The classical mechanics of non-conservative systems

Chad R. Galley

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109 and
Theoretical Astrophysics, California Institute of Technology, Pasadena, CA, 91125

Hamilton’s principle of stationary action [1] is a cornerstone of physics and is the primary, formulaic way to derive equations of motion for many systems of varying degrees of complexity – from the simple harmonic oscillator to supersymmetric gauge quantum field theories. Hamilton’s principle relies on a Lagrangian or Hamiltonian formulation of a system, which account for conservative dynamics but cannot describe generic non-conservative interactions. For simple dissipation forces local in time the dynamical evolution and final configuration of a system, which account for conservative dynamics but cannot describe generic non-conservative interactions. For simple dissipation forces local in time the dynamical evolution and final configuration of a system, which account for conservative dynamics but cannot describe generic non-conservative interactions. For simple dissipation forces local in time the dynamical evolution and final configuration of a system, which account for conservative dynamics but cannot describe generic non-conservative interactions. For simple dissipation forces local in time

Let us account for the effect of the \{Q_n\} oscillators on \(q(t)\) by finding solutions only to the equations of motion for the \{Q_n\} and inserting them back into \([1]\), which is called integrating out. The resulting action,

\[
S_{\text{eff}}[q] = \int_{t_i}^{t_f} dt \left\{ \frac{m}{2} (\dddot{q}^2 - \omega^2 q^2) + q \sum_{n=1}^{N} \lambda_n Q_n^{(h)}(t) + \sum_{n=1}^{N} \frac{\lambda_n^2}{2M_n} \int_{t_i}^{t} dt' \, q(t)G_{\text{ret}}^{(n)}(t-t')q(t') \right\},
\]

(2)

is the effective action for \(q(t)\), though it is sometimes called a Fokker action [2]. The resulting dynamics for \(q(t)\) is open to exchange energy with the environment of the \{Q_n\} oscillators and should thus be non-conservative. When \(N\) is large this open subsystem ought to be dissipative. \(Q_n^{(h)}(t)\) is a homogeneous solution (from initial data) and \(G_{\text{ret}}^{(n)}(t-t')\) is the retarded Green function for the \(Q_n\) oscillator.

The last term in \([2]\) involves two time integrals and the product \(q(t)q(t')\). The latter is symmetric in \(t \leftrightarrow t'\) and couples only to the time-symmetric part of the retarded Green function. Hence, the last term in \([2]\) equals

\[
\sum_{n=1}^{N} \frac{\lambda_n^2}{2M_n} \int_{t_i}^{t_f} dt dt' \, q(t) \left[G_{\text{ret}}^{(n)}(t-t') + G_{\text{adv}}^{(n)}(t-t') \right] q(t')
\]

(3)

when using the identity \(G_{\text{ret}}^{(n)}(t-t') = G_{\text{adv}}^{(n)}(t-t')\). Applying Hamilton’s principle to the effective action \([2]\) yields the equation of motion for \(q(t)\)

\[
m\dddot{q} + m\omega^2 q = \sum_{n=1}^{N} \lambda_n Q_n^{(h)}(t) + \sum_{n=1}^{N} \frac{\lambda_n^2}{2M_n} \int_{t_i}^{t_f} dt' \left[G_{\text{ret}}^{(n)}(t-t') + G_{\text{adv}}^{(n)}(t-t') \right] q(t').
\]

(4)

There are a couple of key points regarding \([4]\). First, the second term on the right side depends on the advanced Green function implying that solutions to
do not evolve causally nor are specified by initial data alone. Second, the kernel of the integral in \(\text{(4)} \) is symmetric in time, which means that the integral describes conservative interactions between \(q \) and the \(\{Q_n\} \) oscillators. Consequently, \(\text{(4)} \) does not account for dissipation, a time-asymmetric process, that should be present when \(N \gg 1 \).

