I. INTRODUCTION

Electroweak symmetry breaking is a cornerstone for the understanding of particle physics. However, despite the spectacular phenomenological success of the standard model (SM), and the recent observation of a new boson at the Large Hadron Collider (LHC) [1,2], the precise mechanism of electroweak symmetry breaking remains unknown. Various new models have been proposed to explain this mechanism. One such class of models, topcolor-assisted technicolor (TC2) [3–5], provides a dynamical explanation for electroweak symmetry breaking and flavor symmetry breaking, giving masses to the weak gauge bosons and fermions. Under one of the scenarios of TC2, a heavy boson Z' is predicted with preferential couplings to the third quark generation and with no significant couplings to the leptons (“leptophobic”).

Direct searches for massive resonances that decay preferentially to top quark-antiquark ($t\bar{t}$) pairs are currently feasible only at hadron colliders. Experiments seek to observe an excess beyond that predicted by the SM, typically in the distribution of the invariant mass of the $t\bar{t}$ decay products. Searches in pp collisions at the Tevatron and the early searches in pp collisions at the LHC by the ATLAS experiment have excluded a narrow-width, leptophobic Z' with a mass lower than 900 GeV [6–8]. The searches by the Compact Muon Solenoid (CMS) experiment at the LHC have excluded a narrow-width, leptophobic Z' in the mass range 1.3–1.5 TeV and in a narrow window around 1 TeV [9,10]. This paper describes a search for a $Z' \to t\bar{t}$ resonance in pp collisions in the $2\ell + 2\nu +$ jets final state, where ℓ is an electron (e) or a muon (μ). This is the first search for topcolor leptophobic Z' in final states involving two leptons. The data sample corresponds to a total integrated luminosity of 5.0 fb$^{-1}$ [11] at $\sqrt{s} = 7$ TeV collected by the CMS detector in 2011.

II. THE CMS DETECTOR

The central feature of the CMS apparatus is a superconducting solenoid, 13 m in length and 6 m in diameter, which provides an axial magnetic field of 3.8 T. The bore of the solenoid is surrounded by various particle detection systems. Charged particle trajectories are measured by a silicon pixel and strip tracker, covering $0 < \phi \leq 2\pi$ in azimuth and $|\eta| < 2.5$, where the pseudorapidity η is defined as $\eta = -\ln[\tan(\theta/2)]$, and θ is the polar angle of the trajectory of the particle with respect to the counterclockwise-beam direction. A crystal electromagnetic calorimeter and a brass/scintillator hadronic calorimeter surround the tracking volume. The calorimeter provides high-resolution energy measurement of electrons. Muons are measured in gas-ionization detectors embedded in the steel flux return yoke outside the solenoid. The detector is nearly hermetic, which facilitates the measurement of energy balance in the plane transverse to the beam direction. A two-tier trigger system selects the most interesting pp collision events for use in physics analysis. A more detailed description of the CMS detector can be found in Ref. [12].

III. EVENT RECONSTRUCTION

In the $Z' \to t\bar{t}$ search, a $t\bar{t}$ decay topology is used where each top quark decays to a W boson and a b quark, and subsequently each W boson decays into a lepton and a neutrino. The signature for such an event is two oppositely charged, isolated leptons with high transverse momenta (p_T), large momentum imbalance due to two undetected neutrinos, and at least two jets. Events are required to pass a trigger requiring at least two high-p_T isolated leptons and...
are separated into three channels based on lepton flavor: $e e$, $\mu \mu$, and $e \mu$. The principal sources of background are SM $t\bar{t}$, $Z/\gamma^* \rightarrow \ell \ell$ [Drell-Yan (DY)], single-top quark, and diboson (WW, WZ, and ZZ) production. Other minor contributions are from $W \rightarrow \ell \nu$ and multijet production. Electrons, muons, jets, and the momentum imbalance are reconstructed using a particle-flow algorithm [13]. The negative of the vector sum of the momenta of all reconstructed particles in the plane transverse to the beams is the missing transverse momentum E_T [14], whose magnitude is called missing transverse energy (E_T). The identification criteria of each object and additional selections are chosen to reduce all backgrounds other than SM $t\bar{t}$ production.

