Ion solvation in liquid mixtures: effects of solvent reorganization

Issei Nakamura,1 An-Chang Shi,2 and Zhen-Gang Wang1
1Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
2Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4L8, Canada

SUPPLEMENTARY MATERIAL

In this Supplementary Material, we provide some details of the derivation of the key equations in our theory [Eqs. (4)-(8) in the main text]. We first introduce the coarse-grained number density field $n_s(\vec{r})$ for the solvents ($s = A$ and B) via the identity

\[
1 = \int Dn_s \delta[\tilde{n}_s(\vec{r}) - n_s(\vec{r})] = \int Dn_s D\omega_s \exp\left\{ i \int d\vec{r}' \omega_s(\vec{r}) \{ \tilde{n}_s(\vec{r}) - n_s(\vec{r}) \} \right\}, \tag{S1}
\]

where the right-hand side of the equation arises from the Fourier representation of the δ-function with $\omega_s(\vec{r})$ being the Fourier conjugate field to $n_s(\vec{r})$. A similar procedure is performed for the total charge density $\tilde{\rho}(\vec{r})$, which introduces the conjugate field $\psi(\vec{r})$.

The partition function Z [Eq. (1) in the main text] can then be cast into a functional integral of the general form,

\[
Z = \int D\rho Dn_A Dn_B D\psi D\omega_A D\omega_B \delta \left[\sum_{s=A,B} v_s n_s(\vec{r}) - 1 \right] \exp \left\{ -\frac{1}{2} \int d\vec{r} d\vec{r}' \rho(\vec{r}) v(\vec{r} - \vec{r}') \rho(\vec{r}') + i \int d\vec{r} \rho(\vec{r}) \psi(\vec{r}) - i z \psi(0) + i \sum_{s=A,B} \int d\vec{r} n_s(\vec{r}) \omega_s(\vec{r}) \right\} \prod_{N_A, N_B} \prod_{s=A,B} \int d\vec{r} d\vec{p} \exp \left\{ -i \sum_{s=A,B} \sum_{i=1}^{N_s} [\omega_s(\vec{r}_si) + \vec{p}_si \cdot \nabla \psi(\vec{r}_si)] \right\} \]. \tag{S2}

Note that because of the identity operator, Eq. (S1), the instantaneous particle density $\tilde{n}_s(\vec{r})$ is replaced by the coarse-grained (average) density $n_s(\vec{r})$. Furthermore, we have made use of the identity

\[
\int d\vec{r} \tilde{n}_s(\vec{r}) \omega_s(\vec{r}) = \int d\vec{r} \sum_{i=1}^{N_s} \delta(\vec{r} - \vec{r}_si) \omega_s(\vec{r}) = \sum_{i=1}^{N_s} \omega_s(\vec{r}_si), \tag{S3}
\]

and have performed the summation over the particle number using the identity, $\sum_{N=0}^{\infty} (x^N / N!) = e^x$.

Performing the Gaussian integral over the charge density fields $\rho(\vec{r})$ (the Hubbard-Stratonovich transformation) transforms the Coulomb interaction term to

\[
\int D\rho \exp \left\{ -\frac{1}{2} \int d\vec{r} d\vec{r}' \rho(\vec{r}) v(\vec{r} - \vec{r}') \rho(\vec{r}') + i \int d\vec{r} \rho(\vec{r}) \psi(\vec{r}) \right\} = N_v^{-1} \exp \left\{ \frac{1}{2} \int d\vec{r} d\vec{r}' v^{-1}(\vec{r} - \vec{r}') \psi(\vec{r}) \psi(\vec{r}') \right\}, \tag{S4}
\]

where $v^{-1}(\vec{r} - \vec{r}')$ is the inverse of the Coulomb operator $v^{-1}(\vec{r} - \vec{r}') = -(4\pi \varepsilon_0)^{-1} \nabla^2 \delta(\vec{r} - \vec{r}')$. N_v is the thermodynamically inconsequential normalization term due to the Gaussian functional integral. Thus, Eq. (S2) can be written in the form,

\[
Z = \int Dn_A Dn_B D\psi D\omega_A D\omega_B \delta \left[\sum_{s=A,B} v_s n_s(\vec{r}) - 1 \right] \exp(-F), \tag{S5}
\]
where the free energy functional of the system F is

$$F = \frac{1}{8\pi l_0} \int d\vec{r} \psi(\vec{r}) \nabla^2 \psi(\vec{r}) + z\psi(0) - \sum_{s=A,B} \int d\vec{r} \left[n_s \omega_s(\vec{r}) + \lambda_s e^{-\omega_s(\vec{r})} I_s(\vec{r}) \right]. \quad (S6)$$

In the above expression, we have replaced $i\psi(\vec{r})$ and $i\omega_s(\vec{r})$ by $\psi(\vec{r})$ and $\omega_s(\vec{r})$ in anticipation of the fact that the saddle point values of the original fields $\psi(\vec{r})$ and $\omega_s(\vec{r})$ are purely imaginary.

Making the saddle-point approximation, $\delta F/\delta \psi = 0$, using Eq. (S6) leads to the following self-consistent field equation,

$$\nabla^2 \psi(\vec{r}) - 4\pi l_0 \sum_{p=A,B} \int d\vec{r} \lambda_p e^{-\omega_p(\vec{r})} \frac{\delta I_p(\vec{r})}{\delta \psi(\vec{r})} = -4\pi l_0 z \delta(\vec{r}). \quad (S7)$$

After calculating the functional derivative of $I_s(\vec{r})$, Eq. (S7) can be cast into Eqs. (6) and (7) in the main text.

Because of the δ-function in Eq. (S5), we have $\sum_{s=A,B} v_s n_s(\vec{r}) = 1$ for the incompressibility condition. This condition is used to solve for one of the density fields, say $n_B(\vec{r})$, in terms of the other density field $n_A(\vec{r})$, thus eliminating the functional integration over $n_B(\vec{r})$. For the remaining three field variables, we make the saddle-point approximation in evaluating the integral by setting $\delta F/\delta n_A = 0$ and $\delta F/\delta \omega_s = 0$ ($s = A, B$), to result in the equations, $\omega_B(\vec{r}) = (v_B/v_A) \omega_A(\vec{r})$ and $n_s(\vec{r}) = \lambda_s e^{-\omega_s(\vec{r})} I_s(\vec{r})$. Combining the latter equation for $n_s(\vec{r})$ with the incompressibility condition $\sum_s v_s n_s(\vec{r}) = 1$ leads to Eq. (8) in the main text.