SENSITIVITY OF LOW-ENERGY PION-NUCLEON SCATTERING TO A PION-PION RESONANCE

S. C. Frautschi

Department of Physics, University of California, Berkeley, California

(Received July 26, 1960)

Recently attention has been called to the possibility of explaining nucleon electromagnetic structure quantitatively by the introduction of a pion-pion resonance in the $T = 1$, $J = 1$ state. Such a resonance should also affect pion-nucleon scattering. General expressions relating pion-nucleon to pion-pion scattering within the framework of double dispersion relations have been developed, and some detailed applications have been made to low-energy $\pi-N$ scattering. In particular, it has been found that the $P_{\pi N}$ pion-nucleon resonance is insensitive to pion-pion scattering. However, the applications made to date have not been entirely satisfactory because the short-range $\pi-N$ interaction is not well understood.

In this Letter we wish to point out that in $\pi-N$ scattering the $J = 1/2$, P states are extremely sensitive to the $\pi-\pi$ resonance. The $\pi-\pi$ contribution to these states near threshold is greater than the contribution to the $P_{T=3/2, J=3/2}$ state, roughly in the ratio

$$P_{T=3/2, J=3/2}:P_{T=1/2, J=1/2}:P_{T=1/2, J=3/2}:P_{T=3/2, J=3/2} \approx 9:4.5:2:1.$$

We further wish to argue that the $\pi-\pi$ resonance parameters which fit the nucleon electromagnetic structure make it difficult to obtain agreement with experiment in several $\pi-N$ scattering states. This conclusion is especially strong in the $P_{T=1/2}$ state where, in addition to being large, the $\pi-\pi$ contribution represents an attractive, long-range interaction which should lead to a large positive phase shift no matter what form the unknown short-range interaction may take.

Let us consider the $J = 1/2$, P-state amplitude,

$$f_{J=1/2}^P(W) = (q/\mu)^{-3} e^{i\delta} \sin\delta,$$

where W and q are the total energy and the pion momentum in the center-of-mass system. In Table I we list the contribution to f at threshold.

Table I. Comparison of Chew-Low theory, and Frazer-Fulco $\pi-\pi$ resonance contribution, with $\pi-N$ scattering experiments for the $J=1/2$, P amplitudes f [Eq. (1)] at threshold. The experimental numbers are from the 1958 CERN conference.

<table>
<thead>
<tr>
<th></th>
<th>Chew-Low</th>
<th>$\pi-\pi$</th>
<th>Total</th>
<th>Exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_{1/2}^P(T=1/2)$</td>
<td>-0.14</td>
<td>+0.41</td>
<td>+0.27</td>
<td>-0.038 ± 0.038</td>
</tr>
<tr>
<td>$f_{1/2}^P(T=3/2)$</td>
<td>0.035</td>
<td>-0.21</td>
<td>-0.245</td>
<td>-0.044 ± 0.005</td>
</tr>
</tbody>
</table>

from the well-known Chew–Low theory, and the additional contribution we obtain from \(\pi^{-}\pi \) resonance scattering in the \(N + \bar{N} \rightarrow 2\pi \) channel as calculated within the framework of double dispersion relations. Since the \(\pi^{-}\pi \) contribution is unfamiliar and crucial to our argument, it is necessary to give some details concerning it. By the procedures of reference 5 it can be expressed as

\[
\pi^{-}\pi \int \frac{P}{f_{J=1/2}^{T=1/2}} = \frac{(-2)}{3\pi f_{R}^{M+\mu}} \mu^{3} \frac{t_{R}^{M+\mu}}{t_{R}^{M}} \times \left[2\gamma_{1}(6 + \frac{3\mu}{M} + \frac{8M\mu}{t_{R}}) + \gamma_{2}(16 + \frac{24\mu}{M} + \frac{3t_{R}}{M^{2}}) \right],
\]

(2)

where \(M \) and \(\mu \) are the nucleon and pion masses, \(t_{R} \) is the energy of the \(\pi^{-}\pi \) resonance, and the \(\gamma_{i} \) are related to the nucleon electromagnetic spectral functions\(^{1}\) \(g_{2}^{V} \) and the \(\pi^{-}\pi \) form factor\(^{1}\) \(F_{\pi}^{2} \) by

\[
\gamma_{1} = -8\pi \left(\frac{g_{1}^{V}(t_{R})}{|F_{\pi}^{2}(t_{R})|^{2}} \right) \left(1 - \frac{4\mu^{2}}{t_{R}} \right)^{-3/2},
\]