These undesirable features can be traced back to the very formulation of Hamilton’s principle, which solves the problem: “Find the path \(q(t) \) passing through the given values \(q_i \) at \(t = t_i \) and \(q_f \) at \(t = t_f \) that makes the action stationary” (see left cartoon in Fig. 1). Stated in this way, it is clear that Hamilton’s principle is appropriate for systems satisfying boundary conditions in time, not initial conditions. According to Sturm-Liouville theory \([3] \), the time-symmetric integration kernel in \(\text{(4)} \), which is a Green function itself, satisfies boundary conditions in time. Likewise, boundary conditions in time imply that the corresponding Green function is time-symmetric. Thus, there seems to be an intimate connection in the variational calculus between boundary (initial) conditions and conservative (non-conservative) dynamics.

In the remainder I formulate Hamilton’s principle with initial conditions for general systems, report some consequences, and present some examples.

Hamilton’s principle with initial data. A hint for how to proceed comes from the previous example. The advanced Green function in \([3] \) and \([4] \) appears because the factor \(q(t)q(t') \) couples only to the time-symmetric part of the retarded Green function. “Breaking” the symmetry by introducing two sets of variables, say \(q_1 \) and \(q_2 \), implies that \(q_1(t)q_2(t') \) will couple to the full retarded Green function, not just its time-symmetric part. Varying with respect to only \(q_1 \) gives the correct force provided one sets \(q_2 = q_1 \) after the variation \([4] \). This procedure is formalized for general systems below.

Let \(\vec{q} = \{q_i\}_{i=1}^N \) and \(\vec{\dot{q}} = \{\dot{q}_i\}_{i=1}^N \) be a set of \(N \) generalized coordinates and velocities of a general dynamical system. Formally, double both sets of quantities, \(\vec{q} \rightarrow (\vec{q}_1, \vec{q}_2) \) and \(\vec{\dot{q}} \rightarrow (\vec{\dot{q}}_1, \vec{\dot{q}}_2) \). Parameterize both coordinate paths as \(\vec{q}_{1,2}(t, \epsilon) = \vec{q}_{1,2}(t,0) + \epsilon \vec{q}_{1,2}(t) \) where \(\vec{q}_{1,2}(t,0) \) are the coordinates of the two stationary paths, \(\epsilon \ll 1 \), and \(\vec{q}_{1,2}(t) \) are arbitrary virtual displacements. To ensure that enough conditions are given for varying the action we require that: 1) \(\vec{q}_{1,2}(t_i) = 0 \) and 2) \(\vec{q}_{1}(t_f, \epsilon) = \vec{q}_{2}(t_f, \epsilon) \) and \(\vec{q}_{1}(t_f, \epsilon) = \vec{q}_{2}(t_f, \epsilon) \) for all \(\epsilon \) (the equality condition). The equality condition does not fix either value at the final time since the values they equal are not specified. After all variations are performed, both paths are set equal to each other and identified with the physical one, \(\vec{q}(t) \) (the physical limit). See the right cartoon in Fig. 1.

The action functional of \(\vec{q}_1 \) and \(\vec{q}_2 \) is defined here as the total line integral of the Lagrangian along both paths plus the line integral of a function \(K \) (discussed below) that depends on both paths \(\{\vec{q}_a\}_{a=1}^2 \) and cannot generally be written as the difference of two potentials,

\[
S[\vec{q}_a] = \int_{t_i}^{t_f} dt \, L(\vec{q}_1, \dot{\vec{q}}_1) + \int_{t_i}^{t_f} dt \, L(\vec{q}_2, \dot{\vec{q}}_2) + \int_{t_i}^{t_f} dt \, K(\vec{q}_a, \dot{\vec{q}}_a, t) \]

\[
= \int_{t_i}^{t_f} dt \left[L(\vec{q}_1, \dot{\vec{q}}_1) - L(\vec{q}_2, \dot{\vec{q}}_2) + K(\vec{q}_a, \dot{\vec{q}}_a, t) \right].
\]

This action defines a new Lagrangian

\[
\Lambda(\vec{q}_a, \dot{\vec{q}}_a) \equiv L(\vec{q}_1, \dot{\vec{q}}_1) - L(\vec{q}_2, \dot{\vec{q}}_2) + K(\vec{q}_a, \dot{\vec{q}}_a, t).
\]

If \(K \) could be written as the difference of two potentials, \(V(\vec{q}_1) - V(\vec{q}_2) \), then it could be absorbed into the difference of the Lagrangians in \(\text{(5)} \), leaving \(K \) zero \([6] \). Thus, a non-zero \(K \) describes generalized forces that are not derivable from a potential (i.e., non-conservative forces) and couples the two paths with each other.