Electron candidates are reconstructed from clusters of energy deposits in the electromagnetic calorimeter, which are then matched to hits in the silicon tracker. Electron identification is based on shower-shape and track-cluster matching variables [15]. Electrons are required to have $p_T > 20$ GeV and $|\eta| < 2.5$ and are excluded if they are in the transition region between the barrel and endcap calorimeters, $1.4442 < |\eta| < 1.5560$, because their reconstruction in this region is degraded due to additional material there. The electron track must pass within 0.04 cm of the primary vertex in the plane transverse to the beam. Additionally, electrons coming from photon conversions in the detector material are rejected if there are missing hits in the inner tracker layers or if there is another close track with opposite charge and with a similar polar angle.

Muons are reconstructed using the information from the muon detectors and the silicon tracker [16]. The reconstructed muon track must be within 0.02 cm of the primary vertex in the plane transverse to the beam. Muons are required to have $p_T > 20$ GeV and $|\eta| < 2.4$.

To remove leptons arising from decays of hadrons immersed in jets, the electrons and muons are required to be isolated. The isolation requirement is based on the ratio of the total transverse energy observed from all particles in a cone of size $R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} < 0.3$ centered on the direction of the lepton to the transverse momentum of the lepton. This quantity must be less than 0.17 for electrons and less than 0.20 for muons.

In order to reduce the background from low-mass dilepton resonances, events are rejected if the dilepton invariant mass $M_{\ell\ell} < 12$ GeV. To suppress the contribution from Z-boson production, a veto on events with $30 < M_{\ell\ell} < 106$ GeV is applied in the ee and $\mu\mu$ channels.

Events are required to contain at least two jets, reconstructed using an anti-k_T clustering algorithm with a distance parameter of 0.5 [17]. Corrections are applied to account for the dependence of the detector response to jets as a function of η and p_T and the effect of pileup (multiple pp collisions) [18]. The corrections are based on in-situ calibration using dijet and γ/Z + jet samples. In the p_T region above ~ 1 TeV, where the statistics of the calibration samples become insufficient, the jet energy scale is constrained using the single particle response from test beam data [18]. All corrections are propagated to recalculate the missing transverse energy. The jets are required to have $p_T > 30$ GeV and $|\eta| < 2.5$. Additionally, at least one of the jets is required to be tagged as a b jet based on the identification of a secondary vertex [19].

Finally, in order to further reduce the DY and multijet backgrounds in the ee channel, and the DY contribution in the $\mu\mu$ channel, a requirement of $E_T > 30$ GeV is applied in these channels. The DY and multijet backgrounds are negligible in the $e\mu$ channel.

IV. SIGNAL AND BACKGROUND MODELING

The signal efficiency and background rejection of the selection outlined above are determined from simulation studies augmented where necessary by corrections based on control samples in data. The resonance signal $Z' \rightarrow \ell\ell$ is modeled using the MADGRAPH 5.1.1 [20] Monte Carlo (MC) event generator, with the top quark mass (M_t) set to 172.5 GeV and CTEQ6L [21] parton distribution functions. Samples are generated with resonance masses between 750 and 3000 GeV, and for two resonance-width scenarios: narrow ($\Gamma_{Z'} = 0.012M_{Z'}$) and wide ($\Gamma_{Z'} = 0.1M_{Z'}$). To calculate the expected number of signal events, we use cross sections for a leptophobic topcolor Z' [22]. A scale factor of 1.3 is used to account for next-to-leading-order (NLO) corrections [23].

