Short Note
Source Parameters of the Shallow 2012 Brawley Earthquake, Imperial Valley
by Risheng Chu and Don V. Helmberger

Abstract Resolving earthquake parameters, especially depth, is difficult for events occurring within basins because of issues involved with separating source properties from propagational path effects. Here, we demonstrate some advantages of using a combination of teleseismic and regional waveform data to improve resolution following a bootstrapping approach. Local SS-S differential arrivals from a foreshock are used to determine a local layered model which can then be used to model teleseismic depth phases: \(pP, sP, \) and \(sS \). Using the cut-and-paste (CAP) method for which all strike \((\theta) \), dip \((\delta) \), rake \((\lambda) \), and depth variations are sampled for several crustal models. We find that regional data prove the most reliable at fixing the strike, whereas the depth is better constrained by teleseismic data. Weighted solutions indicate a nearly pure strike-slip mechanism \((\theta = 59^\circ \pm 1^\circ)\) with a centroid depth of about 4.0 km and an \(M_w \) of 5.4 for the mainshock of the 2012 Brawley earthquake.

Online Material: Figures showing examples of waveform fits, comparison of synthetic teleseismic waveforms using different grid sizes in the FD calculation, effect of soft sediment on teleseismic Green’s functions, and sensitivity of regional and teleseismic data on the focal mechanisms.

Introduction
Recent upper mantle studies involving USArray data have taken advantage of \(P \) and \(SH \) waveforms from regional earthquakes (Chu, Schmandt, Helmberger, 2012). For this approach to be effective requires the identification of depth phases which can interfere with triplication arrivals. Generally, we generate two solutions, one based on regional data and the other on teleseismic body waves \((P\) and \(SH \) waves). These solutions usually agree with each other (Chu, Schmandt, Helmberger, 2012). But for earthquakes in the Imperial Valley, the depths appear different because of the deep sediment basin.

The southern San Andreas fault system has a long history of significant earthquakes including the recent 2010 \(M_w \) 7.2 El Mayor–Cucupah event (Wei et al., 2011). The most recent burst of earthquakes occurred on 26 August 2012 with the largest one having \(M_w \) 5.4. The hypocenter is indicated in Figure 1 along with early aftershock locations from Hauksson et al. (2012). Note the fine structure with rapidly varying sedimentary depths (Magistrale et al., 2000). The details of this structure are under study (Delph et al., 2011), but at present not well defined. Thus, we propose a reasonable way to approach such events in defining useful point-source parameters that can be used for global modeling of seismic structures, evaluating possible earthquake triggering of geothermal activities, and assessing seismic hazards.

The Brawley mainshock is well recorded by USArray as well as over 100 regional broadband stations within a distance of 500 km and more than 80 teleseismic broadband stations mainly on the tangential component (Fig. 2a,b). This dense station coverage is ideal for retrieving accurate source parameters using the cut-and-paste (CAP) methodology. The original CAP breaks long-period regional waveform data into \(P_{nl} \) wave and surface-wave segments and shifts them independently to find the best waveform fits (Zhao and Helmberger, 1994; Zhu and Helmberger, 1996). A modification of the method for teleseismic waveform data has been successfully applied to earthquakes involving USArray and beneath Japan (Chu, Schmandt, Helmberger, 2012; Chu, Wei, et al. 2012; Zhan et al., 2012). Because the crustal structures in the source and receiver regions are decoupled teleseismically, they are allowed to be distinct. This feature proves especially valuable for exploiting depth phases for shallow events in basin structures such as this Brawley event.

Because regional waves travel essentially horizontally and teleseismic body waves have nearly vertical ray paths, regional and teleseismic CAP inversions have distinct depth
sensitivity to the velocity structures. To demonstrate this sensitivity, we inverted the source parameters (Fig. 2) using three different velocity models as presented in Figure 3a, the standard southern California velocity model SC (Dreger and Helmberger, 1993), the Imperial Valley model IV (Tian et al., 2010), and the Salton Trough model ST derived in this study. Both regional and teleseismic inversions indicate similar focal mechanisms, and both inversions have good waveform fits with cross-correlation coefficients (CC) larger than 80% (Fig. 2). Figure 2a displays the CCs of regional 20-s Love waves between data and synthetics for the SC model and Figure 2b shows the CCs for the 5-s teleseismic SH waves for the ST model. Some examples of regional waveform fits are displayed in Figure S1, available in the electronic supplement to this paper. Because of the strike-slip radiation pattern, stations in the SH nodal directions have relatively lower CCs, e.g., IRM, 214A, and SDD (Fig. 2a). The low CCs appear to be caused by Rayleigh-wave contaminations, in that, Rayleigh waves are at their strongest and Loves waves at their weakest, which is commonly observed (Scrivner and Helmberger, 1999). Such feature is especially obvious for strike-slip earthquakes in the North American craton (Chu, Schmandt, Helmberger, 2012).

