Estimates of Regional and Local Strong Motions
during the Great 1923 Kanto, Japan, Earthquake (Ms 8.2).
Part 1: Source Estimation of a Calibration Event and Modeling
of Wave Propagation Paths
by Toshiaki Sato, Donald V. Helmberger, Paul G. Somerville,
Robert W. Graves, and Chandan K. Saikia

Abstract This article is the first of a pair of articles that estimate regional and
local strong motions from the 1923 Kanto, Japan, earthquake. This Ms 8.2 earthquake
caused the most devastating damage in the metropolitan area in Tokyo history. In
this article, we first calibrate wave propagation path effects with a moderate-sized
modern event. This event, the Odawara earthquake of 5 August 1990 (M 5.1), is the
first earthquake larger than M 5 in the last 60 years near the hypocenter of the 1923
Kanto earthquake. We estimate the source parameters based on a grid-search tech-
nique using body-waveform data bandpass filtered from 1 to 10 sec at four local
stations, because accurate source parameters are critical for calibrating the propa-
gation effects. We find that the Odawara earthquake had a depth of 15.3 km, a dip
of 35°, a rake of 40°, a strike of 215°, a seismic moment of 3.3 × 10^{23} dyne-cm, a
source duration of 0.65 sec, and a stress drop of 170 bars.

Next, we investigate the effects of the propagation paths to the local and regional
stations where seismograms of the 1923 Kanto earthquake were recorded, by com-
paring recorded waveforms with synthetic seismograms built with the calibration
event. Path-specific flat-layered velocity models are estimated along travel paths from
the event to stations Hongo (epicentral distance R = 82 km) in Tokyo, Gifu (R =
213 km), and Sendai (R = 374 km) using forward modeling. In constructing the
velocity model for the Gifu station, we use STS-1 broadband seismograms recorded
at the nearby Inuyama station. Consequently, at periods greater than 3 sec, the ve-
locity models for stations Hongo and Gifu can successfully reproduce both body
waves and direct surface waves, and the velocity model for Sendai station can explain
the predominant direct surface waves. In the companion article (Sato et al., 1998),
these velocity models are used to examine the adequacy of the variable-slip rupture
models of the 1923 Kanto earthquake (Wald and Somerville, 1995; Takeo and Kan-
amori, 1992) to explain recorded seismograms and also to simulate strong motions
from that event.

Introduction
The great 1923 Kanto earthquake (Ms 8.2) of 1 Septem-
ber 1923, which struck Tokyo and surrounding areas, was
one of the most devastating earthquakes in Japanese history,
and for this reason, the effects of this earthquake have been
widely studied in earthquake-resistant design and emergency
preparedness in Tokyo and other parts of Japan. Although
several studies of this earthquake have been done, we con-
duct a much more systematic analysis of the recorded re-
regional and local ground motions.

During the 1923 Kanto earthquake, near-fault strong
ground motions were recorded by low-gain displacement
seismographs: the Ewing seismoscope and the Imamura seis-
mograph at Hongo (HNG) station in Tokyo, which is located
at about 60 km northeast of the epicenter. Unfortunately, all
of the seismograms were incomplete because the large dis-
placements exceeded the recording range of the seismo-
ographs. Since the Imamura seismograph reconstructed by
Yokota et al. (1989) differed significantly from the Ewing
seismograms were not clipped.

Recent developments in data acquisition and analysis have significantly enhanced our ability to understand this earthquake. First, seismograms recorded at several regional stations were found, and some of them have been digitized (Kudo, 1981; Kataoka and Sato, 1994; Kataoka et al., 1995; Takemura, 1994; Takemura and Hamada, 1994, Takemura and Nozawa, 1994; Takemura et al., 1994, 1995). The locations of the stations Sendai (SND), Hongo (HNG), and Gifu (GIF) at which we digitized seismograms are shown in Figure 1a. Processing of these seismograms recorded more than 70 years ago presented many challenges, such as the low quality of the data and uncertainty in instrument responses (Kataoka et al., 1995; Takemura and Hamada, 1994; Takemura et al., 1995). However, despite their limitations, these seismograms are valuable for a more complete understanding of both the source process and the strength of the strong motions from the 1923 Kanto earthquake, since some of the regional seismograms were not clipped.

The second important development is the derivation of a variable-slip rupture model from the joint inversion of geodetic and teleseismic body-waveform data by Wald and Somerville (1995). The periods for which the recorded ground motions can be reliably reproduced using the previous uniform slip models (Kanamori, 1971, 1974; Ando, 1971, 1974; Matsu'ura et al., 1980) were limited to longer than several tens of seconds. In contrast, we expect the variable-slip rupture model derived by Wald and Somerville (1995) to reproduce recorded waveforms at periods as short as several seconds. If we can estimate the effects of wave propagation paths from the source region of the 1923 Kanto earthquake to regional and local sites where the seismograms were recorded, we will be able not only to examine the validity of the variable-slip rupture model derived by Wald and Somerville (1995) but also to estimate strong motions in the Tokyo metropolitan area at periods of engineering significance.

In calibrating wave propagation paths from a historical earthquake, recordings from smaller or comparable-sized modern earthquakes occurring in the vicinity of the historical event can be used as calibration events (e.g., Helmberger et al., 1992a; Wald et al., 1993). The seismicity in the source region of the 1923 Kanto earthquake has been low for a long time, and only one earthquake of magnitude greater than 5.0 has occurred for the last 60 years in the region where large slip occurred during the 1923 Kanto earthquake (Wald and Somerville, 1995), although there has been recent activity in the Izu Peninsula, which is located southwest of the epicenter of the 1923 Kanto earthquake as determined by Kanamori and Miyamura (1970) and Hamada (1987). The earthquake, with M_{WMA} 5.1, occurred on 5 August 1990 at a depth of about 15 km beneath the Odawara area. The 1990 hypocenter is in the vicinity of the hypocenter of the 1923 Kanto earthquake and is also close to one of the two major asperities of the 1923 Kanto earthquake as determined by Wald and Somerville (1995) and shown in Figure 1b. Ishida and Kikuchi (1992) investigated the source process of the 1990 Odawara earthquake in detail and concluded that this earthquake is a possible foreshock of a future large earthquake in the region. In terms of location, size, and characteristics as a calibration event for investigating propagation path effects, this event seems to be more suitable than the Izu earthquakes. However, recently Pitarke et al. (1994) pointed out that the source model derived by Ishida and Kikuchi (1992) is not compatible with near-source strong-motion data. Therefore, to use this event as a calibration event, we need to re-evaluate the source model of this event.

The objectives of this article are twofold: (1) to develop a well-constrained source model of the 1990 Odawara earthquake, and (2) to use the recordings of this earthquake to calibrate flat-layered velocity models and to examine the adequacy of these velocity models for reproducing the effects of wave propagation paths between the source region of the 1923 Kanto earthquake and the regional stations Gifu (GIF) and Sendai (SND), and the local station Hongo (HNG) that recorded the 1923 Kanto earthquake. To accomplish the first objective, we use the grid-search technique using body-waveform data (Zhao and Helmberger, 1994). The synthetic seismograms are calculated by the frequency-wavenumber integration method (f-k method) (Saikia, 1994). The second objective is accomplished using a forward-modeling procedure based on the comparison between recorded waveform data and synthetic seismograms calculated by the f-k method and/or generalized ray theory (GRT) (Helmberger, 1983).

In the companion article (Sato et al., 1998), the flat-layered velocity models derived in this study are used to examine the adequacy of the variable-slip rupture models of the 1923 Kanto earthquake (Wald and Somerville, 1995; Takeo and Kanamori, 1992) and to simulate the seismograms obtained at stations GIF, SND, and HNG from that earthquake.