The background events from SM $t\bar{t}$, DY, and $W \rightarrow \ell \nu$ are generated using MADGRAPH 5.1.1. Diboson events are generated using PYTHIA 6.424 [24], and single-top quark events are generated using POWHEG 1.0 r1380 [25–27]. The same set of parton distribution functions are used for each process as for the resonance signal Z'. The MADGRAPH and POWHEG events are processed through PYTHIA in order to add the initial- and final-state radiation and showering, together with the production of the underlying event [28]. To estimate the expected number of background events, the background samples are normalized to the theoretical cross sections shown in Table I. All MC events are processed through a simulation of the CMS detector based on GEANT4 [34] and are overlaid with events from minimum-bias interaction to account for pileup effects at high instantaneous

<table>
<thead>
<tr>
<th>Background</th>
<th>Cross section [pb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t\bar{t}$</td>
<td>160</td>
</tr>
<tr>
<td>DY ($M_{\ell\ell} > 10$ GeV)</td>
<td>15000</td>
</tr>
<tr>
<td>$WW \rightarrow 2\ell 2\nu$</td>
<td>4.5</td>
</tr>
<tr>
<td>$WZ \rightarrow 3\ell \nu$</td>
<td>0.61</td>
</tr>
<tr>
<td>ZZ (inclusive)</td>
<td>7.4</td>
</tr>
<tr>
<td>$W \rightarrow \ell \nu$</td>
<td>31000</td>
</tr>
<tr>
<td>Single top</td>
<td>85</td>
</tr>
</tbody>
</table>

TABLE I. Theoretical cross sections, including higher-order corrections, for the SM backgrounds [29–33].
luminosity. An additional set of corrections is applied to account for data-MC differences. These include reweighting MC events to match the overlaid pileup distribution to that inferred from the data and applying a scale factor of 0.95 per tagged b jet [19] to account for the observed difference in b-tagging efficiency between data and MC. The b-tagging efficiency is measured using $t\bar{t}$ and muon + jets events [19], with the uncertainty on the data/MC scale factor amounting to 10%–20%.

The simulation of the DY background does not adequately reproduce the production rate, especially in the presence of missing transverse energy. The overall normalization for the DY process is therefore obtained using data in the DY-enriched region of $76 < M_{\ell\ell} < 106$ GeV in the ee and $\mu\mu$ channels. This region is excluded from the data set used for the main analysis and thus provides an independent DY control sample. In the $e\mu$ channel, the DY-enriched region is between 40 $< M_{\ell\ell} < 70$ GeV since the main contribution to DY in this channel is from $Z/\gamma^* \rightarrow \tau\bar{\tau}$ events. These events have a peak at lower dilepton masses on account of the invisible decay products of the τ lepton. As the Z-mass veto is not applied in the $e\mu$ channel, the requirement of at least two jets is modified to exactly one jet in order to ensure the exclusion of this calibration sample from the main signal sample. The normalization factors obtained are 1.34 ± 0.03, 1.24 ± 0.02, and 1.20 ± 0.05 in the ee, $\mu\mu$, and $e\mu$ channels, respectively.

The multijet background is estimated directly from data. This background is from misidentified leptons or genuine leptons from semileptonic decays of b/\bar{b} or c/\bar{c} quarks, which pass the isolation requirement. It is determined from data by inverting the isolation criteria for both leptons, and then extrapolating that yield to the signal region. The extrapolation is performed by multiplying the yield by a normalization factor that accounts for the isolation efficiency obtained from like-sign lepton events, defined as

$$f_{\text{QCD}} = \frac{N_{\text{data}}^{\pm\pm,\text{isolated}} - N_{\text{MC}}^{\pm\pm,\text{isolated}}}{N_{\text{data}}^{\pm\pm,\text{non-isolated}}},$$

where $N_{\text{data}}^{\pm\pm}$ represents the number of like-sign lepton events with the isolation criteria on both leptons either applied or inverted, and MC represents background predictions for $t\bar{t}$, DY, diboson, $W \rightarrow \ell\nu$, and single-top quark events. The multijet estimate was cross-checked with an alternate method in a similar analysis with the same final state, and good agreement was observed [35].