It is convenient, but not necessary, to make a change of variables to \(\vec{q}_+ = (\vec{q}_1 + \vec{q}_2)/2 \) and \(\vec{q}_- = \vec{q}_1 - \vec{q}_2 \) because \(\vec{q}_- \rightarrow 0 \) and \(\vec{q}_+ \rightarrow \vec{q} \) in the physical limit. The conjugate momenta in the “±” variables, regarded as functions of the “±” coordinates and velocities, are found to be \(\vec{p}_± = \partial \Lambda / \partial \vec{q}_± \), and the paths are parameterized as \(\vec{q}_\pm(t, \epsilon) = \vec{q}_±(t,0) + \epsilon \vec{q}_\pm(t) \). The new action \(\text{(6)} \) is stationary under these variations if \(0 = [dS[\vec{q}_\pm]]/d\epsilon \equiv 0 \) for all \(\vec{q}_\pm \), or

\[
0 = \int_{t_i}^{t_f} dt \left\{ \vec{q}_+ \cdot \left[\frac{\partial \Lambda}{\partial \vec{q}_+} - \frac{\partial \vec{p}_+}{\partial t} \right] + \vec{q}_- \cdot \left[\frac{\partial \Lambda}{\partial \vec{q}_-} - \frac{\partial \vec{p}_-}{\partial t} \right] \right\}_0^{t_f} + \left[\vec{q}_+(t) \cdot \vec{p}_-(t) + \vec{q}_-(t) \cdot \vec{p}_+(t) \right]_0^{t_f}
\]

where the subscript 0 denotes evaluation at \(\epsilon = 0 \) and \(\vec{q}_+ \cdot \vec{p}_- = \sum_{i=1}^N q_i p_i, \epsilon q_i \cdot \epsilon p_i, \) etc.

The equality condition requires \(\vec{q}_1(t_f, \epsilon) = \vec{q}_2(t_f, \epsilon) \) and \(\vec{q}_1(t_f, \epsilon) = \vec{q}_2(t_f, \epsilon) \) so that \(\vec{q}_-(t_f) = 0 \) and \(\vec{p}_-(t_f) = 0 \). With \(\vec{q}_\pm(t_i) = 0 \) it follows that the boundary terms in \(\text{(7)} \) all vanish. Thus, \(\text{(7)} \) is satisfied for any \(\vec{q}_\pm(t) \) provided

FIG. 1. **Left:** A cartoon of Hamilton’s principle. Dashed lines denote the virtual displacements and the solid line the stationary path. **Right:** A cartoon of Hamilton’s principle compatible with initial data (i.e., the final state is not fixed). In both cartoons, the arrows on the paths indicate the integration direction for the line integral of the Lagrangian.
that the two variables $\tilde{q}_1(t)$ solve
\[
\frac{d\tilde{p}_\pm}{dt} = \partial A / \partial \tilde{q}_\pm.
\] (8)

Of course, one could have used the $\tilde{q}_{1,2}$ coordinates instead to find $d\tilde{p}_{1,2}/dt = \partial A / \partial \tilde{q}_{1,2}$ with $\tilde{p}_{1,2} = \partial A / \partial \tilde{q}_{1,2}$ regarded as a function of $\tilde{q}_{1,2}$ and $\dot{\tilde{q}}_{1,2}$.

In the physical limit (“p.l.”), only the $d\tilde{p}_+/dt = \partial A / \partial \tilde{q}_-$ equation in (8) survives, yielding
\[
\frac{d\tilde{p}(\tilde{q}, \dot{\tilde{q}})}{dt} = \left[\frac{\partial A}{\partial \tilde{q}_-} \right]_{\text{p.l.}} = \partial L / \partial \dot{\tilde{q}} + \left[\frac{\partial K}{\partial \tilde{q}_-} \right]_{\text{p.l.}},
\] (9)
where the conjugate momenta are
\[
\tilde{p}(\tilde{q}, \dot{\tilde{q}}) = \left[\frac{\partial A}{\partial \tilde{q}_-} \right]_{\text{p.l.}} = \partial L / \partial \dot{\tilde{q}} + \left[\frac{\partial K}{\partial \tilde{q}_-} \right]_{\text{p.l.}}.
\] (10)

When $K = 0$ the generalized forces are derived from potentials and one recovers the usual Euler-Lagrange equations. A non-zero K can be regarded as a “non-conservative potential.”