(3)

\[
\gamma_{2} = -8\pi \left(\frac{Mg_{2}^{V}(t_{R})}{|F_{\pi}^{2}(t_{R})|^{2}} \right) \left(1 - \frac{4\mu^{2}}{t_{R}} \right)^{-3/2},
\]

(4)

We shall use the \(\pi^{-}\pi \) resonance width and position \((t_{R} = 11.5\mu^{2})\) with which Frazer and Fulco obtained the best results for nucleon electromagnetic structure. According to their work\(^{2}\) the \(\pi^{-}\pi \) resonance essentially contributes a factor \(|F_{\pi}^{2}|^{2}\) to the "magnetic" spectral function \(g_{2}^{V} \), and we can estimate \(g_{2}^{V}/|F_{\pi}^{2}|^{2} \) in (4) quite accurately from the value which it takes in the absence of \(\pi^{-}\pi \) scattering.\(^{7}\) We estimate the "charge" term \(g_{1}^{V}/|F_{\pi}^{2}|^{2} \) in the same way, although the estimate is less reliable in this case. With this procedure, 2/3 of the numerical value of Eq. (2) is given by the "magnetic" contribution, so that our results are not especially sensitive to the uncertainty in \(g_{2}^{V} \). We find that \(\gamma_{1} = -6.9 \) and \(\gamma_{2} = -15.6 \), which leads to the \(\pi^{-}\pi \) results in Table I.

The \(\pi^{-}\pi \) terms we have obtained at threshold appear to be much too large, and we proceed to strengthen this conclusion by some further consideration of the \(P_{\pi^{-}\pi,\nu \bar{\nu}} \) amplitude. When the quantities in Table I are calculated at energies above threshold, we find that the \(P_{\pi^{-}\pi,\nu \bar{\nu}} \) amplitude passes through resonance at less than 200-Mev kinetic energy, and that at this energy the attractive \(\pi^{-}\pi \) contribution is at least 5 times the repulsive Chew–Low contribution. A closer analysis, of the type carried out in reference 5, can be made. Such analysis shows that the contributions we have considered in this Letter are dominated by the nearest singularities in the complex energy plane, which correspond to the longest range interactions in the problem, and that the terms we have not taken into account are of shorter range. Crude estimates of the short-range effects indicate they are attractive, but the main point is that even if other factors lead to a net "repulsive core," the attraction which we have found at longer ranges should still produce a large net positive phase shift. Thus the Frazer–Fulco resonance leads to a low-energy \(P_{\pi^{-}\pi,\nu \bar{\nu}} \) amplitude which is in disagreement with experiment.

We place somewhat less weight on the apparent disagreement in the \(P_{\pi^{-}\pi,\nu \bar{\nu}} \) state (Table I), because an attraction in the unknown short-range region could conceivably bring about agreement in this case.

Frazer and Fulco\(^{3}\) found that the nucleon electromagnetic structure does not determine the \(\pi^{-}\pi \) resonance parameters very precisely, so we must consider variations of the resonance width and energy. The quantities \(\gamma_{1} \) and \(\gamma_{2} \) are nearly constant over the range of parameters which are consistent with the electromagnetic data. It then follows from Eq. (2) that the \(\pi^{-}\pi \) contribution varies \(\sim t_{R}^{-2} \). The "range" of the \(\pi^{-}\pi \) contribution also decreases \(\sim t_{R}^{-1} \). Thus, although the discrepancy in the \(P_{\pi^{-}\pi,\nu \bar{\nu}} \) state persists at larger \(t_{R} \), it becomes smaller and the argument concerning the "range of interaction" becomes weaker. It is also possible that the \(\pi^{-}\pi \) channel is more complicated than has been imagined; for example, the existence of a \(3\pi \) bound state\(^{3}\) might force a re-examination of all the previous work on \(\pi^{-}\pi \) effects.