In order to check the background modeling, a control sample is created by requiring zero b-tagged jets. This sample is dominated by non-$t\bar{t}$ backgrounds. Figure 1 shows representative distributions from this sample in the ee, $\mu\mu$, and $e\mu$ channels. The shape of the multijet background distribution is derived directly from the data using a control sample of nonisolated leptons, in contrast to the other background shapes, which are taken from simulation. Good agreement is observed between data and background prediction in all three channels.

V. EVENT YIELDS

The number of events for the expected SM backgrounds and the observed data after all selections and corrections to account for data-MC differences are listed in Table II. The uncertainties shown for the backgrounds are from the systematic effects discussed in Sec. VII. There is good agreement between data and SM backgrounds in all three

<table>
<thead>
<tr>
<th>Sample</th>
<th>ee</th>
<th>$\mu\mu$</th>
<th>$e\mu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t\bar{t}$</td>
<td>2210 ± 460</td>
<td>2550 ± 550</td>
<td>7300 ± 1500</td>
</tr>
<tr>
<td>DY</td>
<td>410 ± 130</td>
<td>420 ± 130</td>
<td>179 ± 57</td>
</tr>
<tr>
<td>Diboson</td>
<td>11.5 ± 1.5</td>
<td>15.4 ± 2.0</td>
<td>32.3 ± 4.2</td>
</tr>
<tr>
<td>$W \rightarrow \ell\nu$</td>
<td>17 $^{+24}_{-13}$</td>
<td>0 $^{+3.4}_{-0}$</td>
<td>26 $^{+37}_{-26}$</td>
</tr>
<tr>
<td>Single top</td>
<td>106 ± 15</td>
<td>121 ± 18</td>
<td>343 ± 50</td>
</tr>
<tr>
<td>Multijets</td>
<td>41.8 ± 6.9</td>
<td>50 ± 10</td>
<td>103 ± 14</td>
</tr>
<tr>
<td>Total background</td>
<td>2790 ± 510</td>
<td>3150 ± 600</td>
<td>8000 ± 1500</td>
</tr>
<tr>
<td>Data</td>
<td>2690</td>
<td>3098</td>
<td>7704</td>
</tr>
</tbody>
</table>
TABLE III. Event yields for a leptophobic Z' in ee, $\mu\mu$, and $e\mu$ channels.

<table>
<thead>
<tr>
<th>Sample</th>
<th>ee</th>
<th>$\mu\mu$</th>
<th>$e\mu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma_{Z'}/M_{Z'} = 0.012$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Z'(750,\text{GeV})$</td>
<td>67</td>
<td>79</td>
<td>200</td>
</tr>
<tr>
<td>$Z'(1000,\text{GeV})$</td>
<td>26</td>
<td>28</td>
<td>68</td>
</tr>
<tr>
<td>$Z'(1250,\text{GeV})$</td>
<td>8.2</td>
<td>9.8</td>
<td>22</td>
</tr>
<tr>
<td>$Z'(1500,\text{GeV})$</td>
<td>2.9</td>
<td>3.1</td>
<td>7.0</td>
</tr>
<tr>
<td>$Z'(2000,\text{GeV})$</td>
<td>0.3</td>
<td>0.4</td>
<td>0.8</td>
</tr>
<tr>
<td>$\Gamma_{Z'}/M_{Z'} = 0.10$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Z'(1000,\text{GeV})$</td>
<td>180</td>
<td>200</td>
<td>480</td>
</tr>
<tr>
<td>$Z'(1500,\text{GeV})$</td>
<td>23</td>
<td>26</td>
<td>57</td>
</tr>
<tr>
<td>$Z'(2000,\text{GeV})$</td>
<td>2.9</td>
<td>2.9</td>
<td>7.0</td>
</tr>
<tr>
<td>$Z'(3000,\text{GeV})$</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
</tr>
</tbody>
</table>

channels. For comparison, the numbers of expected Z' signal events for $M_{Z'} = 750$–$3000\,\text{GeV}$ are listed in Table III.

