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Abstract—The sequence-reconstruction problem was first pro-
posed by Levenshtein in 2001. This problem studies the model
where the same word is transmitted over multiple channels. If
the transmitted word belongs to some code of minimum distance
d and there are at most r errors in every channel, then the min-
imum number of channels that guarantees a successful decoder
(under the assumption that all channel outputs are distinct) has
to be greater than the largest intersection of two balls of radius
r and with distance at least d between their centers.

This paper studies the combinatorial problem of computing
the largest intersection of two balls for two cases. In the first
part we solve this problem in the Grassmann graph for all val-
ues of d and r. In the second part we derive similar results for
permutations under Kendall’s τ-metric for some special cases of
d and r.

I. INTRODUCTION

The sequence-reconstruction problem was first proposed by
Levenshtein in [10], [11]. In this setup, a codeword is trans-
mitted through multiple channels and the decoder’s task is to
decode the transmitted codeword once it receives all the out-
put transmissions. Levenshtein studied the minimum number
of transmission channels which guarantees the existence of
a successful decoder, under the assumption that all channel
outputs are distinct. More specifically, assume that all words
belong to some space V. Let ρ be a distance metric over the
words in V. Assume the transmitted word c belongs to some
code of minimum distance d and on every channel there are at
most r errors. Then the number of channels has to be greater
than the largest intersection of two balls where the distance
between their centers is at least d,

N(d, r) = max
x1,x2∈V

ρ(x1,x2)>d

{|Br(x1) ∩ Br(x2)|} , (1)

where Br(x) is the ball of radius r surrounding x, Br(x) =
{y ∈ V | ρ(x, y) 6 r} . We refer to the problem of finding
N(d, r) as the reconstruction problem.

Levenshtein studied the reconstruction problem for the
Hamming graph, the Johnson graph, and the case of dele-
tions and insertions. More results on the latter case were
given in [12] and reconstruction algorithms for this model
were presented in [1], [4], [18]. The deletion-only case
was explored in the context of trace reconstruction in [2].
The information-theoretic study of a special model of dele-
tions, applied for DNA sequences, was studied in [15], [16].
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In [6]–[8], this problem was analyzed over permutations, and
in [13], [14] for error graphs. Recently, this problem was ex-
tended in the context of associative memories [19]. In this
setup, the largest intersection of multiple balls was studied,
where the distance between all the centers is at most some
prescribed parameter. In the reconstruction model, this prob-
lem is equivalent to the required number of sequences in
order to output a list of some L words which contains the
transmitted word.

The reconstruction problem over permutations has received
considerable attention. In particular, in [6], [7] the case of per-
mutations with reversal errors was studied and in [8], [14] per-
mutations with transpositions errors were investigated. In [8],
Kendall’s τ-distance for permutations was briefly studied for
some very special cases of d = 1 and r = 1, 2.

In this work, we study the reconstruction problem for two
special cases. In the first part we find the value of N(d, r)
in the Grassmann graph for all values of d and r. The second
part is dedicated to derive similar results for permutations with
Kendall’s τ-distance. We give lower bounds on the value of
N(d, r) for d = 1, 2 and find the exact value when d = 2r
and r 6 n/4.

The rest of the paper is organized as follows. In Section II,
we formally define the problem and state some special prop-
erties which we use later on in the paper. In Section III, we
solve the problem for the Grassmann graph. Section IV stud-
ies the reconstruction problem for permutations with Kendall’s
τ-distance.

II. DEFINITIONS AND BASIC PROPERTIES

We follow the definitions as presented in [11] and are sum-
marized as follows. Let G = {V, E} be an undirected graph
with a finite set V of vertices and E is its set of edges. The path
metric of G is defined as a function ρ : V ×V → Z+ ∪ {∞}
such that for every u, v ∈ V, ρ(u, v) is the minimum number
of edges in a path connecting u and v, and ρ(u, v) = ∞ in
case such a path does not exist. For every v ∈ V the ball of
radius r centered in v is defined as

Br(v) = {u ∈ V | ρ(u, v) 6 r} ,

and the sphere of radius r centered in v is similarly defined
to be

Sr(v) = {u ∈ V | ρ(u, v) = r} .

Given two integers d and r, let I(G; d, r) be the size of
the largest intersection of two balls of radius r and distance d



between their centers. That is,

I(G; d, r) = max
u,v∈V

ρ(u,v)=d

|Br(u) ∩ Br(v)| .