Turning now to the recent work of Bowcock et al.\(^{4}\) (B), we wish to argue that although these authors obtained a \(\pi^{-}\pi \) contribution about 8 times smaller than that in Table I, their work actually strengthens our conclusion. There are two main factors which account for their smaller \(\pi^{-}\pi \) term:

(i) The authors of B worked at \(t_{R} = 22.4\mu^{2} \), which is double our value and halves the \(\pi^{-}\pi \) contribution as explained above.

(ii) The remaining factor of \(\sim 4 \) arises because the \(\pi^{-}\pi \) resonance width was determined by different criteria in B than in Frazer and Fulco.

In our work, following Frazer and Fulco,\(^{3}\) the
\(\pi^-\pi^- \) resonance width is determined by the anomalous magnetic moment. In B, no attempt is made to fit the magnetic moment. Instead, the resonance width is fit to the \(\pi^-N \) S-wave energy dependence (the S-wave thresholds are taken from experiment, and then the more long-range-dependent curvature above threshold is calculated). This procedure leads to a much narrower resonance than the Frazer-Fulco treatment would give at \(t_R = 22.4 \mu^2 \), and if the anomalous moment were calculated at \(t_R = 22.4 \mu^2 \) with this narrow resonance it would come out much too large. When the fit to the energy dependence of the nucleon form factors is made, the narrow resonance width is responsible for the above-mentioned factor of 4 reduction of the \(N + \bar{N} \rightarrow 2\pi \) amplitude in B.

Thus the moderate \(\pi^-\pi^- \) contributions in B are obtained at the expense of failing to explain the nucleon magnetic moment; if the \(\pi^-\pi^- \) resonance were fit to the magnetic moment the work in B indicates that the \(\pi^-N \) S state as well as \(J = 1/2, \) \(P \) state would disagree with experiment.

The early stages of this work were carried out in collaboration with Dr. J. D. Walecka. Discussions with Dr. G. F. Chew, Dr. S. Mandelstam, and Dr. W. R. Frazer were also helpful.

*Supported by the National Science Foundation. This paper was written while the author was a guest at the Latin American Summer School of Physics, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, June 27–August 7, 1960.

4J. Bowcock, W. N. Cottingham, and D. Lurie (to be published). Hereafter called B.
5C. Frautschi and J. D. Walecka, Phys. Rev. (to be published).
6We give here the minimum ratio of \(J = 1/2 \) to \(J = 3/2 \) contributions, which holds at high \(\pi^-\pi^- \) resonance energies \(t_R \) such as \(t_R \sim 22 \mu^2 \); at lower \(t_R \) the preponderance of \(P^2_2, \pi^2 \) over \(P^2_2, \pi^2 \) increases. These ratios follow from Eq. (2) together with results from reference 5, and agree approximately with the static limit used in reference 4.

SINGLE PION PRODUCTION IN 0.96-Bev \(\pi^-+p \) INTERACTIONS*

E. Pickup†

Division of Pure Physics, National Research Laboratory, Ottawa, Ontario

and

F. Ayer and E. O. Salant

Brookhaven National Laboratory, Upton, New York

(Received July 27, 1960)

Photographs of interactions in a hydrogen bubble chamber (field 13.5 kilogauss) irradiated by 0.96-Bev negative pions from the Cosmotron were kindly supplied by Professor Steinberger. We have measured and analyzed 415 events of the neutron reaction

\[\pi^- + p \rightarrow n + \pi^+ + \pi^-; \]

and 267 events of the proton reaction

\[\pi^- + p \rightarrow p + \pi^0 + \pi^- \].

Experimental values quoted in this Letter all refer to the barycentric system.

Alles-Borelli, Bergia, Ferreira, and Waloscik have shown, from measurements of other photo-graphs in the same irradiation, evidence for the presence of a resonant state \(T = J = 3/2 \); effects of this state have been calculated by Lindenbaum and Sternheimer.

If this were the only resonant state involved, fast negative pions ("fast" designating a momentum \(\geq 325 \text{ Mev/c} \) would originate mostly as recoils from \((n\pi^+)\text{lab} \) or \((p\pi^-)\text{lab} \); they would, accordingly, have the same angular distribution in both reactions, and (from Clebsch-Gordan coefficients) would be twice as numerous in the proton as in the neutron reaction. Figure 1 shows that the angular distributions are quite different, and the observed ratio of proton to neutron events with fast \(\pi^- \) is \(0.9 \pm 0.2 \). It follows then, that at

161