In the physical limit, only the Euler-Lagrange equation for the “+” variable survives. Hence, expanding the action in powers of $\dot{\tilde{q}}_-$, the equations of motion in (9) and (10) also follow from the variational principle $\partial S / \partial (\dot{\tilde{q}}_-(t) - \dot{\tilde{q}}_-(0))_{\text{p.l.}} = 0$.

Only terms in the new action [5] that are perturbatively linear in $\dot{\tilde{q}}_-$ contribute to physical forces.

A new Hamiltonian A is defined by Legendre transforming the new Lagrangian,
\[
A(\tilde{q}_{1,2}, \tilde{p}_{1,2}) = \tilde{p}_+ \cdot \dot{\tilde{q}}_1 - \tilde{p}_2 \cdot \dot{\tilde{q}}_2 - \Lambda(\tilde{q}_{1,2}, \dot{\tilde{q}}_{1,2})
\] (12)
where $\dot{\tilde{q}}_1$ and $\dot{\tilde{q}}_2$ are now functions of their respective coordinates and momenta. Writing (12) in the “±” variables gives
\[
A(\tilde{q}_\pm, \tilde{p}_\pm) = \tilde{p}_+ \cdot \dot{\tilde{q}}_+ - \tilde{p}_- \cdot \dot{\tilde{q}}_- - \Lambda(\tilde{q}_\pm, \dot{\tilde{q}}_\pm).
\] (13)

Both (12) and (13) can be written as
\[
A(\tilde{q}_a, \tilde{p}_a) = \tilde{p}_a \cdot \dot{\tilde{q}}_a - \Lambda(\tilde{q}_a, \dot{\tilde{q}}_a)
\] (14)
where a “metric” c_{ab} is introduced to raise and lower the indices labeling the doubled variables: $(1, 2)$ in (12) and $(+, -)$ in (13). For the former $c_{ab} = \text{diag}(1, -1)$ and for the latter $c_{ab} = \text{offdiag}(1, 1)$ so that $\tilde{p}_a \tilde{q}^a = c_{ab} \tilde{p}_b \tilde{q}_b$ (repeated indices are summed) where c_{ab} is the inverse of c_{ba}. The appearance of a metric in (14), the hint of “covariance” in (12) and (13), and the use of doubled variables suggest additional structure for the symplectic manifold [6].

Define new Poisson brackets by
\[
\{ \{ f, g \} \} = \partial f / \partial \tilde{q}_a \cdot \partial g / \partial \tilde{p}_a - \partial f / \partial \tilde{p}_a \cdot \partial g / \partial \tilde{q}_a,
\] (15)
which can be shown to satisfy Jacobi’s identity. Then, Hamilton’s equations follow by extremizing the action \tilde{L}, giving
\[
\dot{\tilde{q}}_a = \partial A / \partial \tilde{p}_a = \{ \{ \tilde{q}_a, A \} \}, \quad \dot{\tilde{p}}_a = -\partial A / \partial \tilde{q}_a = \{ \{ \tilde{p}_a, A \} \}.
\] (16)

Note the index positions since they are raised and lowered by the metric c_{ab}. In the physical limit, (10) becomes Hamilton’s equations for a non-conservative system,
\[
\dot{\tilde{q}} = \partial H / \partial \tilde{p} - \left[\frac{\partial K}{\partial \tilde{p}_-} \right]_{\text{p.l.}} = \{ \tilde{q}, H \} - \{ \{ \tilde{q}_-, K \} \}_{\text{p.l.}},
\] (17)
\[
\dot{\tilde{p}} = -\partial H / \partial \tilde{q} + \left[\frac{\partial K}{\partial \tilde{q}_-} \right]_{\text{p.l.}} = \{ \tilde{p}, H \} - \{ \{ \tilde{p}_-, K \} \}_{\text{p.l.}}.
\]