Let N(G; d, r) be the size of the maximum intersection of two
balls of radius r and distance at least d between their centers,

N(G; d, r) = max
`>d

I(G; `, r).

A code C with minimum distance d is a subset C ⊆ G such
that u, v ∈ C and u 6= v imply ρ(u, v) > d. The elements
of C are called codewords. As is usually the case, we may
transmit a codeword c ∈ C over a channel and receive a cor-
rupted version of it y ∈ G. We say r errors occurred during
the process if ρ(c, y) = r.

Assume C is a code in G with minimum distance d and
a codeword c ∈ C is transmitted over N channels, where on
each channel there are at most r errors and all channel outputs
are different from each other. Then, it was shown by Leven-
shtein [11] that the minimum number of channels that guaran-
tees the existence of a decoder that will successfully decode
any transmitted codeword from C is given by N(G; d, r) + 1.

Note that in general the value of N(G; d, r) is not nec-
essarily achieved for ` = d, that is, it may happen that
I(G; d, r) < I(G; d′, r) when d < d′. (See for example the
case of permutations with transpositions errors for d = 1 and
d = 2 [14].) Levenshtein gave sufficient conditions, stated in
Lemma 6 in [11], for such a scenario to not happen. A graph
G is called monotone on intersections if for any d and r,
I(G; d, r) > I(G; d + 1, r). In this case, the following holds

N(G; d, r) = I(G; d, r) = max
u,v∈V

ρ(u,v)=d

|Br(u) ∩ Br(v)| .

Before we move on to the next sections, where we solve
the reconstruction problem, let us start with a useful lemma
for the case d = 1.

Lemma 1. Assume u, v ∈ V and ρ(u, v) = 1, then

Br(u) ∩ Br(v) = (Br−1(u) ∪ Br−1(v)) ∪ (Sr(u) ∩ Sr(v)).

Proof:
⊆: let w ∈ Br(u) ∩ Br(v), then ρ(w, u), ρ(w, v) 6 r. If

ρ(w, u) 6 r − 1 or ρ(w, v) 6 r − 1 then w ∈ Br−1(u) ∪
Br−1(v). Otherwise ρ(w, u) = ρ(w, v) = r so we get w ∈
Sr(u) ∩ Sr(v).
⊇: if w ∈ Br−1(u) then ρ(w, u) 6 r − 1 and ρ(w, v) 6

ρ(w, u) + ρ(u, v) 6 r, so Br−1(u) ⊆ Br(u) ∩ Br(v). Simi-
larly we get Br−1(v) ⊆ Br(u) ∩ Br(v). It is also clear that
Sr(u) ∩ Sr(v) ⊆ Br(u) ∩ Br(v).

III. THE RECONSTRUCTION PROBLEM OVER THE
GRASSMANN GRAPH

In this section we study the reconstruction problem over
the Grassmann graph. Let V be a vector space of dimension
n over GF(q). For any integer 0 6 k 6 n, we denote by [Vk ]

the set of all k-dimensional subspaces of V. The q-number of
k is defined as

[k]q = 1 + q + q2 + · · ·+ qk−1 =
qk − 1
q− 1

.

By abuse of notation we denote

[k]q! = [k]q[k− 1]q . . . [1]q.

The Gaussian coefficient is defined for n, k, and q as[
n
k

]
q
=

[n]q!
[k]q![n− k]q!

=
(qn − 1)(qn−1 − 1) . . . (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) . . . (q− 1)
.

It is well known that the number of k-dimensional subspaces
of an n-dimensional space over GF(q) is given by [nk]q. In a
more general form, the number of k′-dimensional subspaces
of V which intersect a given k-dimensional subspace of V in
an i-dimensional subspace is given by

q(k
′−i)(k−i)

[
n− k
k′ − i

]
q

[
k
i

]
q
.

The Grassmann graph, Gq(n, k) is defined by the vertex
set [Vk ], and two vertices are connected by an undirected edge
if their corresponding k-dimensional subspaces intersect in a
(k− 1)-dimensional subspace. This graph induces a distance
measure, denoted d(U, U′), which is simply the distance be-
tween U and U′ in Gq(n, k). The distance d(U, U′) can also
be expressed as k− dim(U ∩U′).

Given a vertex U ∈ Gq(n, k), the ball of radius r around
U is defined as

Br(U) =
{

U′ ∈ Gq(n, k) | d(U, U′) 6 r
}

,

and the sphere of radius r around U is defined as

Sr(U) =
{

U′ ∈ Gq(n, k) | d(U, U′) = r
}

.