Note that at regional distances (Fig. 2a) most of the stations are located outside of the basin where the standard SC model gives the best waveform fits with a depth of 5.5 km and an M_w of 5.4. However, because of the 3D nature of the source region, the minimum of the misfit curve is not well defined (Fig. 2c). Velocity models IV and ST yield similar earthquake depths, but smaller magnitude because of the lower velocities at the receivers. All three teleseismic inversions have similar magnitude, but the depth varies significantly, which indicates that teleseismic inversions have more sensitivity to the velocity structure, and potentially better depth resolution if the structure is known (Fig. 2d). In order to obtain a reliable depth for the Brawley earthquake, we need a refined 1D shear-velocity model for the source region. Therefore, we modeled regional waveforms with distances less than 50 km (within the basin) from an M_w 3.9 foreshock and obtained a 1D velocity basin model ST for the Salton Trough (Fig. 1).

1D Salton Trough Model

We start from the standard southern California velocity model SC and impose a 1D basin structure on the top (Fig. 3a). The thickness of the basin is set at 5.5 km based on the depth of the basement rocks in the Salton Trough (Fig. 1; Magistrale et al., 2000). To reduce the number of free parameters in the model construction, we assume that the shear velocities change linearly with depth, similar to the grid-search approach of Chu, Schmandt, Helmberger (2012). Only two variables were evaluated through the grid search, the top and bottom velocity of the basin.

In order to minimize the 3D effect of the basin structure and avoid clipping of waveforms due to strong motions, we modeled regional data with distances between 10 km and 50 km from an M_w 3.9 foreshock, which is about 1 km to the west of the mainshock according to the relocated catalog (Fig. 1; Hauksson et al., 2012). At this distance, two additional arrivals can be seen on the waveform following the direct S waves due to the free surface, sS reflected near the earthquake, and SS reflected at the mid-point (Fig. 3b,c). The differential travel times between sS and S depend strongly on the earthquake depth, whereas SS travel times are mainly affected by the velocity structure above the earthquake, which is ideal for our modeling purposes (Fig. 3d). Multiple surface reflections of P waves have been observed and used to study P-velocity structure and earthquake depth in the same area (Mori, 1991). After examining 12 stations, we found 6 waveforms with clear SS phases sampling the various azimuths. We modeled these waveforms in displacement after applying a bandpass filter of 0.1–2.0 Hz (Fig. 3b). These waveforms are aligned at the arrivals of direct S. Our best model has the lowest velocity of 0.6 km/s, and the velocity slope agrees with the result of Tian et al. (2010), which is derived from ambient noise studies (Fig. 3a).

To test the effects of the basin structure and validate our modeling on the SS-S travel times, we constructed a 2D basin model using SC as the background model (Fig. 4a).
The depth of the basin is obtained from the depth of the basement rock in Southern California Earthquake Center Community Velocity Model along the strike direction (Magistrale et al., 2000). A GPU version of the 8th order staggered-grid 2D finite difference code is used for the numerical computation (Li et al., 2012). 1D synthetic waveforms are obtained through the frequency–wavenumber integration (Zhu and Rivera, 2002). The results indicate that the 2D basin structure has minimal effect on the SS–S travel times for stations inside and outside of the basin (Fig. 4b). The large delay in sS and SS is caused by the very slow velocities near the surface bounce. Thus as long as these interactions are within the basin, the combined pulse will be late as observed. In short, for stations located at the edge of the basin, for example, from 30 to 40 km, the recorded waveforms are somewhat distorted, but the SS–S travel times remain about the same.

We also propagated the P and SH wave fields for the 1D and 2D basins to triplication and teleseismic distances. The mantle structure is taken from AK135 (Kennett et al., 1995). The predicted synthetics at teleseismic distances are displayed in Figure 4c for SH and Figure 4d for P waves. Although the extra coda caused by basin-edge effects can be seen at some takeoff angles, such as 26° in SH, the synthetics appear 1D-like at large distances. These calculations were done at 0.2-km grid so that the edges of the basin would be relatively smooth. A larger grid does display a strong coda (see Fig. S2, in electronic supplement), indicating that sharp walls are needed to produce significant teleseismic signals but they will be late enough to be avoided at least for short duration events. Another issue involving the teleseismic waveforms is the relative ratio of depth phases. Although the phase sP is the strongest arrival for hard-rock source conditions, we expect a much weaker arrival in this case because the sP conversion is weak. This feature can be easily seen in synthetics as displayed in Figure S3 (in electronic supplement). In summary, it appears that the
teleseismic data have some advantages and should be used in conjunction with regional observations to estimate source properties.