Source Model of the 1990 Odawara Earthquake and Waveform Modeling at Local Stations

The source models of the 1990 Odawara earthquake derived from previous studies have some discrepancies in source location, mechanism, and seismic moment as indicated in Table 1 and Figure 1b. The National Research Institute for Earth Science and Disaster Prevention (NIED, 1990) determined the strike-slip mechanism shown in Figure 2a using the P-wave first motions from the NIED seismic network. Ishida and Kikuchi (1992) re-examined the source model using both short-period P-wave seismograms from the NIED seismic network and broadband waveform data recorded at two local stations, and they found that at some stations a strong phase with the opposite polarity was recorded a few tenths of a second after the P-wave onset. They attributed the polarity change to the difference between the
Figure 1. (a) Location map showing earthquakes and stations used in calibration of the travel paths in this study. The area surrounded by solid lines indicates the surface projection of the fault geometry of the 1923 Kanto earthquake (Ms 8.2). A small solid star denotes the epicenter of the 1923 Kanto earthquake estimated by Kanamori and Miyamura (1970). Open circles represent locations of asperities estimated by Wald and Somerville (1995). A large solid star denotes the epicenter of the 1990 Odawara earthquake (M_{JMA}5.1) used as the calibration event for the travel paths. Solid circles represent Izu earthquakes of magnitude greater than 6.5 in the past 40 years. Solid squares indicate stations Sendai (SND), Hongo (HNG), and Gifu (GIF) at which seismograms from both the 1923 Kanto earthquake and the 1990 Odawara earthquake were recorded by conventional seismographs. An open square indicates Inuyama (INU) station at which STS-1 broadband data from the 1990 Odawara earthquake were recorded. A solid line labeled b shows the seismic refraction survey conducted by Ikami (1978). Dashed lines labeled a, c, and d represent the lines of the shallow seismic refraction surveys conducted by Sastani et al. (1990), Matsuzaki (1991), and Masaki and Tada (1981, 1982). The area surrounded by dotted lines is enlarged in Figure 1b, which shows the locations of stations AJR, ASK, HNG, and KR1 (solid squares) used in estimating the 1990 Odawara earthquake. Geologic conditions in the southern Kanto district are also shown. Solid lines a, b, and c are the lines of the seismic refraction surveys (Yoshii et al., 1985; Yamanaka et al., 1993; JESG, 1992) used for constructing the shallow crustal structure models for stations AJR, ASK, and KR1. Solid triangles denote the deep borehole sites at Koto (Suzuki, 1993, 1995) and Fuchu (Yamamizu et al., 1981; Asano et al., 1993) used in constructing shallow crustal structure models for stations HNG and ASK. The area surrounded by solid and dashed lines indicates the surface projection of the fault geometry of the 1923 Kanto earthquake (Ms 8.2); the solid line indicates the top edge of the fault plane. The first and second asperities correspond to the portions with slip greater than 4 m (Wald and Somerville, 1995). The 1974 Izu-Hanto-Oki earthquake (M_{JMA}6.9) and the 1980 Izu-Hanto-Toho-Oki earthquake (M_{JMA}6.7) were used as calibration events in modeling the propagation path to station GIF by Nozawa et al. (1996).
Table 1
Source Models of the 1990 Odawara Earthquake

<table>
<thead>
<tr>
<th>Model</th>
<th>Lat. (°N)</th>
<th>Long. (°E)</th>
<th>Depth (km)</th>
<th>Origin time (GT)</th>
<th>Dip (°)</th>
<th>Rake (°)</th>
<th>Strike (°)</th>
<th>M_0 ($\times 10^{23}$ dyne-cm)</th>
<th>Source-Time Function (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIED</td>
<td>35.212</td>
<td>139.110</td>
<td>15.3</td>
<td>1990/8/5 7:13:01.69</td>
<td>52</td>
<td>19</td>
<td>222</td>
<td>6.7* bell shape (0.5)*</td>
<td></td>
</tr>
<tr>
<td>IK92</td>
<td>35.210</td>
<td>139.103</td>
<td>17.2</td>
<td>1990/8/5 7:13:01.63</td>
<td>50</td>
<td>70</td>
<td>210</td>
<td>3.5 triangle (0.3, 0.1)</td>
<td></td>
</tr>
<tr>
<td>JMA</td>
<td>35.207</td>
<td>139.095</td>
<td>13.7</td>
<td>1990/8/5 7:13:02.10</td>
<td>39</td>
<td>30</td>
<td>219</td>
<td>7.1†</td>
<td></td>
</tr>
<tr>
<td>HRV</td>
<td>34.950</td>
<td>138.840</td>
<td>15.0</td>
<td>1990/8/5 7:13:04.00</td>
<td>23</td>
<td>68</td>
<td>220</td>
<td>5.9</td>
<td></td>
</tr>
<tr>
<td>SATO</td>
<td>35.210</td>
<td>139.103</td>
<td>15.3</td>
<td>—</td>
<td>35</td>
<td>40</td>
<td>215</td>
<td>3.3 trapezoid (0.3, 0.2, 0.15)</td>
<td></td>
</tr>
</tbody>
</table>

*Pitarka et al. (1994).
†This value is estimated from $M_{\text{JMA}} = 5.1$ based on log $M_0 = 1.5M_{\text{JMA}} + 16.2$ (Sato, 1979).
‡The epicenter is assumed to be the same as that of the IK92 solution (Ishida and Kikuchi, 1992).

Figure 2. Comparison between the focal mechanisms of the 1990 Odawara earthquake derived by the National Research Institute for Earth Science and Disaster Prevention [(a) NIED solution], Ishida and Kikuchi (1992) [(b) IK92 solution], Japan Meteorological Agency [(c) JMA solution], Harvard University [(d) HRV CMT solution], and the best-fit solution in this study [(e) Sato solution], respectively. All fault-plane solutions are lower hemispheric projections.

Figure 2. Comparison between the focal mechanisms of the 1990 Odawara earthquake derived by the National Research Institute for Earth Science and Disaster Prevention [(a) NIED solution], Ishida and Kikuchi (1992) [(b) IK92 solution], Japan Meteorological Agency [(c) JMA solution], Harvard University [(d) HRV CMT solution], and the best-fit solution in this study [(e) Sato solution], respectively. All fault-plane solutions are lower hemispheric projections.

The 1990 Odawara earthquake was recorded by digital strong-motion stations in the southern Kanto district operated by several organizations. In order to investigate a source model of the event, we select three-component waveform data at the following four stations, AJR (epicentral distance $R = 18.5$ km), ASK ($R = 49.9$ km), HNG ($R = 82.0$ km), and KR1 ($R = 7.1$ km) indicated in Table 2 and Figure 1b. Those stations were selected based on the azimuthal coverage (Fig. 2), geological conditions, and data available for
constructing crustal structure models including near-surface crustal layers.

Since station AJR, ASK, and KR1 are on shallow or surficial rock, local site effects are expected to be relatively simple compared to those at sediment sites. In addition, results from several previous seismic exploration experiments conducted around these stations are available (see Fig. 1b). In contrast, station HNG at which seismograms from the 1923 Kanto earthquake were recorded is located on a thick sedimentary basin. However, high-quality P- and S-wave velocity data from the Koto deep well located in the northern waterfront area in Tokyo Bay (see Fig. 1b), as well as the results from seismic refraction surveys carried out in the Tokyo metropolitan area (Research Group on Underground Structure in the Tokyo Metropolitan Area, 1989), have recently become available.

Digital accelerometers were in operation at stations AJR and KR1 during the 1990 Odawara earthquake (Kakishita et al., 1992; Kudo et al., 1988; Subcommittee of Earthquake Data Selection, Japanese Working Group on the Effects of Surface Geology on Seismic Motion, 1992), while digital velocity seismometers were operating at stations ASK and HNG (Samano and Seo, 1988; Zama, 1992) (Table 2). These records were integrated into displacement data.

Forward-Modeling Procedure for Velocity Structure Models

In estimating the source model, we calculate Green’s functions that represent path effects assuming a one-dimensional horizontally layered velocity structure. As we describe later, both the uppermost crust and the deeper crust in the southern Kanto district have complex structure. Therefore, we model each source-receiver path individually.

The forward-modeling procedure used to derive velocity structure models involves the following steps. First, we construct an initial velocity model based on detailed knowledge from seismic exploration experiments, travel-time tomography, and geological maps. Second, using the f-k method and GRT and assuming a number of focal mechanisms, we do a preliminary analysis of the sensitivity of the synthetic waveforms to the initial model in order to select a working model that has the potential to reproduce the basic features of the observed body waveforms.

If significant multiple-reflection phases following the direct body-wave phase are clearly seen in the observed waveforms, we can also make use of some of those multiples if necessary. If the initial model does not have the potential to reproduce the basic waveforms, we introduce more layers and perturb the velocities and thicknesses of the layers. This procedure is repeated until the initial velocity model becomes the working model. Finally, we tune the working model to obtain a preferred model by trial and error, using absolute and relative times of observed direct P and S waves (and the first multiples if necessary) on three components. If the velocity structure is not adequate, simultaneous waveform match on all three components cannot be achieved. Accordingly, the validity of the preferred velocity models can best be judged after we have presented the results of the three-component waveform modeling. In the following, we describe how we constructed velocity models for each travel path in more detail.