The size of a ball and a sphere does not depend on the choice
of center, and we denote them, respectively, as

br =
r

∑
i=0

qi2
[

n− k
i

]
q

[
k
i

]
q
,

sr = qr2
[

n− k
r

]
q

[
k
r

]
q
.

We now move towards calculating the value of I(Gq(n, k); d, r)
for all values of d and r. We start in the next lemma.

Lemma 2. Let n > k > d > 1 be integers, and let
U1, U2 ∈ Gq(n, k) be two k-dimensional subspaces such that
d(U1, U2) = d. Let i∗, i∗, i1, and i2, be non-negative integers.
Then the number of subspaces W of dimension k that satisfy:

1) dim(W ∩U1) = i1
2) dim(W ∩U2) = i2
3) dim(W ∩ (U1 + U2)) = i∗
4) dim(W ∩ (U1 ∩U2)) = i∗



is given by

ξ(i∗, i1, i2, i∗) = q(k−d−i∗)(i∗−i∗)+(k+d−i∗)(k−i∗)+(
i∗−i1−i2+i∗

2 )

· (q− 1)i∗−i1−i2+i∗ [i∗ − i1 − i2 + i∗]q!

·
[

k− d
i∗

]
q

[
d

i1 − i∗

]
q

[
d

i2 − i∗

]
q

[
n− k− d

k− i∗

]
q

·
[

d− i1 + i∗
i∗ − i1 − i2 + i∗

]
q

[
d− i2 + i∗

i∗ − i1 − i2 + i∗

]
q

Proof: For convenience, let us denote

A = U1 ∩U2 B1 = U1 \U2 B2 = U2 \U1

We note that A is a (k− d)-dimensional subspace, U1 + U2
is a (k + d)-dimensional subspace, and |B1| = |B2| = qk −
qk−d. We shall now count the number of subspaces W satis-
fying the above constraints.

We start choosing a basis for W by picking i∗ linearly-
independent vectors from A. The number of ways of doing so
is

P∗ =
i∗−1

∏
j=0

(qk−d − qj).

We now need to extend this basis by picking i1 − i∗ basis
vectors from B1 so that dim(W ∩ U1) = i1. This may be
done in

P1 =
i1−i∗−1

∏
j=0

(qk − qk−d+j)

ways. Similarly, we extend the basis by choosing vectors from
B2 in

P2 =
i2−i∗−1

∏
j=0

(qk − qk−d+j)

ways.
We continue by choosing i∗− i1− i2 + i∗ basis vectors from

U1 + U2, while being careful not to change the previous in-
tersections. An analysis we omit due to space limitation gives
the number of ways of doing so as

P∗ = q(k−d)(i∗−i1−i2+i∗) ·
i∗−i1−i2+i∗−1

∏
j=0

(qd− qi1−i∗+j)(qd− qi2−i∗+j).

Finally, we need to choose k− i∗ basis vectors from outside
of U1 + U2. This may be easily done in

P′ =
k−i∗−1

∏
j=0

(qn − qk+d+j)

ways. Thus, the total number of bases is given by
P = P∗P1P2P∗P′.

We are interested in counting subspaces, and the counting
done so far is obviously an over-counting since the order of
elements in a basis is irrelevant, and several bases may pro-
duce the same subspace. We shall correct by dividing by the
over-counting factor. The over-counting factor for the part of
the basis that is in A is given by

Q∗ =
i∗−1

∏
j=0

(qi∗ − qj),

since every i∗ dimensional subspace of A contains that many
ordered bases. In a similar manner we have:

Q1 =
i1−i∗−1

∏
j=0

(qi1 − qi∗+j)

Q2 =
i2−i∗−1

∏
j=0

(qi2 − qi∗+j)

Q∗ =
i∗−i1−i2+i∗−1

∏
j=0

(qi∗ − qi1+i2−i∗+j)

Q′ =
k−i∗−1

∏
j=0

(qk − qi∗+j)

and we define Q = Q∗Q1Q2Q∗Q′. A tedious rearrangement
of P/Q gives the desired result.

According to the last lemma, we are now ready to find the
value of I(Gq(n, k); d, r) for all d and r.

Theorem 3. Let n > k > d > 1 be integers, then

I(Gq(n, k); d, r) = ∑
i∗ ,i∗

06r1,r26r

ξ(i∗, k− r1, k− r2, i∗).