The total time derivative of the energy function [11],
\[
h(\tilde{q}, \dot{\tilde{q}}) = \dot{\tilde{q}} \cdot \partial L / \partial \dot{\tilde{q}} - L,
\] (18)
follows from the usual manipulations [11], which here give
\[
\frac{dh}{dt} = -\partial L / \partial t + \dot{\tilde{q}} \cdot \left(\frac{d}{dt} \frac{\partial K}{\partial \dot{\tilde{q}}_a} - \frac{\partial K}{\dot{\tilde{q}}_a} \right)_{\text{p.l.}}.
\] (19)

The amount of energy entering or leaving the system is determined by K when $\partial L / \partial t = 0$ and can be found directly from the new Lagrangian.

Example: Viscous drag forces. This new formalism can be used like the standard theory. Consider the following new Lagrangian, given in the “±” variables,
\[
\Lambda(\tilde{x}_+, \tilde{x}_-) = m \tilde{x}_- \cdot \dot{\tilde{x}}_+ - \alpha \tilde{x}_- \cdot \dot{\tilde{x}}_+ |\tilde{x}_+|^{n-1}
\] (20)
where $n = 1$ (linear) or 2 (nonlinear). The first term is the difference of the two kinetic energies ($= m\tilde{x}_+^2 / 2 - m\tilde{x}_-^2 / 2$), and the second term is K. The new Lagrangian [20] is unique up to terms nonlinear in \tilde{x}_- and its time derivatives, which don’t contribute to physical forces (see [11]). Using [11], or [9], and [10], gives the equations of motion in the physical limit, $m\tilde{x}_a = -\alpha \tilde{x}_1 |\tilde{x}|^{n-1}$. For $n = 1$ the force is proportional to $-\tilde{x}^1$ and for $n = 2$ it is proportional to $-\tilde{x}^1 |\tilde{x}|$. The former is Stokes’ law for the drag force on a spherical object moving slowly through a viscous fluid and the latter is a nonlinear drag force for motions with large Reynolds number [7]. The key point is that these (nonlinear) equations for dissipative motion are derived from a (new) Lagrangian.

To show that the resulting solutions from initial data are consistent with the new Hamilton’s principle, it is...
sufficient to consider slow motions (n = 1) for which the equations of motion are linear. In the “±” variables the new Euler-Lagrange equations are \(m \ddot{x}_{\pm} = -\alpha \dot{x}_{\pm} \).

The physical limit implies that \(\dot{x}_+ \) is determined by the physical initial data, \(\dot{x}_+(t_i) = \dot{x}_i \) and \(\dot{x}_+(t_i) = \dot{v}_i \), while \(\dot{x}_- \) is specified by final data, \(\dot{x}_-(t_f) = 0 = \dot{x}_-(t_f) \), according to the equality condition. Because \(\dot{x}_- \) does not survive the physical limit, prescribing (trivial) data for \(\dot{x}_- \) at the final time is of no physical consequence. The resulting solutions are \(\dot{x}_-(t) = 0 \) and \(\dot{x}_+(t) = \dot{x}_i + m \ddot{\xi}_i/\alpha [1 - e^{-\alpha (t-t_i)/\alpha}] \). The former automatically imposes the physical limit so that \(\dot{x}_+(t) \) is the physically correct solution. Also, the new action is stationary for these solutions, as can be shown by direct substitution into (7).

With \(K \) given by the second term of (20) it follows that \(h = m \ddot{\xi}^2/2 \) and \(dh/dt = -\alpha |\dot{\xi}|^{n+1} \), which precisely the energy lost per unit time by the object through frictional forces from viscous drag.