Deep Crustal Structures

Lees and Ukawa (1992) recently obtained three-dimensional images of P- and S-wave velocities in the crust and upper mantle using travel-time data from a number of earthquakes. Based on their results in conjunction with the contour maps of the depths of the Conrad and Moho discontinuities (Ashiya et al., 1987; Zhao et al., 1994), we constructed a flat-layered model of the uppermost mantle and crust (except for the near-surface crustal layers) for each source-receiver path. In this procedure, we assigned to each layer the average value of the velocities determined by Lees and Ukawa (1992) over the travel path.

Uppermost Crustal Structure

Station KR1 is located at the western edge of the Ashigara Valley in Odawara city where the most detailed studies on local site effects ever done in Japan were made by the Japanese Working Group on the Effects of Surface Geology on Seismic Motion (JESG). Logging of two boreholes, a seismic refraction survey (see line b in Fig. 1b) and a shallow

Table 2

| Location of Local Stations and Instruments Used in Waveform Modeling for Source Parameters |
|----------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Station | Abbreviation | Lat. (°N) | Long. (°E) | Distance (km) | Azimuth (°) | Instrument (sensor)* | Organization† |
| AJR | 35.05 | 139.19 | 18.5 | −178.3 | JMA-87 (acceleration) | JMA |
| ASK | 35.64 | 139.28 | 49.9 | 19.1 | MRM (velocity) | TIT |
| KR1 | 35.27 | 139.13 | 7.1 | 16.5 | SMAD-3 (acceleration) | ERI |
| HNG | 35.72 | 139.76 | 82.0 | 46.7 | VSE-11 (velocity) | FRI |

‡Hongo: This station is located on the campus of the University of Tokyo where seismograms from the 1923 Kanto earthquake were recorded.
reflection survey were conducted there by the Subcommittee for Geotechnical Survey on the Ashigara Valley Blind Prediction Test, JESG (1992). Higashi and Kudo (1992) and Higashi (1994) compiled those data and obtained two- and three-dimensional near-surface crustal profiles. In addition, Miyakoshi et al. (1994) inferred P- and S-wave velocity structure near the station from Rayleigh-wave dispersion characteristics obtained from array measurements of microtremors. We used these results in constructing an initial model. In obtaining the preferred velocity model given in Table 3, we did not need to modify the initial model.

At station AJR in the northeastern part of the Izu peninsula, we constructed an uppermost velocity model based on the results of a seismic refraction survey in the Izu Peninsula (Yoshii et al., 1985) (see line c in Fig. 1b). Although no S-wave velocity data around AJR station are available, we inferred them from S-wave velocities in the Ashigara Valley described above, assuming geological continuity. We did not need to change the properties of the uppermost crustal layers of the initial model in obtaining the working model, but we tuned the thicknesses of these layers based on relative travel times of the observed P and S waves in order to obtain the preferred model given in Table 3.

For station ASK, we constructed an initial model based on a P-wave velocity profile obtained from a seismic refraction survey in the western part of the Tokyo metropolitan area (Yamanaka et al., 1993) and S-wave velocities obtained from the Fuchu deep well drilled to a depth of 3 km, which is located about 10 km east of the station (Yamamizu et al., 1981; Asano et al., 1991) (see line a and the solid triangle labeled Fuchu in Fig. 1b). However, this model could not reproduce the basic features of the observed SV waveforms on the radial and vertical components for any focal mechanism. Considering the complexity of the travel-time data in the refraction survey (Yamanaka et al., 1993), and the sensitivity of SV waveforms to receiver structure (Saikia and Herrmann, 1987; Helmberger et al., 1993), we divided the intermediate layer into two layers. Consequently, the four-layer model became a working model. The preferred model is given in Table 3.

For station HNG, first we extracted layer interfaces with high impedance contrast and average P- and S-wave velocities for each layer at the Koto deep well drilled to a depth of 3 km (Suzuki, 1993, 1995; Yamamizu et al., 1995) in the northern margin of Tokyo Bay, which is located about 10 km south of station HNG (see the solid triangle labeled Koto in Fig. 1b). This deep well is the closest to station HNG of the four deep wells deployed in the Tokyo metropolitan area. The depths of the layer interfaces beneath station HNG were interpolated based on contour maps of the depths of geological layers (Kawai, 1965; Kakimi, 1973; Minashi et al., 1979) and two- or three-dimensional velocity profiles obtained from a series of seismic refraction surveys conducted in the Tokyo Metropolitan area (Research Group on Underground Structure in the Tokyo Metropolitan Area, 1989; Koketsu and Higashi, 1992). For the surface layer, we used the logging data in a borehole drilled to a depth of about 80 m at station HNG (Tanaka et al., 1973). We did not need to change the seismic parameters of the uppermost crustal layers of the initial model in obtaining the working model, but we slightly tuned the thicknesses of these layers based on the relative travel times of the observed P and S waves and subsequent multiples in order to obtain the preferred model given in Table 3. The validity of this model is discussed further with the final results.

Table 3

<table>
<thead>
<tr>
<th>Station</th>
<th>Depth (km)</th>
<th>Thickness (km)</th>
<th>Vp (km/sec)</th>
<th>Vs (km/sec)</th>
<th>ρ (g/cc)</th>
<th>Qp</th>
<th>Qs</th>
</tr>
</thead>
<tbody>
<tr>
<td>AJR</td>
<td>0.0</td>
<td>0.3</td>
<td>2.60</td>
<td>1.30</td>
<td>2.3</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>0.7</td>
<td>4.20</td>
<td>2.40</td>
<td>2.5</td>
<td>150</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>1.0</td>
<td>5.30</td>
<td>3.12</td>
<td>2.5</td>
<td>300</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>3.0</td>
<td>5.60</td>
<td>3.26</td>
<td>2.6</td>
<td>300</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>5.0</td>
<td>6.10</td>
<td>3.53</td>
<td>2.6</td>
<td>300</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>10.0</td>
<td>5.0</td>
<td>6.40</td>
<td>3.70</td>
<td>2.7</td>
<td>300</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>15.0</td>
<td>—</td>
<td>6.90</td>
<td>3.92</td>
<td>2.9</td>
<td>500</td>
<td>250</td>
</tr>
<tr>
<td>ASK</td>
<td>0.0</td>
<td>0.2</td>
<td>3.00</td>
<td>1.40</td>
<td>2.3</td>
<td>150</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>1.1</td>
<td>4.70</td>
<td>2.40</td>
<td>2.5</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td>2.7</td>
<td>5.00</td>
<td>2.90</td>
<td>2.5</td>
<td>300</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>1.0</td>
<td>5.60</td>
<td>3.26</td>
<td>2.6</td>
<td>300</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>10.0</td>
<td>6.30</td>
<td>3.64</td>
<td>2.7</td>
<td>300</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>15.0</td>
<td>—</td>
<td>6.90</td>
<td>3.92</td>
<td>2.9</td>
<td>500</td>
<td>250</td>
</tr>
<tr>
<td>KR1</td>
<td>0.0</td>
<td>0.25</td>
<td>2.20</td>
<td>0.70</td>
<td>2.1</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>0.25</td>
<td>1.0</td>
<td>3.00</td>
<td>1.50</td>
<td>2.3</td>
<td>150</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>1.25</td>
<td>0.75</td>
<td>4.20</td>
<td>2.40</td>
<td>2.3</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>3.0</td>
<td>5.60</td>
<td>3.26</td>
<td>2.6</td>
<td>300</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>5.0</td>
<td>6.10</td>
<td>3.53</td>
<td>2.6</td>
<td>300</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>10.0</td>
<td>5.0</td>
<td>6.40</td>
<td>3.70</td>
<td>2.7</td>
<td>300</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>15.0</td>
<td>—</td>
<td>6.90</td>
<td>3.92</td>
<td>2.9</td>
<td>500</td>
<td>250</td>
</tr>
</tbody>
</table>

*Depth to the top of the layer.