We note that it is possible to show using the conditions in
Lemma 6 from [12] that the graph Gq(n, k) is monotone on
intersections. Therefore, we conclude that N(Gq(n, k); d, r) =
I(Gq(n, k); d, r) for all d and r.

IV. THE RECONSTRUCTION PROBLEM FOR
PERMUTATIONS WITH KENDALL’S τ-METRIC

Let Sn denote the set of all n! permutations of n elements,
conveniently chosen to be {1, 2, . . . , n}. We shall use the vec-
tor notation to denote a permutation π = [π1, π2, . . . , πn]
mapping i 7→ πi. An adjacent transposition of a permutation
σ ∈ Sn is the local exchange of two adjacent elements in σ.
For every two permutations σ, π ∈ Sn, dτ(σ, π) denotes the
minimal number of adjacent transpositions needed to change
σ into π. This distance measure induces a metric over Sn and
is called Kendall’s τ-metric in statistics [5] or the bubble-sort
distance. The graph Gτ(Sn) with the vertex set Sn is con-
structed such that its set of edges are all pairs of permutations
with Kendall’s τ-distance one. Kendall’s τ-metric is graphic,
i.e., the path metric ρ in Gτ(Sn) equals dτ .

It is well known that Kendall’s τ-distance between ev-
ery two permutations σ, π ∈ Sn can be expressed as
dτ(σ, π) = |{(i, j) | i < j, (σ−1(i) − σ−1(j))(π−1(i) −
π−1(j)) < 0}|. We let id be the identity permutation,
id = [1, 2, . . . , n]. For a permutation σ, we let Wτ(σ) ={
(i, j) | i < j, σ−1(i) > σ−1(j)

}
, and its weight is defined

as wτ(σ) = dτ(id, σ) = |Wτ(σ)|. It is also known that for
any two permutations σ, π, dτ(σ, π) = |Wτ(σ)4Wτ(π)| ,
where for any two sets A, B, A4B is the symmetric differ-
ence between A and B, that is, A4B = (A \ B) ∪ (B \ A)
and for finite sets |A4B| = |A|+ |B| − 2 |A ∩ B|.

For two permutations σ, π ∈ Sn, the product α = σπ is de-
fined according to the identity α(i) = σ(π(i)) for 1 6 i 6
n. Under this definition of product, Kendall’s τ-distance is



a left-invariant metric, that is, for all σ, π, β ∈ Sn, we have
dτ(σ, π) = dτ(βσ, βπ). In particular,

dτ(σ, π) = dτ(σ
−1σ, σ−1π) = dτ(id, σ−1π) = wτ(σ

−1π).

For 1 6 i 6 n− 1 the ith adjacent transposition, denoted
by εi, swaps the elements in positions i and i+ 1 and keeps all
other elements fixed. That is, εi(i) = i + 1, εi(i + 1) = i, and
for all other values j, εi(j) = j. The permutation σεi is the
permutation σ where the elements in positions i and i + 1 are
swapped, while in the permutation εiσ the elements labeled i
and i + 1 interchange their locations.

The ball of radius r, centered in σ ∈ Sn, is the
set Br(σ) = {π ∈ Sn | dτ(σ, π) 6 r}, and its size
is denoted by br. Similarly the sphere of radius r is
Sr(σ) = {π ∈ Sn | dτ(σ, π) = r}, and its size is sr.

We seek to study the values of I(Gτ(Sn); d, r) and
N(Gτ(Sn); d, r). In contrast to our previous analysis on
the Grassmann graph, we were not able to prove (or dis-
prove) for the Kendalls τ-distance that N(Gτ(Sn); d, r) =
I(Gτ(Sn); d, r) (i.e., we were not able to prove mono-
tonicity of Gτ(Sn) on intersections). We thus focus our
results on the analysis of I(Gτ(Sn); d, r) and in such obtain
lower bounds on N(Gτ(Sn); d, r). It was shown in [8] that
N(Gτ(Sn); 1, 1) = 2, N(Gτ(Sn); 1, 2) = 2(n− 1).

A. The case d = 1
In this section we study the case d = 1. In order to apply

Lemma 1, we first prove the following property.

Lemma 4. For any σ, π such that dτ(σ, π) = 1, we have
Sr(σ) ∩ Sr(π) = ∅.

Proof: Due to the left invariance of the metric, without
loss of generality, we can assume that σ = id. Hence, we
can assume that π = ε` for some 1 6 ` 6 n − 1, and so
Wτ(π) = {(`, `+ 1)}. Let α ∈ Sr(id) so wτ(α) = r. If
(`, ` + 1) ∈ Wτ(α) then dτ(α, π) = r − 1 and otherwise
dτ(α, π) = r + 1. In any event α /∈ Sr(π) and thus Sr(σ) ∩
Sr(π) = ∅.