Distributions of the transverse momentum of the highest-p_T electron in the ee channel, the pseudorapidity of the highest-p_T jet in the $\mu\mu$ channel, and $\Delta\phi$ between the missing transverse momentum and highest-p_T lepton in the $e\mu$ channel are shown in Fig. 2. Also shown are the distributions of the missing transverse energy in the three

channels. There is good agreement between data and the sum of all SM backgrounds. Similarly, a good agreement is seen in all four-vector distributions (p_T, η, and ϕ) of all final-state objects in the three channels.

The $t\bar{t}$ invariant mass is constructed using the four-vectors of the two leading leptons, the two leading jets, and the missing transverse energy. The longitudinal momenta p_z of the two neutrinos in the final state cannot be measured experimentally and are set to zero. The $t\bar{t}$ invariant mass distributions for the data, the sum of all backgrounds, and the Z' signals for the narrow-width scenario ($\Gamma_{Z'} = 0.012M_{Z'}$) are shown in Fig. 3 for the ee, $\mu\mu$, and $e\mu$ channels. The data are described well by the SM backgrounds, and there is no statistically significant evidence for the presence of a Z' signal.

VI. BAYESIAN NEURAL NETWORK ANALYSIS

A multivariate analysis, based on Bayesian neural networks (BNN) [36], has been carried out to provide a more powerful discriminant between backgrounds and the Z' signal than that based on invariant mass alone. The discriminant lies in the interval $[0, 1]$. It is constructed such that the signal events tend to have a value closer to 1 than the background events that peak instead closer to 0. To build this discriminant the background is defined as the...
FIG. 3 (color online). Distributions of the $t\bar{t}$ invariant mass for the ee, $\mu\mu$, and $e\mu$ channels. The p_z values for both neutrinos are set to zero. The hatched region indicates systematic uncertainties on the sum of SM backgrounds. The Z' signal corresponds to a resonance width of $\Gamma_{Z'} = 0.012M_{Z'}$ and has been scaled up so as to be visible.

sum of all SM processes, and the signal is set to $M_{Z'} = 750$ GeV for narrow width, and $M_{Z'} = 1000$ GeV for wide width. The separation power increases with hypothetical Z' mass. Thus, using the Z' simulated sample with the lowest Z' mass for the signal when training the BNN ensures good discrimination between signal and background even for the higher Z' masses. A separate discriminant is constructed in each of the three channels. As inputs to the training, the following 17 variables are used in each of the two Z'-width scenarios, and in each channel:

FIG. 4 (color online). Distributions of the BNN output discriminant for the ee, $\mu\mu$, and $e\mu$ channels. The hatched region indicates systematic uncertainties on the sum of SM backgrounds. The Z' signal corresponds to a resonance width of $\Gamma_{Z'} = 0.012M_{Z'}$ and has been scaled up so as to be visible.

FIG. 5 (color online). Distributions of the BNN output discriminant for the ee, $\mu\mu$, and $e\mu$ channels. The hatched region indicates systematic uncertainties on the sum of SM backgrounds. The Z' signal corresponds to a resonance width of $\Gamma_{Z'} = 0.10M_{Z'}$ and has been scaled up so as to be visible.
(i) p_T and η of the highest-p_T lepton,
(ii) p_T, η, and $\Delta \phi$ of the second highest-p_T lepton,
(iii) p_T, η, and $\Delta \phi$ of the highest-p_T jet,
(iv) p_T, η, and $\Delta \phi$ of the second highest-p_T jet,
(v) E_T, and $\Delta \phi$ of the missing transverse momentum,
(vi) p_T, η, and $\Delta \phi$ of the highest-p_T b-tagged jet, and number n_b of b-tagged jets,

where $\Delta \phi$ is the difference in azimuth between the object and the highest-p_T lepton. All input variables are internally transformed by the BNN to have a range of $[-1, 1]$. This set of input variables constitutes the full array of four-vectors of final-state objects that are measured in the analysis, along with additional information about the b-tagged jets. Using additional derived quantities such as the reconstructed $t\bar{t}$ invariant mass as an input to the BNN does not improve the performance of the BNN.