Table 4

<table>
<thead>
<tr>
<th>Station</th>
<th>Depth (km)</th>
<th>Thickness (km)</th>
<th>Vp (km/sec)</th>
<th>Vs (km/sec)</th>
<th>ρ (g/cc)</th>
<th>Qp</th>
<th>Qs</th>
</tr>
</thead>
<tbody>
<tr>
<td>HNG</td>
<td>0.0</td>
<td>0.1</td>
<td>1.80</td>
<td>0.40</td>
<td>1.8</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>0.2</td>
<td>1.90</td>
<td>0.80</td>
<td>1.9</td>
<td>60</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>0.3</td>
<td>2.20</td>
<td>1.15</td>
<td>2.0</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>0.6</td>
<td>2.30</td>
<td>1.20</td>
<td>2.0</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>0.8</td>
<td>2.70</td>
<td>1.30</td>
<td>2.1</td>
<td>150</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>0.5</td>
<td>3.30</td>
<td>1.40</td>
<td>2.3</td>
<td>150</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>0.5</td>
<td>4.70</td>
<td>2.72</td>
<td>2.5</td>
<td>300</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>0.9</td>
<td>5.70</td>
<td>3.23</td>
<td>2.6</td>
<td>300</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>12.0</td>
<td>8.0</td>
<td>6.60</td>
<td>3.71</td>
<td>2.8</td>
<td>500</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>20.0</td>
<td>5.0</td>
<td>6.70</td>
<td>3.74</td>
<td>2.8</td>
<td>500</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>25.0</td>
<td>9.0</td>
<td>7.00</td>
<td>3.93</td>
<td>3.0</td>
<td>500</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>34.0</td>
<td>—</td>
<td>7.90</td>
<td>4.44</td>
<td>3.2</td>
<td>1000</td>
<td>500</td>
</tr>
</tbody>
</table>

*Depth to the top of the layer.
Figure 3. Comparison of observed displacement SH-waveform data (dashed line) on the transverse component at AJR station (R = 18.5 km) with the trapezoidal source-time function described by (0.3, 0.2, and 0.15 sec) (a), and the f-k synthetic seismogram (b). The f-k synthetic seismogram is calculated using the best-fit source model (Sato solution) given in Table 1 and the flat-layered velocity model for AJR station listed in Table 3. The observed and f-k synthetic seismograms are bandpass filtered from 0.1 to 10 Hz.

Source-Time Function

Station KR1 (epicentral distance R = 7.1 km), which is the closest to the source in this study, does not seem to be suitable to use to obtain source-time function because it is located near nodal planes of both P and SH waves for all the source mechanisms obtained from the previous studies, as indicated by Figure 3 in Pitarka et al. (1994). However, station AJR (R = 18.5 km) is distant from SH nodal planes for all of these mechanisms, so we used the transverse-component displacement waveform at station AJR to estimate the source-time function. The data were bandpass filtered from 0.1 to 10 Hz considering the noise level.

Figure 3a compares the observed direct SH-wave pulse with a trapezoidal source-time function with 0.30 sec of rise time, 0.20 sec of follow-on time, and 0.15 sec of healing time, found by trial and error. A good fit is obtained. We checked this result by comparing the data with the synthetic seismograms computed by the f-k method (see Fig. 3b), using the preferred velocity structure (Table 3) and the best-fit source mechanism after we obtained the final results on the source model. The data were bandpass filtered from 0.1 to 10 Hz considering the noise level.

Figure 4. Error as a function of source depth. The source mechanisms are represented by dip, slip, and strike at each depth. The number below each mechanism indicates the seismic moment in 10^{23} dyne-cm. The best fit occurs at a depth of 15.3 km.

Estimation of Source Model by Grid-Search Technique Using Body-Waveform Data

The displacement seismograms at stations AJR, ASK, KR1, and HNG were bandpass filtered from 0.1 to 1.0 Hz to reduce noise as well as contamination from high-frequency features due to small-scale velocity heterogeneity. In estimating a source model by waveform modeling, we used only the body-wave portion, including both the P- and S-wave arrivals (see the portions denoted by dotted lines in Fig. 5), since surface waves are too sensitive to lateral heterogeneity of the velocity structure (e.g., Dreger and Helmberger, 1991, 1993). Our source estimation method is based on the direct grid-search technique developed by Zhao and Helmberger (1994), except that we estimated the seismic moment using amplitudes of the whole waveform and not just peak amplitudes (Walter, 1993). The synthetics were aligned with the data based on time shifts calculated by cross-correlation. In this method, the five unknowns determined are the dip, rake, and strike of the fault plane, and depth and seismic moment.

We used the epicenter estimated by Ishida and Kikuchi (1992) listed in Table 1. A set of fundamental Green’s functions for the velocity structure models given in Tables 3 and 4 was computed up to 2 Hz for source depths of 11, 13.7, 15.3, 17.2, 19.0, and 21.0 km using the f-k method (Saikia, 1994), convolved with the source-time functions estimated earlier, and then bandpass filtered from 0.1 to 1.0 Hz. The direct grid search was performed over 5° increments in dip,
Figure 5. (a) Comparison between the ground displacement waveform data and the f-k synthetic waveforms with the various focal mechanisms given in Table 1 at station AJR ($R = 18.5$ km). Synthetic seismograms with various focal mechanisms are calculated with the corresponding depth and seismic moment given in Table 1. Both the observed and synthetic waveforms are bandpass filtered between 0.1 and 1.0 Hz. The amplitude of each trace is normalized by the maximum amplitude of the corresponding radial component in order to facilitate comparison of the amplitude ratios between three components. The absolute peak amplitudes are indicated on the right of each trace in centimeters. The data and synthetics are aligned with the first P-wave arrival indicated by the arrows. The dashed lines above the observed data show the time window used in the grid search in this study. (b) Results at station ASK ($R = 49.9$ km). The amplitude of each trace is normalized by the maximum amplitude of the corresponding transverse component. (c) Results at station KR1 ($R = 7.1$ km). The amplitude of each trace is normalized by the maximum amplitude of the corresponding radial component. (d) Results at station HNG ($R = 82.0$ km). The amplitude of each trace is normalized by the maximum amplitude of the corresponding radial component.

(illustration continued on following page)
rake, and strike for the whole parameter space. This search was applied in turn to the six source depths described earlier in order to obtain the best-fit solution.

As shown in Figure 4, errors are small in the depth range of 13.7 to 17.2 km, which corresponds to the source depths derived from the previous studies listed in Table 1. The minimum error is obtained at a depth of 15.3 km with a dip of 35°, a rake of 40°, a strike of 215°, and a seismic moment of 3.3 × 10^{23} dyne-cm. The best-fit solution obtained in this study (Sato solution) is summarized in Figure 2 and Table 1 with the previous source models. The Sato solution is intermediate between two previous solutions: the strike-slip NIED solution and the dip-slip IK92 solution. The estimated seismic moment of 3.3 × 10^{23} dyne-cm is consistent with
the value of 3.5×10^{23} dyne-cm estimated by Ishida and Kikuchi (1992) but is only half the value of 6.7×10^{23} dyne-cm estimated by Pitarka et al. (1994).

For rupture on a circular fault, the source duration is proportional to the radius divided by the shear-wave velocity (Brune, 1970, 1971). The source duration can be written as $\tau = 2.69a/V_s$, and the stress drop for a circular fault can be written as $\Delta \sigma = 7 M_0/16a^3$, where M_0 is the seismic moment, a is the radius of the circular fault, and V_s is the shear-wave velocity in the vicinity of the source. If we use the V_s of 3.92 km/sec given in Table 3 for the source region (Lees and Ukawa, 1992) and use the parameters obtained in this study, an area of about 2.8 km2 and a stress drop of 170 bars are obtained. This value is lower than that of 880 bars estimated by Ishida and Kikuchi (1992) and is consistent with the typical value of the local maximum stress drop, 200 bars, but higher than the typical value for subduction zone earthquakes, 30 bars (Kikuchi and Fukao, 1987).

Figure 5 compares the displacement waveform data with the synthetics. The synthetics were computed using the source parameters listed in Table 1, except that the epicenter estimated by Ishida and Kikuchi (1992) was applied to all the source models. In Figure 5, amplitudes of the three-component seismograms are normalized by the peak amplitude of a reference-component seismogram in order to facilitate comparison of the amplitude ratios between the three components. The radial component is used as the reference component at stations AJR, KR1, and HNG, and the transverse component is used at ASK. The numbers on the right side of the seismograms indicate the absolute peak amplitudes in centimeters. All the waveforms are aligned with the first P-wave arrival at 5 sec on the time axes. Table 5a lists the

