pisa, (b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
123 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, United States
124 (a) Laboratorio de Instrumentación e Física Experimental de Partículas – LIP, Lisboa, Portugal; (b) Departamento de Física Teórica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain
125 Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
126 Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
127 Czech Technical University in Prague, Prague, Czech Republic
128 State Research Center Institute for High Energy Physics, Protvino, Russia
129 Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
130 Physics Department, University of Regina, Regina, SK, Canada
131 Ritsumeikan University, Kusatsu, Shiga, Japan
132 (a) INFN Sezione di Roma I; (b) Dipartimento di Fisica, Università La Sapienza, Roma, Italy
133 (a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
134 (a) INFN Sezione di Roma Tre; (b) Dipartimento di Fisica, Università Roma Tre, Roma, Italy
135 (a) Faculté des Sciences An Chouk, Réseau Universitaire de Physique des Hautes Énergies – Université Hassan II, Casablanca; (b) Centre National de l’Énergie des Sciences Nucléaires, Rabat; (c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; (d) Faculté des sciences, Université Mohamed V-Agdal, Rabat, Morocco
136 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique), Gif-sur-Yvette, France
137 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, United States
138 Department of Physics, University of Washington, Seattle, WA, United States
139 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
140 Department of Physics, Shinshu University, Nagano, Japan
141 Fachbereich Physik, Universität Siegen, Siegen, Germany
142 Department of Physics, Simon Fraser University, Burnaby, BC, Canada
143 SLAC National Accelerator Laboratory, Stanford, CA, United States
144 (a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
145 (a) Department of Physics, University of Johannesburg, Johannesburg; (b) School of Physics, University of the Witwatersrand, Johannesburg, South Africa
146 (a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden
147 Physics Department, Royal Institute of Technology, Stockholm, Sweden
148 Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook, NY, United States
149 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
150 School of Physics, University of Sydney, Sydney, Australia
151 Institute of Physics, Academia Sinica, Taipei, Taiwan
152 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
153 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
154 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
155 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
156 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
157 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
158 Department of Physics, University of Toronto, ON, Canada
159 (a) TRIUMF, Vancouver, BC; (b) Department of Physics and Astronomy, York University, Toronto, ON, Canada
160 Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
161 Science and Technology Center, Tufts University, Medford, MA, United States
162 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
163 Department of Physics and Astronomy, University of California Irvine, Irvine, CA, United States
164 (a) INFN Gruppo Collegato di Udine; (b) ICTP, Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
165 Department of Physics, University of Illinois, Urbana, IL, United States
166 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
167 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear y Departamento de Ingeniería Electrónica y Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
168 Department of Physics, University of British Columbia, Vancouver, BC, Canada
169 Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
170 Department of Physics, University of Warwick, Coventry, United Kingdom
171 Waseda University, Tokyo, Japan
172 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
173 Department of Physics, University of Wisconsin, Madison, WI, United States
174 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
175 Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
176 Department of Physics, Yale University, New Haven, CT, United States
177 Yerevan Physics Institute, Yerevan, Armenia
178 Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France

(a) Also at Laboratorio de Instrumentación e Física Experimental de Partículas – LIP, Lisboa, Portugal.
(b) Also at Faculdade de Ciências and CFPUL, Universidade de Lisboa, Lisboa, Portugal.
(c) Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.
(d) Also at TRIUMF, Vancouver, BC, Canada.
(e) Also at Department of Physics, California State University, Fresno, CA, United States.
Also at Novosibirsk State University, Novosibirsk, Russia.
Also at Fermilab, Batavia, IL, United States.
Also at Department of Physics, University of Coimbra, Coimbra, Portugal.
Also at Department of Physics, UASLP, San Luis Potosi, Mexico.
Also at Università di Napoli Parthenope, Napoli, Italy.
Also at Institute of Particle Physics (IPP), Canada.
Also at Department of Physics, Middle East Technical University, Ankara, Turkey.
Also at Louisiana Tech University, Ruston, LA, United States.
Also at Dep Física and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.
Also at Department of Physics and Astronomy, University College London, London, United Kingdom.
Also at Group of Particle Physics, University of Montreal, Montreal, QC, Canada.
Also at Department of Physics, University of Cape Town, Cape Town, South Africa.
Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.
Also at Manhattan College, New York, NY, United States.
Also at School of Physics, Shandong University, Shandong, China.
Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China.
Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.
Also at Dipartimento di Fisica, Università La Sapienza, Roma, Italy.
Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France.
Also at Section de Physique, Université de Genève, Geneva, Switzerland.
Also at Departamento de Física, Universidade de Minho, Braga, Portugal.
Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, United States.
Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
Also at California Institute of Technology, Pasadena, CA, United States.
Also at Institute of Physics, Jagiellonian University, Krakow, Poland.
Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France.
Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom.
Also at Department of Physics, Oxford University, Oxford, United Kingdom.
Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.
Also at Department of Physics, The University of Michigan, Ann Arbor, MI, United States.
* Deceased.