induced switching mechanism from the long lived complex \((k_{\text{off}} \sim 1 \times 10^{-5} \text{ s}^{-1})\) in the absence of force to a much shorter lived state \((k_{\text{off}} \sim 5 \text{ s}^{-1})\) under the application of small biologically relevant forces. The decrease in complex lifetime under force can be abrogated by introduction of disulfide cross links. This suggests that protein dynamics lie at the heart of the bipartite function of the complex switching from a highly stable complex proteostatic host to, to one where rapid dissociation facilitates competitor death.

In order to investigate the molecular basis for such an extreme switch in complex avidity we have used an atomic force microscope to perform dynamic force spectroscopy (DFS) measurements on E9:Im9. We observe a force-induced switching mechanism from the long lived complex \((k_{\text{off}} \sim 1 \times 10^{-5} \text{ s}^{-1})\) in the absence of force to a much shorter lived state \((k_{\text{off}} \sim 5 \text{ s}^{-1})\) under the application of small biologically relevant forces. The decrease in complex lifetime under force can be abrogated by introduction of disulfide cross links. This suggests that protein dynamics lie at the heart of the bipartite function of the complex switching from a highly stable complex proteostatic host to, to one where rapid dissociation facilitates competitor death.

The Persistent Effect of Initial Substrate Protein Conformation on Productive Folding by GroEL-GroES

Jeremy S. Weaver, Hays S. Rye.

Texas A&M University, College Station, TX, USA.

The GroEL-GroES chaperonin system is required for the assisted folding of many essential proteins. In order to initiate a folding reaction, an open GroEL ring must capture a non-native substrate protein and encapsulate the protein inside an enclosed cavity that is formed when ATP and GroES bind to the same, substrate protein-occupied ring. Previous work demonstrated that the GroEL-dependent folding of highly recalcitrant proteins like RubisCO is enhanced by two phases of structural disruption prior to the initiation of folding: a binding-driven unfolding phase under substrate protein capture by a GroEL ring, and a forced expansion driven by the movement of the GroEL apical domains upon ATP binding. The overall impact, timing and significance of these unfolding events, particularly with regard to their coordination with GroES binding and substrate protein encapsulation, has remained controversial. Here we demonstrate that the conformation of a substrate protein at the moment of release into the GroEL-GroES cavity directly affects the efficiency of subsequent folding events. We first examined the conformation of non-native RubisCO as it interacts with a GroEL variant possessing a substantially reduced ability to support folding, using a combination of resonance energy transfer and protease protection, we find that the non-native RubisCO monomer adopts a less unfolded conformation upon initial capture by the GroEL variant. Subsequent binding of ATP results in a reduced forced expansion of RubisCO by this GroEL variant. Despite efficient binding of GroES to a RubisCO-occupied ring, however, the compaction of the folding intermediate during encapsulation is also substantially reduced. In combination, these deficits in initial structural alteration appear to result in a marked reduction in productive folding, suggesting a crucial role of these GroEL-dependent manipulations in preparation of the substrate protein for the folding process.

Role of Nonspecific Interactions in Molecular Chaperones through Model-Based Bioinformatics

Andrew D. White1, Wenjun Huang2, Ann K. Nowinski1, Shaoyi Jiang1.

1University of Washington, Seattle, WA, USA, 2University of Michigan, Ann Arbor, MI, USA.

Molecular chaperones are large proteins or protein complexes from which many proteins require assistance in order to fold. One unique property of molecular chaperones is the cavity they provide in which proteins fold. The interior surface residues which make up the cavities of molecular chaperone complexes from different organisms has recently been identified, including the well-studied GroEL-GroES chaperonin complex found in E. coli. It was found that the interior of these protein complexes is significantly different than other protein surfaces and that the residues found on the protein surface are able to resist protein adsorption when immobilized on a surface. Yet it remains unknown if these residues passively bind inside GroEL-GroES, as demonstrated by experiments which created synthetic mimics of the interior cavity, or if the interior also actively stabilizes protein folding. To answer this question, we have extended entropic models of substrate protein folding inside GroEL-GroES to include interaction energies between substrate proteins and the GroEL-GroES chaperone complex. This model was tested on a set of 528 proteins and the results qualitatively match experimental observations. The interior residues were found to strongly discourage the exposure of any hydrophobic residues, providing an enhanced hydrophobic effect inside the cavity which actively influences protein folding. This work provides both a mechanism for active protein stabilization in GroEL-GroES and a model which matches current understanding the chaperone protein.

Precise Timing of ATPase Activation Drives Targeting of Tail-Anchored Proteins

California Institute of Technology, Pasadena, CA, USA.

Hundreds of proteins are anchored on cellular membranes by a transmembrane domain (TM) at their extreme C-terminus. These ‘tail-anchored’ (TA) proteins perform numerous essential cellular functions, yet their unique topology poses fundamental challenges to their proper localization. In eukaryotic cells, the highly conserved ATPase Get3 coordinates the efficient capture and delivery of TA proteins to the endoplasmic reticulum (ER). How Get3 uses its ATPase cycles to drive this fundamental process remains elusive. Here we define the Get3 ATPase cycle and show that ATP specifically induces conformational changes in Get3 that culminate in its ATPase activation through tetramerization. This activation is inhibited by the TA protein loading complex Get4/5 and is activated by the TA substrate, ensuring the precise timing of ATP hydrolysis during targeting. Our results provide an explicit model for how Get3 harnesses the energy from ATP to spatially and temporally coordinate the membrane localization of TA proteins.

Cooperative Motion of a Multi-Subunit Protein Visualized by X-Ray Single Molecule Tracking

Hirosi Sekiguchi1, Yohei Yamamoto2, Ayumi Nakagawa2, Kazuki Moriya2, Mayuno Arita3, Kouhei Ichiyanagi1, Masafumi Yohda2, Naoto Yagi1, Yuji C. Sasaki3.

1Japan Synchrotron Radiation Research Institute, Sayo, Japan, 2Tokyo University of Agriculture and Technology, Koganei, Japan, 3The University of Tokyo, Kashiwa, Japan.

Most of proteins or enzymes are multimeric proteins, such as dimer, trimer, or higher-order structures (Goodsell et al. Annu Rev Biophys Biomol Struct, 2000). Usually, these proteins have multiple binding sites for ligands, such as ATP, peptide, and others, that induce protein’s conformational change. The function of the protein is regulated by such conformational changes that may give rise to cooperativity. Therefore, assessment of the cooperativity between subunits of proteins is important to understand the function of complex proteins. We have previously reported that the diffracted X-ray tracking (DXT) method could trace ATP-induced twisting motion of group II chaperonin ring at a single molecule level with high accuracy. In DXT, a gold nanocrystal immobilized on one side of chaperonin-ring is used as tracer for structural change of chaperonin. Our analyses clearly showed that the chaperonin ring partially closed within 1 s of ATP binding, the closed ring subsequently twisted counterclockwise within 2-6 s, as viewed from the top to bottom of the chaperonin, and the twisted ring reverted to the original open-state with a clockwise motion. In this study, we checked how ATPase deficient mutant subunits modulate the speed or frequency of twisting motion. We controlled the number of ATPase deficient mutant within one chaperonin ring, constructed the ATP deficient hetero-ring using circular permuted connected mutants, and evaluated the effects of those mutants to chaperonin-ring’s twisting motion. We found that the equivalent twisting motion was observed in hetero-ring chaperonin and inter-ring communication is dispensable for the function of group II chaperonin3.