![Figure 6. (a) Comparison of the tangential displacement waveform data (top trace) with the synthetic waveforms (second through fourth traces) at station HNG ($R = 82.0$ km). The synthetic seismograms are calculated using the best-fit source model (Sato solution) in Table 1 and the velocity model in Table 4. The second trace is calculated by the f-k method. Both the first and second traces are bandpass filtered between 0.1 and 1.0 Hz. The third and fourth traces are computed using GRT. No filter is applied to the GRT synthetic seismograms in order to show the arrivals of specific phases. In the third trace, the responses of all 61 rays, which departed upward and were reflected up to twice, are included. In the fourth trace, three rays that are the direct SH wave (S), and two multiple reflections ($S1$ and $S2$) are included. $S1$ is the arrival time of the ray that departed upward from the source and was reflected between the free surface and the top of the granitic layer at a depth of 2.5 km. $S2$ is the arrival time of the ray that departed upward from the source and was reflected between the free surface and the Conrad discontinuity at a depth of 12 km. Each seismogram is scaled to its maximum amplitude. (b) Comparison between the three-component, whole waveform displacement data with the synthetic waveforms at HNG station ($R = 82.0$ km). The upper traces are the observed waveforms. The lower traces are the synthetic waveforms computed by the f-k method. The bandpass filter from 0.10 to 0.33 Hz is applied to both the data and the synthetics. The numbers above the traces are the absolute peak amplitudes in 10^{-3} cm.](image-url)
cross-correlation coefficients between the displacement waveform data and the synthetic waveforms for the various source mechanisms. The synthetics for the source model obtained in this study show the best agreement with the data in terms of waveforms, amplitude ratios, amplitudes, and the cross-correlation coefficients at all the stations. The dip-slip type IK92 and HRV CMT solutions cannot reproduce basic features of the data at some stations. For example, the IK92 solution fails to explain the waveform data on the radial and vertical components at ASK (Fig. 5b and Table 5a), and the polarity of the transverse component at HNG (Fig. 5d and Table 5a) is opposite to the data at HNG. The polarity of the SH wave at HNG for the HRV CMT solution is also inconsistent with that of the data (Fig. 5d and Table 5a). The dip-slip solutions NIED and JMA reproduce the polarities as well as the basic features of the waveform data at all four stations. However, the agreement in amplitude ratios and the cross-correlation coefficients are not as good as that for the best-fit solution. Moreover, at station TYM, the solutions NIED and JMA fail to explain the P-wave polarity data, while the best-fit solution is consistent with the polarity data as indicated in Figure 2e.

For the best-fit solution, a surprisingly high correlation is obtained on all three components at ASK (Table 5a), considering that we assumed one of the near-surface layers in deriving the working velocity model. Table 5b lists the time shifts between the data and the synthetic seismograms for the best-fit solution. If we obtain an appropriate origin time assuming that the preferred velocity models are accurate, it would be delayed by about 0.17 sec with respect to the NIED origin time. This delay seems to be reasonable because it is smaller than that of 0.5 sec for the JMA origin time with a depth of 13.7 km. However, this may not be pertinent since the time shifts are not the same at all the stations. The deviation of the time shifts indicates misfit in the preferred velocity models. If we assume that the preferred velocity models for stations AJR and KR1 are more accurate than those for stations ASK and HNG, the bottom row of Table 5b indicates that the velocities of the preferred model for ASK should be faster but that the velocities of the preferred model for HNG should be slower. However, the deviation of the time shift of 0.3 to 0.4 sec is not large considering the relatively large epicentral distances at stations ASK ($R = 49.9$ km) and HNG ($R = 82.0$ km). In addition, at station HNG, synthetic later phases including multiple reflections and surface waves, which are not used in the grid-search procedure, fit the data well, as seen in Figures 5b and 5d. Hence, we conclude that the preferred flat-layered velocity structure models are adequate for source retrieval.

Later Phases at Station HNG

Several researchers (e.g., Yamanaka et al., 1992; Kato et al., 1993; Hisada et al., 1993) investigated ground-motion characteristics observed at sites in the Tokyo metropolitan area from the shallow Izu earthquakes (Fig. 1b) and pointed out that observed surface waves from the Izu earthquakes are strongly affected by near-source heterogeneity in a Quaternary basin in Sagami Bay (Nishizawa et al., 1996). However, considering the geometrical relationship between the location of the major asperities of the 1923 Kanto earthquake derived by Wald and Somerville (1995) and the location of Sagami Bay (Fig. 1b), it appears that the ground motions in the Tokyo metropolitan area from the 1923 Kanto earthquake...
quakes may not be affected strongly by the heterogeneity of Sagami Bay.

Little research on wave propagation characteristics from earthquakes occurring in the source region of the 1923 Kanto earthquake has been done because no moderate- or large-sized modern earthquakes had occurred in the region until the 1990 Odawara earthquake. Therefore, examining the validity of the flat-layered model in relation to the later phases at HNG from the 1990 event will provide us with an indication of the reproducibility of observed significant later phases at station HNG during the 1923 Kanto earthquake when we use the flat-layered model (Table 4) in the companion article (Sato et al., 1998).

In order to examine obvious pulses arriving after the direct SH wave on the transverse component at station HNG (Fig. 5d), we generated synthetic seismograms by f-k and GRT using the flat-layered model given in Table 4 and then compared them with the data, as shown in Figure 6a. We applied a bandpass filter from 0.1 to 1.0 Hz to both the data and the f-k synthetics but did not apply the bandpass filter to the GRT synthetics in order to show the arrivals of specific phases. The second trace, an f-k synthetic seismogram, shows good agreement with the data. The third trace is a GRT synthetic seismogram constructed using all 61 rays that are radiated upward from the source and then reflected twice at the interfaces of the layers. The fourth trace is a GRT synthetic using only three rays, namely, the direct arrival (S), the multiple reflection between the free surface and the Conrad discontinuity at a depth of 12 km (S2), and the multiple reflection between the free surface and the Conrad discontinuity at a depth of 2.5 km (S1), and the multiple reflection between the free surface and the Conrad discontinuity at a depth of 12 km (S2). The comparison reveals that the observed significant pulseline later phase at about 33 sec in Figure 6a following the direct SH wave is contributed by the multiple reflection (S2) in the upper crust.

At HNG, later phases with long duration are also seen in the data. Figure 6b compares the three-component waveform data with synthetic seismograms calculated by the f-k method using the flat-layered model given in Table 4 in the frequency range of 0.10 to 0.33 Hz. The velocity model works well for about the first 40 sec after the first P-wave arrival on the radial component but does not reproduce the following later phases nor arrivals after the first 20 sec on the transverse and vertical components. We analyzed the observed dispersion characteristics of the later phases using a multiple filter technique (Dziewonski et al., 1969). Figure 7b compares the observed dispersion characteristics of the radial component, on which the later phases are predominant for the first 30 sec after the S-wave arrival, with the theoretical group delay time of the fundamental-mode Rayleigh wave (Fig. 7a) for the velocity model given in Table 4. A reasonable fit is obtained at periods longer than about 7 sec for the first 30 sec after the S-wave arrival.

These results indicate that the flat-layered model for HNG given in Table 4 is effective not only for modeling body waves but also for the early part of the surface waves for the 1990 Odawara earthquake at periods longer than 3 sec. They also imply that this velocity model has the potential to simulate waveforms due to body waves and direct surface waves at station HNG from the 1923 Kanto earthquake, based on

<table>
<thead>
<tr>
<th>Station</th>
<th>Abbreviation</th>
<th>Lat. (°N)</th>
<th>Long. (°E)</th>
<th>Distance (km)</th>
<th>Azimuth (°)</th>
<th>Instrument*</th>
<th>Organization†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inuyama</td>
<td>INU</td>
<td>35.34</td>
<td>137.02</td>
<td>190.3</td>
<td>-85.2</td>
<td>STS-1 (velocity)</td>
<td>NGU</td>
</tr>
<tr>
<td>GIF</td>
<td>GIF</td>
<td>35.40</td>
<td>136.77</td>
<td>213.7</td>
<td>-83.7</td>
<td>JMA-59 (displacement)</td>
<td>JMA</td>
</tr>
<tr>
<td>Sendai</td>
<td>SND</td>
<td>38.26</td>
<td>140.90</td>
<td>374.6</td>
<td>24.8</td>
<td>JMA-59 (displacement)</td>
<td>JMA</td>
</tr>
</tbody>
</table>

†Organization—NGU: Nagoya University (Yamada et al., 1989). JMA: Japan Meteorological Agency.
‡Sendai: Seismograms from the 1923 Kanto earthquake were recorded at this station.