The resulting BNN outputs for the observed data, the SM background, and the Z' signals for $\Gamma_{Z'} = 0.012M_{Z'}$ and $\Gamma_{Z'} = 0.10M_{Z'}$ are shown in Figs. 4 and 5, respectively, for the ee, $\mu\mu$, and $e\mu$ channels. There is good agreement between data and the SM background in all three channels with no evidence of a resonance signal. Upper limits are set on the production cross section of $t\bar{t}$, the jet energy scale, and the pileup reweighting are indicated by their range across bins of the BNN distribution.

VII. SYSTEMATIC UNCERTAINTIES

The signal and background models are affected by a number of systematic uncertainties, which are propagated into the limit calculation. The uncertainties are divided into two categories: those that affect only the overall normalization of a process (“rate”) and those that affect also the distribution of the BNN discriminant (“shape”). The rate effects include the uncertainty on predicted cross section and normalization for each SM background based on data, as discussed in Sec. IV, and the uncertainties from integrated luminosity, lepton identification and isolation, b-tagging scale factor, jet energy scale, and pileup reweighting for both SM background and Z' signals. Rate uncertainties are also included for the SM $t\bar{t}$ and $W \rightarrow \ell\nu$ events from variations in the renormalization and factorization scales (λ) and the matching scale for jet production threshold between jets from matrix-element generation in MADGRAPH and parton showering in PYTHIA [37].

The nominal value of λ is set to a dynamical mass scale of $(2M_J)^2 + (\sum p_{Tj}^2)^2$ for SM $t\bar{t}$ events, and $(M_W)^2 + (\sum p_{Tj}^2)^2$ with $M_W = 80.4$ GeV for $W \rightarrow \ell\nu$ events. The nominal value of matching scale is set to 20 GeV. The λ and matching scales are each varied up and down by a factor of 2 with respect to their nominal values in order to estimate the uncertainty. The shape effects include the change in shape of the BNN distributions from the uncertainties from jet energy scale, pileup reweighting, and λ and matching scales. The uncertainty due to parton distribution functions is negligible and therefore not included. The uncertainty on the multijet background is dominated by the statistical uncertainty of the same-sign samples in Eq. (1). All uncertainties are summarized in Table IV, where each row represents an independent entity. The dominant source of systematic uncertainty in the background estimate is due to the $t\bar{t}$ cross section uncertainty of 15% which is fully correlated between the channels. The total uncertainty on the sum of all SM backgrounds is 18%.

VIII. RESULTS

With no excess observed, upper limits on $\sigma_{Z'} B(Z' \rightarrow t\bar{t})$ at the 95% confidence level (C.L.) for different values of $M_{Z'}$ are set using the CL$_S$ criteria [38,39]. All systematic effects are included with correlations across the different samples and channels. The sensitivity of the results is estimated using the invariant mass distributions shown in Fig. 3 and the BNN output distributions shown in Fig. 4 and comparing the expected limit on $\sigma_{Z'} B(Z' \rightarrow t\bar{t})$ for the two methods at $M_{Z'} = 750$ GeV and $\Gamma_{Z'} = 0.012M_{Z'}$. An expected limit is obtained from an ensemble of simulated pseudodata sets, where each set is constructed from the background-only hypothesis. Using the BNN distribution improves the expected limit by 29% compared to using invariant mass distribution. For this reason, the more sensitive BNN technique is used for the subsequent measurements. The resulting expected limits and the observed limits using data are shown in Fig. 6 for both narrow and wide resonances.