Example: Harmonic oscillator coupled to an environment. Return to the example of a harmonic oscillator \(q \) coupled to an environment modeled by \(N \) harmonic oscillators \(\{Q_n\} \) to demonstrate that the new framework gives the correct physical description for the open dynamics of \(q \). Assume initial conditions \(q(t_i) = q_i, \dot{q}(t_i) = v_i, Q_n(t_i) = Q_{ni} \), and \(\dot{Q}_n(t_i) = V_{ni} \). The total system is closed implying that \(K = 0 \) and the usual action is given by (1). Doubling the degrees of freedom, the new action is constructed as in (5) but with \(K = 0 \). The effective action for the open dynamics of the \(q \) oscillator alone is obtained by integrating out the \(\{Q_{n\pm}\} \) variables, which satisfy [8], \(M_n \dot{Q}_{n\pm} + M_n \ddot{Q}_{n\pm} = \lambda_n q_{\pm} \). Subject to the initial conditions and the equality condition at the final time, the solutions are

\[
Q_{n+}(t) = Q_{n+}^r(t) + \frac{\lambda_n}{M_n} \int_{t_i}^{t_f} dt' G^r_{\text{ret}}(t-t') \dot{q}_{\pm}(t')
\]

\[
Q_{n-}(t) = \frac{\lambda_n}{M_n} \int_{t_i}^{t_f} dt' G^r_{\text{adv}}(t-t') \dot{q}_{-}(t')
\]

where \(Q_{n+}^r(t) = Q_{ni} \cos \Omega_n(t-t_i) + V_{ni}/\Omega_n \sin \Omega_n(t-t_i) \) is the homogeneous solution. The “+” variable evolves forward in time and satisfies the initial conditions while the “−” variable evolves backward in time because of the equality condition at the final time. This is a general feature of the “±” variables.

Substituting these solutions into the action yields the effective action,

\[
S_{\text{eff}}[q_{\pm}] = \int_{t_i}^{t_f} dt \left\{ m(\ddot{q}_+ - \omega^2 q_+ - q_-) + \frac{N}{M_n} \sum_{n=1}^{N} \lambda_n Q_{n+}^r(t) \right. \\
+ \left. \sum_{n=1}^{N} \lambda_n^2 M_n \int_{t_i}^{t_f} dt' q_{\pm}(t) G^r_{\text{ret}}(t-t') q_{\pm}(t') \right\}.
\]

The factor \(q_-(t) q_+(t') \) in the last term is not symmetric in \(t \leftrightarrow t' \) and couples to the full retarded Green function as opposed to just its time-symmetric piece as in (4). Applying (11) to (23), gives the equation of motion in the physical limit,

\[
m\ddot{q} + m\omega^2 q = \sum_{n=1}^{N} \frac{\lambda_n^2}{M_n} \int_{t_i}^{t_f} dt' G^r_{\text{ret}}(t-t') q(t') + \sum_{n=1}^{N} \lambda_n Q_{n+}^r(t).
\]

Now, the Green function appearing in (24) is the retarded one, \(G^r_{\text{ret}}(t-t') = \delta(t-t')/\Omega_n \sin \Omega_n(t-t') \), and solutions to (24) evolve causally from only initial data.

From \(S_{\text{eff}} = \int dt L_{\text{eff}} \), the effective Lagrangian is

\[
L_{\text{eff}}(q_{\pm}, \dot{q}_{\pm}) = m(\ddot{q}_+ - \omega^2 q_+ - q_-) + q_- F(t) + \int_{t_i}^{t_f} dt' q_-(t') \gamma(t-t') q_+(t'),
\]

which is non-local and history-dependent. Here, \(F(t) = \sum_{n=1}^{N} \lambda_n Q_{n+}^r(t) \) acts like an external force and \(\gamma(t-t') = \sum_{n=1}^{N} \lambda_n^2 / (M_n \Omega_n) \sin \Omega_n(t-t') \). The last two terms in (25) constitute an effective non-conservative potential, \(K_{\text{eff}} \), that is non-local in time and history-dependent.