<p>| Location of Regional Stations and Instruments Used in Waveform Modeling for Propagation Paths |
|---|--------|--------|----------|</p>
<table>
<thead>
<tr>
<th>Station</th>
<th>Abbreviation</th>
<th>Lat. (°N)</th>
<th>Long. (°E)</th>
<th>Distance (km)</th>
<th>Azimuth (°)</th>
<th>Instrument*</th>
<th>Organization†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inuyama</td>
<td>INU</td>
<td>35.34</td>
<td>137.02</td>
<td>190.3</td>
<td>-85.2</td>
<td>STS-1 (velocity)</td>
<td>NGU</td>
</tr>
<tr>
<td>GIF</td>
<td>GIF</td>
<td>35.40</td>
<td>136.77</td>
<td>213.7</td>
<td>-83.7</td>
<td>JMA-59 (displacement)</td>
<td>JMA</td>
</tr>
<tr>
<td>Sendai</td>
<td>SND</td>
<td>38.26</td>
<td>140.90</td>
<td>374.6</td>
<td>24.8</td>
<td>JMA-59 (displacement)</td>
<td>JMA</td>
</tr>
</tbody>
</table>

*Depth to the top of the layer.
the analogy between the travel paths from the major asperities (Wald and Somerville, 1995) and from the 1990 Odawara earthquake. However, modeling the later phases following the direct surface waves using the flat-layered model proves ineffective and requires a two- or three-dimensional crustal model including the sedimentary basin (e.g., Kudo, 1980; Liu and Heaton, 1984; Vidale and Helmberger, 1988; Yamaoka et al., 1989, 1992; Toshinawa and Ohmachi, 1992; Kato et al., 1993; Hisada et al., 1993; Graves, 1993). This problem will be addressed in future work.

Waveform Modeling at Regional Stations

During the 1923 Kanto earthquake, relatively good-quality horizontal and vertical seismograms were obtained at station GIF, which is located about 220 km west of the epicenter (Fig. 1a). Therefore, it is important to estimate wave propagation path effects from the source region of the 1923 Kanto earthquake to station GIF. At this station, seismograms from the 1990 Odawara earthquake were also recorded by a JMA-59 type seismograph, which is a conventional electro-magnetic paper-recording seismograph (Table 6). The instrument constants of the JMA-59 type seismograph are T_0 (natural period) = 5 sec, h (damping constant) = 0.5, and v (magnification) = 100. In addition, high-quality data from the 1990 Odawara earthquake were recorded by broadband STS-1 seismometers (T_0 = 360 sec, h = 0.707) at the Inuyama observatory (INU) of Nagoya University, which is located about 20 km east of GIF station (Yamada et al., 1989) (see Fig. 1a and Table 6). Geologically, INU is a rock site, and most of the area between the epicenter of the 1990 Odawara earthquake and INU is exposed rock.

So far, numerous studies have demonstrated the effectiveness of broadband data for understanding the role of crustal structure in influencing regional and local ground motions (e.g., Helmberger et al., 1992b, 1993). Accordingly, we first use the broadband data from the 1990 Odawara earthquake to model the travel path from the southern Kanto district to station INU using a flat-layered model and then examine the adequacy of the velocity model for explaining the ground motions at station GIF, which is on thin sediments (Masaki and Iida, 1981, 1982; Sasaki et al., 1984).

Waveform Modeling at Station INU

Ukawa and Fukao (1981) determined one-dimensional P- and S-wave velocity structures beneath central Honshu, Japan, by the inversion of travel-time data from crustal and subcrustal earthquakes occurring in and around the Nagoya University Telemeter Network. They also pointed out that the V_p/V_s ratio of the upper crust is about 1.69, while it is 1.77 to 1.78 in the lower crust and the sub-Moho mantle. Based on their results, we constructed a flat-layered model called LU listed in Table 7. Ikami (1978) obtained a P-wave velocity profile along Sagami Bay to Inabu located about 50

Figure 9. Theoretical dispersion curves of the fundamental-mode Love and Rayleigh waves for velocity model LS for station INU in Table 7 and the velocity model for station SND in Table 8. The dotted and solid lines represent the phase and group velocities, respectively.

Figure 10. (a) Dispersion characteristics of the observed transverse-component displacement motion at station INU \((R = 191 \text{ km})\). The nonstationary spectrum is calculated by the multiple-filter technique. The solid line denotes the group delay time of the fundamental-mode Love wave for velocity model LS given in Table 7. The origin time is assumed to be 7:13:01.69 sec (GT). (b) Dispersion characteristics of the observed vertical-component displacement motion at station INU. The solid line denotes the group delay time of the fundamental-mode Rayleigh wave for velocity model LS given in Table 7.

km southeast of INU (see line b in Fig. 1a) from a seismic refraction survey. Based on the P-wave velocity profile around Inabu and the \(V_p/V_s\) ratios derived by Ukawa and Fukao (1981), we constructed a flat-layered model called LI listed in Table 7. Based on waveform modeling, we constructed another flat-layered model called LS listed in Table 7.

First, we compare the observed displacement waveforms bandpass filtered from 0.02 to 1.0 Hz with synthetic seismograms for the velocity models LU and LI calculated...
Estimates of Regional and Local Strong Motions during the Great 1923 Kanto, Japan, Earthquake (Ms 8.2). Part 1

Figure 11. The seismogram recorded by the JMA-59 type seismograph at station GIF (R = 214 km).

by the f-k method using the best-fitting source model obtained in this study (Fig. 8). The waveforms are plotted in absolute time with the NIED origin time listed in Table 1. On the radial and vertical components, the basic features of the PnP waves (Helmberger and Engen, 1980) in the synthetic seismograms for models LU and LI are somewhat different from those in the data. This discrepancy indicates inconsistency in the crust and uppermost mantle structures in an average sense. On the transverse component, the arrivals of the Sn (mantle head wave), SNS (reflection from the Moho), SIS (reflection from the Conrad), and SSmS (depth phase from the Moho) in the synthetic seismograms for velocity models LU and LI are about 1 or 2 sec faster than the data. This difference in arrival times is larger than the uncertainty in origin time of about 0.5 sec, as indicated in Table 1. The relative strengths of these SH pulses for the synthetics are also different from those in the data. This suggests that the S-wave velocities of the lower crust and/or the upper mantle should be slower. Moreover, the synthetic seismograms do not model the well-developed Love waves, and the synthetic Rayleigh waves arrive too early. Since surface waves are strongly controlled by the shallow part of the crust, this suggests that the velocities of the uppermost crust should be slower.

Based on the three-dimensional images of the velocity perturbations (Ishida and Hasemi, 1990; Lees and Ukawa, 1992; Zhao et al., 1994), the shallow seismic refraction experiments conducted in central Honshu (Sasatani et al., 1990; Matsu’ura et al., 1991) (see lines a and c in Fig. 1a), and the Vp/Vs ratios derived by Ukawa and Fukao (1981), we constructed a new flat-layered model and then tuned the model by trial and error so that both body and surface waveforms were reproduced. In the body-waveform modeling, we focused on relative and absolute travel times and relative amplitudes of the various major phases. In the surface-waveform modeling, we sought to explain the observed dispersion characteristics. As a result, in the period range of 0.02 to 1.0 Hz, the synthetic seismograms with the preferred model listed as model LS in Table 7 successfully reproduce not only the body waves but also the surface waves in terms of travel times, waveform characteristics, relative amplitudes of the various phases, and absolute amplitudes (Fig. 8). The major two SH peaks are caused by the reflected phase and the depth

Figure 12. Comparison between the three-component, whole waveform data (top traces) and the synthetic waveforms for velocity model LS (second traces) in Table 7 and velocity model LK (Nozawa et al., 1996) (bottom traces) in Table 10 at station GIF (R = 214 km). A bandpass filter from 0.067 to 0.33 Hz is applied to both the data and synthetics. The numbers above the traces are the absolute peak amplitudes in 10^{-3} cm. The origin time is assumed to be 7:13:01.69 sec (GT).
phase from the top of the lowermost crust with an S-wave velocity of 3.9 km/sec. These phases are labeled S_m-1S and sS_m-1S respectively in the synthetic seismograms in Figure 8. Figure 9 shows the theoretical dispersion curves of the fundamental-mode Love and Rayleigh waves for the preferred model LS. Figure 10 compares the observed dispersion characteristics on the transverse and vertical components using a multiple-filter technique with the theoretical group delay times of the fundamental-mode Love and Rayleigh waves, respectively. It is found that the fundamental mode is the dominant arrival for periods greater than 6 sec for both Love and Rayleigh waves.