We are now ready to show a recursive formula for the value
of I(Gτ(Sn); 1, r).

Theorem 5. For r > 2, the values of I(Sn; 1, r) satisfy the fol-
lowing recursive formula

I(Gτ(Sn); 1, r) = 2br−1 − I(Gτ(Sn); 1, r− 1),

where I(Gτ(Sn); 1, 1) = 2.

Proof: Let σ, π be two permutations such that dτ(σ, π) =
1. According to Lemma 1, we have that

Br(σ) ∩ Br(π) = (Br−1(σ) ∪ Br−1(π)) ∪ (Sr(σ) ∩ Sr(π)),

and together with Lemma 4 we get

Br(σ) ∩ Br(π) = Br−1(σ) ∪ Br−1(π).

Therefore we conclude the following recursive formula

|Br(σ) ∩ Br(π)| = |Br−1(σ) ∪ Br−1(π)|
= |Br−1(σ)|+ |Br−1(π)| − |Br−1(σ) ∩ Br−1(π)| .

If we apply it recursively r− 1 times we will get

|Br(σ) ∩ Br(π)| =
r−2

∑
i=1

(−1)i−1(|Br−i(σ)|+ |Br−i(π)|)

+ (−1)r−1 |B1(σ) ∩ B1(π)|

= 2
r−2

∑
i=1

(−1)i−1br−i + 2(−1)r−1

This also proves that for any other two permutations σ′, π′ ∈
Sn such that dτ(σ′, π′) = 1, we have

|Br(σ) ∩ Br(π)| =
∣∣Br(σ

′) ∩ Br(π
′)
∣∣ = I(Gτ(Sn); 1, r),

and in particular,

I(Gτ(Sn); 1, r) = 2br−1 − I(Gτ(Sn); 1, r− 1),

where I(Gτ(Sn); 1, 1) = 2.
Alternatively, it follows that

I(Gτ(Sn); 1, r) = 2br−1 − 2br−2 + 2br−3 · · ·

= 2
r−1

∑
i=1

(−1)i−1br−i

=

{
2 ∑
b r

2 c
i=1 sr+1−2i r is odd,

2 + 2 ∑
b r

2 c
i=1 sr+1−2i r is even.

If f (x) is a polynomial in x, the coefficient of xr in f (x) is
denoted by [xr] f (x). Muir [17] showed that sr, the size of a
sphere or radius r, is given by

sr = [xr]
n

∏
i=1

(xi−1 + xi−2 + · · ·+ 1) = [xr]
n

∏
i=1

1− xi

1− x
.

Thus, the size of a ball of radius r, br, is given by br =

[xr] 1
1−x ∏n

i=1
1−xi

1−x . Therefore, I(Gτ(Sn); 1, r) is given by

I(Gτ(Sn); 1, r) = [xr−1]
2

1− x2

n

∏
i=1

1− xi

1− x
.

B. The case d = 2

The case of d = 2 can be solved using the same methods
used for the case of d = 1. Specifically, we show that

Theorem 6. I(Gτ(Sn); 2, r) > I(Gτ(Sn); 1, r).

Assuming monotonicity of Gτ(Sn) on intersections would im-
ply that N(Gτ(Sn); 2, r) = I(Gτ(Sn); 2, r) = I(Gτ(Sn); 1, r) =
N(Gτ(Sn); 1, r). However, as stated previously, monotonicity
is left open in this work.

Given two permutations σ and π such that dτ(σ, π) = 2,
there are two options:

1) There is only a single permutation α such that dτ(σ, α) =
dτ(α, π) = 1.

2) There are two distinct permutations α, β such that
dτ(σ, α) = dτ(α, π) = dτ(σ, β) = dτ(β, π) = 1.

If the first option holds then we say that σ and π are of type
I, and otherwise, we say they are of type II.



Lemma 7. Assume σ, π satisfy dτ(σ, π) = 2 and they are
of type II. Let α, β be such that dτ(σ, α) = dτ(α, π) =
dτ(σ, β) = dτ(β, π) = 1. Then the following holds

Br(σ) ∩ Br(π) = Br−1(α) ∪ Br−1(β).