From (19), the energy function evolves as

\[
\frac{dh}{dt} = \dot{q} F(t) + \ddot{q} \int_{t_i}^{t_f} dt' \gamma(t-t') q(t')
\]

where \(h = m(\ddot{q}^2 + \omega^2 q^2)/2 \) is the energy of the oscillator from (18). To see a familiar dissipation, choose trivial initial data for the \(\{Q_n\} \) so that \(F(t) = 0 \) and take each \(M_n \) to be a constant, \(M \). The coupling strengths \(\{\lambda_n\} \) are arbitrary so let \(\lambda_n = \lambda \Omega_n \) for \(\lambda \) constant. Then, \(\gamma(t-t') = (\lambda^2/M) \sin \Omega_n(t-t') \). If \(N \) is so large that \(q \) essentially couples to a continuum of oscillators then the summation becomes integration over \(\cos \Omega(t-t') \), which is a Dirac delta distribution (local in time). With these considerations, the frequency \(\omega^2 \) is renormalized to \(\omega_{\text{ren}}^2 = \omega^2 - \delta(0) \lambda^2/(mM) \) and (26) becomes \(dh/dt = -\gamma \dot{q}^2(t) \) for \(\gamma = \lambda^2/(2M) \), which is the power lost by a damped, simple harmonic oscillator.

Concluding remarks. The key aspects of this non-conservative mechanics are the formal doubling of variables and the \(K \) function describing non-conservative forces and interactions. While I have focused on discrete mechanical systems, mostly for demonstrative purposes, it is equally applicable to continuum systems like field theories (see [8] for a non-trivial application) and elastic media.

An open system, which can exchange energy by interaction with some other set of variables, will have a
non-vanishing K. In the drag force example, the underlying variables that cause frictional forces on the object are not given or modeled. Hence, K is prescribed so that the resulting drag force is the desired one. However, if all the degrees of freedom of a closed system are known or modeled then $K = 0$ until a suitable subset of those variables are integrated out or coarse-grained. This results in an open system for the remaining variables and generates a non-zero K as in the coupled oscillators example (see discussion after (25)). Thus, a non-zero K may be related to a measure of entropy for statistical systems.

The formalism developed here can be quantized by replacing the new Poisson brackets in (15) by commutators, yielding a canonical quantization for non-conservative quantum systems (in this manner, one can quantize both examples given earlier). Also, for closed systems ($K = 0$) the new action (3) is the classical limit of the so-called "in-in" quantum theory [9]. To see this, consider the "in-in" generating functional,

$$Z = \int D\vec{q}_1 D\vec{q}_2 \exp \left[\frac{i}{\hbar} \int_{-\infty}^{\infty} dt \left(L[\vec{q}_1, \dot{\vec{q}}_1] - L[\vec{q}_2, \dot{\vec{q}}_2] \right) \right].$$

Then, in the stationary phase approximation with $\hbar \to 0$, the classical action, $-i\hbar \ln Z$, is easily shown to equal $S[\vec{q}_0] + O(\hbar)$. This new formulation of non-conservative systems may be useful for any method or technique that normally uses, or could benefit from using, Lagrangians and Hamiltonians. These might include: developing partition functions for non-conservative statistical systems (see also [10]), studying the phase space structure of nonlinear dissipative dynamical systems, developing symplectic numerical integrators for systems with physical dissipation, providing a more rigorous foundation for kinetic theory, and modeling nonconservative quantum mechanical systems, among other things. In [11], extra physical degrees of freedom are introduced in a Lagrangian to parameterize absorptive processes within the paradigm of effective field theory (see also [12, 13] for recent applications). That work, in combination with the results presented here, may provide a powerful tool for studies of dissipative systems.

I thank Yanbei Chen, Curt Cutler, Karrie Hawbaker, Adam Leibovich, Haixing Miao, Eric Poisson, Ira Rothstein, Gerhard Schäfer, Leo Stein, Michele Vallisneri, and especially Anıl Zenginoğlu for discussions and comments of previous drafts. This work was supported in part by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory administered by the Oak Ridge Associated Universities through a contract with NASA. Copyright 2012. All rights reserved.

* crgalley@tapir.caltech.edu

[4] Doubled variables appear in specific applications as early as [14] and more recently in [15, 16]. However, a general framework relating the doubled variables, Hamilton’s principle, initial conditions, and the non-conservative potential K in (3) is not made.
[5] The same is true in the general case if $K = V_1(\vec{q}_1, \dot{\vec{q}}_1) - V_2(\vec{q}_2, \dot{\vec{q}}_2)$ for $V_1 \neq V_2$. The resulting equations of motion are the same as if $(V_1 + V_2)/2$ is absorbed into each Lagrangian.