Waveform Modeling at Station GIF

Figure 11 shows a copy of the original three-component displacement seismograms at station GIF recorded by the JMA-59 type seismograph from the 1990 Odarawa earthquake. We digitized these records at a rate of 10 samples/sec and carefully removed the distortion of the original records due to the mechanism of the recording system, including the instrument pen arc and the instrument response. Then we compared the data with the $f-k$ synthetic seismograms calculated using the preferred velocity model LS, which is constructed for station INU. In the comparison, both the data and the synthetics were bandpass filtered in the following manner. We fixed the cutoff frequency of the high-pass filter at 0.067 Hz considering the noise level, while we changed the cutoff frequency of the low-pass filter in order to identify the frequency range that is not affected by the local site conditions around station GIF. Figure 12 compares the three-component (N–S, E–W, and UD) waveform data (top traces) with the synthetic seismograms with a cutoff frequency of 0.33 Hz for the low-pass filter (second traces). They are in good agreement in terms of travel times, amplitudes, and waveforms for the main part of the seismograms. This result reveals that the preferred velocity model LS established at station INU can be used for simulation of the seismograms recorded at station GIF from the 1923 Kanto earthquake at periods greater than 3 sec and that broadband data are very effective for constructing a crustal structure model if a broadband station exists near the target station.

Waveform Modeling at Station SND

A seismogram from the 1923 Kanto earthquake was also recorded at the Mukaiyama observatory of Tohoku University in Sendai, which is located about 350 km north of the epicenter (Shiratori, 1924; Kudo, 1981; Kataoka and Sato; 1994; Takemura et al., 1995). Since this observatory was closed in 1931, seismograms from modern events are
Estimates of Regional and Local Strong Motions during the Great 1923 Kanto, Japan, Earthquake (Ms 8.2), Part 1

Figure 15. (a) Dispersion characteristics of the observed transverse-component displacement motion at station SND (R = 375 km). The nonstationary spectrum is calculated by the multiple-filter technique. The solid line denotes the group delay time of the fundamental-mode Love wave for the velocity model given in Table 8. The origin time is assumed to be 7:13:01.69 sec (GT). (b) Dispersion characteristics of the observed vertical-component displacement motion at station SND. The solid line denotes the group delay time of the fundamental-mode Rayleigh wave for the velocity model given in Table 8.

not available from the same station. However, seismograms recorded at the JMA Sendai (SND) station, which is located about 4 km northeast of the Mukaiyama observatory, are available for modern events (Table 6). Figure 13 shows a copy of the original three-component displacement seismograms recorded by the JMA-59 type seismograph at SND from the 1990 Odarawa earthquake. Although the quality of the data is not high, we digitized this record considering the importance of propagation path effects for modeling the recorded ground motions from the 1923 Kanto earthquake. The digitization procedure is the same as that used in the data recorded at station GIF. We rotated the horizontal (N-S and E-W) displacement data into the transverse and radial components, and bandpass filtered between 0.067 and 0.33 Hz considering the noise level and local site effects.

Table 8

<table>
<thead>
<tr>
<th>Depth (km)</th>
<th>Thickness (km)</th>
<th>Vp (km/sec)</th>
<th>Vs (km/sec)</th>
<th>ρ (g/cc)</th>
<th>Qp</th>
<th>Qt</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1.0</td>
<td>3.80</td>
<td>2.00</td>
<td>2.4</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>1.0</td>
<td>6.0</td>
<td>5.50</td>
<td>3.24</td>
<td>2.6</td>
<td>300</td>
<td>150</td>
</tr>
<tr>
<td>7.0</td>
<td>8.0</td>
<td>6.20</td>
<td>3.64</td>
<td>2.7</td>
<td>300</td>
<td>150</td>
</tr>
<tr>
<td>15.0</td>
<td>19.0</td>
<td>6.90</td>
<td>3.94</td>
<td>2.9</td>
<td>500</td>
<td>250</td>
</tr>
<tr>
<td>34.0</td>
<td></td>
<td>7.80</td>
<td>4.43</td>
<td>3.2</td>
<td>1000</td>
<td>500</td>
</tr>
</tbody>
</table>

*Depth to the top of the layer.

Based on recent tomographic images of the deep velocity structure derived by Zhao et al. (1992a, 1992b, 1994) and the Vp/Vs ratios derived by Ukawa and Fukao (1981), we constructed a flat-layered model along the travel path. Since there is no reliable information on the uppermost crust, we determined it by comparing the travel times and waveforms of observed surface waves with those of f-k synthetic seismograms. Figure 14 displays the results of the surface-waveform modeling, in which the NIED origin time is used. The synthetic waveforms from the preferred velocity model listed in Table 8 are in reasonable agreement with the data. The deviation of the amplitudes is within a factor of about 2. In Figure 9, the theoretical dispersion curves of the fundamental-mode Love and Rayleigh waves for the model for SND are displayed with those for station GIF. Regionalized velocity models are needed (e.g., Thio and Kanamori, 1995) since there are differences in dispersion characteristics from path to path. Figure 15 compares the observed dispersion characteristics of the transverse and vertical components using a multiple-filter technique with the theoretical group delay times of the fundamental-mode Love and Rayleigh waves, respectively. A good fit is obtained at periods greater than 6 to 7 sec. We believe that it is appropriate to use this preferred velocity model when we simulate the seismogram of the 1923 Kanto earthquake recorded at Mukaiyama observatory in our companion article (Sato et al., 1998).
Discussion and Conclusions

Effect of Source Mechanism on Waveform Modeling

We used the Odawara earthquake of 5 August 1990 ($M_{L} = 5.1$), which is the first magnitude 5 earthquake in the past 60 years near the hypocenter of the 1923 Kanto earthquake ($M_{S} = 8.2$), as a path-calibration event. The source parameters that we obtained for this event (a source depth of 15.3 km, a dip of 35°, a rake of 40°, a strike of 215°, a seismic moment of 3.3×10^{23} dyne-cm, a source duration of 0.65 sec, and a stress drop of 170 bars) are different from those of the previous solutions.

The contribution of the source mechanism on local seismograms is quite significant as Pitarka et al. (1994) pointed out. For example, at station HNG, the transverse-component synthetic waveforms for dip-slip type mechanisms (the IK92 and HRV CMT solutions) are much different from those for the other mechanisms and the data as shown in Figure 5d. If we use these solutions in estimating velocity models without re-estimating the source mechanism, we may obtain incorrect velocity models.

The source mechanism affects regional seismograms as well. Figure 16 compares synthetic waveforms for the various source mechanisms at station INU. The relative strengths of the phases $S_{m-1}S$ and $sS_{m-1}S$ with the dip-slip type mechanisms (the IK92 and HRV CMT solutions) are different from those of the data. Although strike-slip mechanisms (the NIED and JMA solutions) reproduce the relative strengths of the SH pulses on the transverse component, they do not provide a good explanation of the observed Pn phases on the radial and vertical components. Moreover, for the various source models, there are apparent differences in the arrival times of the wave packet that includes Rayleigh waves. In particular, this wave packet for the NIED solution arrives about 3 to 4 sec earlier than those for the data and the other mechanisms. If we had used the NIED solution (which was judged to be the most appropriate solution by Pitarka et al., 1994) in our surface-waveform modeling, we would have obtained a velocity structure model with slower-velocity uppermost layers. This demonstrates that path corrections require a well-calibrated source model.
Estimates of Regional and Local Strong Motions during the Great 1923 Kanto, Japan, Earthquake (Ms 8.2). Part 1

Table 9

<table>
<thead>
<tr>
<th>Model</th>
<th>Depth (km)*</th>
<th>Thickness (km)</th>
<th>Vp (km/sec)</th>
<th>Vs (km/sec)</th>
<th>Qp</th>
<th>Qs</th>
</tr>
</thead>
<tbody>
<tr>
<td>L4†</td>
<td>0.0</td>
<td>2.7</td>
<td>2.80</td>
<td>1.30</td>
<td>2.3</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>3.4</td>
<td>5.60</td>
<td>2.90</td>
<td>2.5</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>6.1</td>
<td>12.9</td>
<td>6.00</td>
<td>3.40</td>
<td>2.6</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>19.0</td>
<td>—</td>
<td>6.80</td>
<td>4.00</td>
<td>3.0</td>
<td>600</td>
</tr>
<tr>
<td>L5†</td>
<td>0.0</td>
<td>1.0</td>
<td>1.83</td>
<td>0.70</td>
<td>2.0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>1.7</td>
<td>2.80</td>
<td>1.30</td>
<td>2.3</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>3.4</td>
<td>5.60</td>
<td>2.90</td>
<td>2.5</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>6.1</td>
<td>12.9</td>
<td>6.00</td>
<td>3.40</td>
<td>2.6</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>19.0</td>
<td>—</td>
<td>6.80</td>
<td>4.00</td>
<td>3.0</td>
<td>600</td>
</tr>
<tr>
<td>Y1‡</td>
<td>0.0</td>
<td>1.1</td>
<td>1.83</td>
<td>0.60</td>
<td>1.8</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>1.1</td>
<td>0.9</td>
<td>3.24</td>
<td>1.19</td>
<td>2.2</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>2.1</td>
<td>4.76</td>
<td>2.53</td>
<td>2.4</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>4.1</td>
<td>7.9</td>
<td>5.60</td>
<td>2.90</td>
<td>2.5</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>12.0</td>
<td>12.0</td>
<td>6.15</td>
<td>3.40</td>
<td>2.7</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>24.0</td>
<td>10.0</td>
<td>6.70</td>
<td>3.70</td>
<td>2.9</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>34.0</td>
<td>—</td>
<td>7.50</td>
<td>4.30</td>
<td>3.2</td>
<td>1000</td>
</tr>
<tr>
<td>Y2‡</td>
<td>0.0</td>
<td>0.5</td>
<td>1.70</td>
<td>0.50</td>
<td>1.5</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>0.6</td>
<td>2.10</td>
<td>0.80</td>
<td>1.9</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>1.1</td>
<td>0.9</td>
<td>3.24</td>
<td>1.19</td>
<td>2.2</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>0.8</td>
<td>4.76</td>
<td>2.53</td>
<td>2.4</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>2.8</td>
<td>10.0</td>
<td>5.60</td>
<td>3.30</td>
<td>2.5</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>12.8</td>
<td>13.0</td>
<td>6.15</td>
<td>3.60</td>
<td>2.7</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>25.8</td>
<td>10.0</td>
<td>6.70</td>
<td>3.70</td>
<td>2.9</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>35.8</td>
<td>—</td>
<td>7.50</td>
<td>4.30</td>
<td>3.2</td>
<td>1000</td>
</tr>
</tbody>
</table>