Proof: ⊆: Using the left invariance of the metric, we
can, without loss of generality, assume that σ = id and π =
(1 · · · i− 1, i + 1, i, · · · , j− 1, j + 1, j, · · · , n) = εiεj, where
|i− j| > 2. In this case, we have that α = εi and β = εj.
Assume that γ ∈ Br(id)∩ Br(π). Then, the weight of the per-
mutation γ is at most r. Now, consider the following cases:

1) If (i, i + 1) ∈Wτ(γ), then dτ(γ, α) 6 r− 1.
2) If (j, j + 1) ∈Wτ(γ), then dτ(γ, β) 6 r− 1.
3) If (i, i + 1) /∈ Wτ(γ) and (j, j + 1) /∈ Wτ(γ), then

wτ(γ) 6 r − 2 (since dτ(γ, π) 6 r), and thus
dτ(γ, α), dτ(γ, β) 6 r− 1.

Combining all the cases we get γ ∈ Br−1(α) ∪ Br−1(β).
⊇: if γ ∈ Br−1(α) then since dτ(σ, α) = 1, we have that

dτ(γ, σ) 6 dτ(γ, α) + dτ(α, σ) 6 r. Similarly, dτ(γ, π) 6 r,
thus γ ∈ Br(σ) ∩ Br(π) and Br−1(α) ⊆ Br(σ) ∩ Br(π). In
the same way Br−1(β) ⊆ Br(σ) ∩ Br(π).

Lemma 8. Assume σ, π satisfy dτ(σ, π) = 2 and they are of
type II. Then, |Br(σ) ∩ Br(π)| = I(Gτ(Sn); 1, r).

Proof: Let us choose two permutations σ and π of dis-
tance two and type II, i.e., π = σεiεj with |i− j| > 2. Let
α = σεi and β = σε2 be the two permutations at distance one
from σ and π. Note that α and β are also at distance two and
of type II. Since ε−1

1 = ε1 we have

Br(σ) ∩ Br(π) = Br(id) ∩ Br(ε1ε2) = Br(ε1) ∩ Br(ε2)

= Br(σε1) ∩ Br(σε2) = Br(α) ∩ Br(β).

If we denote Mr = |Br(σ) ∩ Br(π)|, then we get from
Lemma 7 the following recursive formula:

Mr = |Br(σ) ∩ Br(π)| = |Br−1(α) ∪ Br−1(β)|
= 2br−1 − |Br−1(α) ∩ Br−1(β)| = 2br−1 −Mr−1,

where M1 = 2.
It follows that the value of Mr satisfies the same recur-

sive formula with the same initial value as the value of
I(Gτ(Sn); 1, r). Therefore, Mr = I(Gτ(Sn); 1, r).

Theorem 6 now follows from Lemma 8.

C. The case d = 2r
In this section we discuss the other extreme case where now

the distance between the centers is relatively large. In partic-
ular, we know that if d > 2r + 1 then N(Gτ(Sn); d, r) = 0.
We study the case d = 2r.

Lemma 9. Let σ, π ∈ Sn be such that dτ(σ, π) = d = 2r.
Then, |Br(σ) ∩ Br(π)| 6 (2r

r ).

Proof: Without loss of generality, assume that σ = id,
so π satisfies wτ(π) = 2r. For every α ∈ Sn, if wτ(α) 6= r
then α /∈ Br(id) ∩ Br(π). Now assume that wτ(α) = r. If

|Wτ(α) ∩Wτ(π)| < r then dτ(α, π) > r. Hence, necessarily
Wτ(α) ⊆Wτ(π). Since the size of Wτ(π) is 2r and the size
of Wτ(α) is r there cannot be more than (2r

r ) such permuta-
tions α, and thus |Br(id) ∩ Br(π)| 6 (2r

r ).

Lemma 10. For r 6 n/4, N(Gτ(Sn); 2r, r) = (2r
r ).

Proof: According to Lemma 9, we already have
N(Gτ(Sn); 2r, r) 6 (2r

2 ). In order to prove equality,
we show an example of σ, π such dτ(σ, π) = 2r and
|Br(σ) ∩ Br(π)| = (2r

r ). Let σ = id and π = ε1ε3 . . . ε2r−1,
so π has 2r independent adjacent transpositions. Every per-
mutation α which has exactly r out of these 2r adjacent
transpositions satisfies dτ(id, α) = dτ(σ, α) = r and thus we
get |Br(id) ∩ Br(π)| = (2r

r ). Therefore, we conclude that
N(Gτ(Sn); 2r, r) = (2r

r ).
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