With model ST, the Brawley earthquake is estimated at a centroid depth of \(\sim 4 \) km. We next assess the accuracy and stability of the regional and teleseismic inversions of the mainshock through a bootstrapping approach, and a joint inversion of regional and teleseismic waveform data is performed.

Bootstrapping of CAP Inversions

Because of the non-linear characteristics of waveform inversion, it is not trivial to assess the accuracy and stability of these inversions. Here, we use the bootstrapping method to derive estimates of confidence intervals. Following this approach, the \(n \) records used in the inversion are resampled \(m \) times, each with the same number of total records \(n \), but some are duplicated whereas some are not sampled. Basically, each observation is selected separately at random from the original dataset. Then we analyze each sample in the same way as the original dataset to estimate the focal mechanism. The confidence intervals and other statistic quantities can be estimated from these \(m \) results. This approach has been successfully applied to obtain high-resolution mechanisms for the Tohoku area (Zhan et al., 2012). Figure 5 displays the histogram of strike, dip, and rake with \(m = 500 \) resamples for four inversions. Note that the CAP method is particularly effective in such an analysis in that each observed waveform is compared against a synthetic grid \((\theta, \delta, \lambda)\) with a CC assigned and stored. Thus, it requires just adding up these misfit errors in obtaining individual parameter samples. Thus, the means and standard deviations are also calculated and shown assuming Gaussian distributions. Nodal planes (black lines) and pressure/tension (P/T) axes (solid and open circles) of the 500 focal mechanisms are also shown together with nodal planes (thick lines) and P/T axes (diamonds and triangles) of the focal mechanism from the original dataset (Fig. 5). Apparently for this particular earthquake, the focal mechanism is well resolved to the order of several degrees for the fault-orientation parameters.

However, regional and teleseismic inversions have different constraints on the strike, dip, and rake. As discussed earlier, the strike in the regional inversion is mainly determined by the nodal directions of \(P \) and \(SH \) waves, and the azimuthal coverage of dense regional stations is given in Figure 2a. Therefore, the bootstrapping of regional inversion shows an excellent constraint on the strike within 3°, but the distribution of dip and rake varies by as much as 20° (Fig. 5a). For teleseismic inversion, the strike is constrained by the relative amplitude change of \(SH \) waves. Most of the stations are located along the maximum directions of \(SH \) waves in northeast United States and Alaska. Because of 3D effect of these paths, the amplitude can vary as discussed in Zhan...
et al. (2012), which will give a poor constraint on the strike (Fig. 5b). The teleseismic inversion also involves the direct S and its depth phase sS, which provide two sampling points on the focal sphere for each station. Thus the dip and rake are well resolved.

The regional inversion has strike/dip/rake = $58^\circ/87^\circ/7^\circ$, whereas the teleseismic inversion has $59^\circ/90^\circ/7^\circ$. The largest difference between them is the rake angle. We calculate regional Love waves and teleseismic SH waves using these two solutions and compare them with observed data (see Fig. S4, in electronic supplement). Regional data display little difference between these two solutions. For teleseismic data, the teleseismic solution has relatively larger CCs than regional solution, which suggests that teleseismic data can help determine the dip and rake quite accurately if the strike is constrained.

Regional data determine the strike and teleseismic data provide the dip and rake. Thus, the question is whether we can determine an optimal result by using a joint inversion? Because the amplitude of teleseismic data is negligibly small compared to the amplitude of regional data, we need to balance the weighting between these two datasets (Chen et al., 2012). An easy way is to equalize the root mean square of waveform fits between regional CAP and teleseismic CAP. By this approach, the strike, dip, and rake are all constrained within a few degrees (Fig. 5c). If we increase the weighting of teleseismic data by a factor of 2, the distributions of dip and rake becomes even more compact, but the distribution of strike gets worse as expected (Fig. 5d).

In summary, we derived a 1D shear-velocity model for the Salton Trough region by modeling multiple surface reflections of S wave. With this velocity model, teleseismic waveform modeling estimates the 26 August 2012 Brawley earthquake at a centroid depth of about 4.0 km. We obtained focal mechanisms using regional and teleseismic waveform data and assessed the accuracy and stability of these solutions through the bootstrapping approach. Joint inversions of regional and teleseismic data are also performed, which suggest a pure strike-slip mechanism.

Data and Resources

Waveform data used in this study are obtained through IRIS Data Management Center (http://www.iris.edu/data, last accessed August 2012).
Acknowledgments

We thank Associate Editor Cezar I. Trifu and an anonymous reviewer for the valuable comments that greatly improved the manuscript. We thank Egill Hauksson for providing his relocated earthquake hypocenters. This work is partially supported by the Gordon and Betty Moore Foundation through the Tectonics Observatory at California Institute of Technology. Additional support came from USGS through Award Number G12AP20072. This is Contribution Number 10084 of Seismological Laboratory, California Institute of Technology.

References