*Depth to the top of the layer.
†Models L4 and L5 are the same as those used in Takeo and Kanamori (1992).
‡Models Y1 and Y2 are the same as the models 1 and 2 used in Yamazaki et al. (1992), except the Qp and Qs are our assumed values.

Comparison of Various Flat-Layered Models in the Southern Kanto District

The preferred velocity model for station HNG obtained in this study is used in the simulation of the seismograms of the 1923 Kanto earthquake recorded at station HNG in our companion article (Sato et al., 1992). In the southern Kanto district, several flat-layered models have been developed in previous studies. Here we investigate the sensitivity of these velocity models to synthetic waveforms at HNG.

Takeo and Kanamori (1992) used two velocity models L4 and L5 (Table 9) in the simulation of long-period ground motions at HNG from the 1923 Kanto earthquake. Model L4 was derived from the results of an explosion experiment that revealed the depth of bedrock beneath Tokyo (Research Group on Underground Structure in Tokyo, 1989) in conjunction with the velocity structure in Sagami Bay used in Yamanaka (1991). The model L5 introduces a soft sedimentary layer with an S-wave velocity of 0.7 km/sec in model L4.

Yamazaki et al. (1992) developed two velocity structure models Y1 and Y2 given in Table 9 from the observed dispersion characteristics of surface waves in the Kanto Plain. Model Y2 is characterized by its thinner sedimentary layers above bedrock than model Y1. Yamazaki et al. (1992) showed that model Y1 is applicable as an average velocity structure between HNG and the Koto area in the central part of the Kanto plain, while model Y2 can be used as an average velocity structure for the western part of the Kanto plain including station ASK. Kinoshita et al. (1992) showed that the dispersion characteristics from model Y1 are consistent with the results from the array observation of surface waves in the Koto area.

Figure 17 compares the recorded waveforms of the 1990 Odawara earthquake with synthetic seismograms using various structure models at station HNG. These waveforms are bandpass filtered between 0.10 and 0.33 Hz. The waveforms from the preferred model obtained in this study show the best agreement with the data. Models L5 and Y1 cannot reproduce the data well, while models L4 and Y2 work fairly well. This result reveals the importance of modeling the sedimentary layers shallower than a few kilometers.

Comparison of the Preferred Velocity Model with the Previous Velocity Model for Station GIF

Using Love waves generated by the 1974 Izu-Hanto-Oki earthquake (Mw 6.9) and the 1980 Izu-Hanto-Tohoku earthquake (Mw 6.7) (see Fig. 1), Nozawa et al. (1996) recently estimated a flat-layered model (LK) along the central and southern Izu Peninsula to station GIF (Table 10). The third traces in Figure 12 represent waveforms calculated using the LK model at GIF. The synthetic surface waves for the LK model are delayed with respect to both the data and the synthetic seismograms for the preferred model obtained in this study. In particular, the synthetic Love waves calculated using the LK model are delayed about half of a wavelength compared with the data. One of the reasons may be that since the travel path along the central and southern Izu Peninsula to station GIF is across Suruga Bay, the waveforms are affected by slower velocity layers in Suruga Bay (Hasegawa et al., 1989). We believe that the 1990 Odawara earthquake is more suitable as a calibration event for the 1923 great Kanto earthquake than the Izu earthquakes since the hypocenter of the 1990 Odawara earthquake is much closer to the hypocenter and the locations of large asperities of the

Table 10

<table>
<thead>
<tr>
<th>Model</th>
<th>Depth (km)*</th>
<th>Thickness (km)</th>
<th>Vp (km/sec)</th>
<th>Vs (km/sec)</th>
<th>Qp</th>
<th>Qs</th>
</tr>
</thead>
<tbody>
<tr>
<td>LK†</td>
<td>0.0</td>
<td>2.5</td>
<td>3.90</td>
<td>2.20</td>
<td>2.5</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>1.0</td>
<td>5.10</td>
<td>2.70</td>
<td>2.6</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>3.5</td>
<td>12.5</td>
<td>6.00</td>
<td>3.50</td>
<td>2.7</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>16.0</td>
<td>16.0</td>
<td>6.80</td>
<td>3.80</td>
<td>2.9</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>32.0</td>
<td>—</td>
<td>7.60</td>
<td>4.25</td>
<td>3.1</td>
<td>1000</td>
</tr>
</tbody>
</table>

*Depth to the top of the layer.
†This model is the same as that used in Nozawa et al. (1995), except the Qp and Qs values are our assumed values.
1923 Kanto earthquake (Wald and Somerville, 1995) than those of the Izu earthquakes.

We believe that the path-specific flat-layered velocity models for stations HNG, GIF, and SND (Tables 4, 7, and 8) developed in this study can be used to simulate seismograms including direct surface waves at periods greater than about 3 sec, which were recorded at these stations from the 1923 Kanto earthquake in the companion article (Sato et al., 1998).

Acknowledgments

This study was done while one of the authors (T.S.) was a visiting associate at the Seismological Laboratory, California Institute of Technology on leave from Izumi Research Institute, Shimizu Corporation. We would like to express our gratitude to Mr. S. Kataoka (Shimizu Corporation) for informative interactions through the period of this project. We would like to thank Drs. K. Kudo (Earthquake Research Institute, the University of Tokyo), S. Zama (Fire Research Institute, Ministry of Home Affairs), and K. Seo and T. Samano (Tokyo Institute of Technology) for providing us with the strong-motion data. We would like to thank Drs. K. Yamaoka and K. Ishihara (Nagoya University) for providing us with the STS-1 broadband data. We are grateful to Drs. F. Kusano and H. Suzuki and other staff members of the Japan Meteorological Agency for providing us with copies of the original recordings of the strong-motion data. We would like to thank Dr. S. Hori (National Research Institute for Earth Science and Disaster Prevention) for providing us with the information on the source mechanism. We are especially grateful to Dr. M. Takemura (Kajima Corporation) for providing us with his articles on the 1923 Kanto earthquake. We are also grateful to Drs. H. Kanamori (California Institute of Technology), M. Kikuchi (Yokohama City University), M. Ishida (National Research Institute for Earth Science and Disaster Prevention), D. Wald (U.S. Geological Survey), D. Zhao (Washington University), X. Song (California Institute of Technology), and A. Pitarka (Kyoto University) for valuable discussions. Finally, we thank Drs. Arthur F. McGarr and John E. Vidale and an anonymous reviewer for their comments that helped improve the manuscript.

References

Estimates of Regional and Local Strong Motions during the Great 1923 Kanto, Japan, Earthquake (Ms 8.2). Part 1

Izumi Research Institute
Shimizu Corporation
Fukoku-seimei Bldg.
2-2-2 Uchisaiwai-cho, Chiyoda-ku
Tokyo 100-0011, Japan

Seismological Laboratory 252-21
California Institute of Technology
Pasadena, California 91125
(D.V.H.)

Woodward-Clyde
566 E1 Dorado Street
Pasadena, California 91101
(P.G.S., R.W.G., C.K.S.)

Manuscript received 25 April 1996.