The theoretical predictions for a leptophobic Z' [22,23] are used to exclude heavy Z' resonances of masses $M_{Z'} < 1.3$ TeV for a width $\Gamma_{Z'} = 0.012M_{Z'}$, and $M < 1.9$ TeV for a width $\Gamma_{Z'} = 0.10M_{Z'}$. In the current analysis, the expected lower limits on $M_{Z'}$ are 1.1 TeV and 1.7 TeV for $\Gamma_{Z'} = 0.012M_{Z'}$ and $\Gamma_{Z'} = 0.10M_{Z'}$, respectively.

<table>
<thead>
<tr>
<th>Component</th>
<th>Uncertainty [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t\bar{t}$ cross section</td>
<td>15</td>
</tr>
<tr>
<td>DY normalization</td>
<td>30</td>
</tr>
<tr>
<td>Diboson cross section</td>
<td>3.8</td>
</tr>
<tr>
<td>$W \rightarrow \ell\nu$ cross section</td>
<td>5.0</td>
</tr>
<tr>
<td>Single top cross section</td>
<td>7.7</td>
</tr>
<tr>
<td>QCD normalization</td>
<td>13 (ee), 18.2 ($\mu\mu$), 9.7 ($e\mu$)</td>
</tr>
<tr>
<td>Integrated luminosity</td>
<td>2.2</td>
</tr>
<tr>
<td>Lepton identification</td>
<td>2.0</td>
</tr>
<tr>
<td>b-tagging scale factor</td>
<td>10</td>
</tr>
<tr>
<td>λ scale ($W \rightarrow \ell\nu$)</td>
<td>100</td>
</tr>
<tr>
<td>Matching scale ($W \rightarrow \ell\nu$)</td>
<td>100</td>
</tr>
<tr>
<td>λ scale ($t\bar{t}$)</td>
<td>1.9–2.9</td>
</tr>
<tr>
<td>Matching scale ($t\bar{t}$)</td>
<td>3.4–5.5</td>
</tr>
<tr>
<td>Jet energy scale</td>
<td>0.3–4.7</td>
</tr>
<tr>
<td>Pileup reweighting</td>
<td>0.3–2.4</td>
</tr>
</tbody>
</table>
A data sample, corresponding to an integrated luminosity of 5.0 fb$^{-1}$ collected in pp collisions at $\sqrt{s} = 7$ TeV, has been analyzed in a search for heavy resonances decaying to top quark-antiquark pairs with subsequent leptonic decay of both top quark and antiquark. No excess beyond the standard model prediction is observed. Upper limits at the 95% C.L. are derived on the product of the production cross section and branching fraction for these decays, for various masses of narrow and wide resonances. The existence of a leptophobic Z' topcolor particle is excluded for $M_{Z'} < 1.3$ TeV with $\Gamma_{Z'} = 0.012 M_{Z'}$, and for $M_{Z'} < 1.9$ TeV with $\Gamma_{Z'} = 0.10 M_{Z'}$.

ACKNOWLEDGMENTS

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MEYS (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS, and RFBR (Russia); MSTDP (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPColl, IPST, and NECTEC (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

(CMS Collaboration)
SEARCH FOR Z' RESONANCES DECAYING TO ... PHYSICAL REVIEW D 87, 072002 (2013)

30 Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
31 Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
32 Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia
33 RWTH Aachen University, I, Physikalisches Institut, Aachen, Germany
34 RWTH Aachen University, III, Physikalisches Institut A, Aachen, Germany
35 RWTH Aachen University, III, Physikalisches Institut B, Aachen, Germany
36 Deutsches Elektronen-Synchrotron, Hamburg, Germany
37 University of Hamburg, Hamburg, Germany
38 Institut für Experimentelle Kernphysik, Karlsruhe, Germany
39 Institute of Nuclear Physics “Demokritos,” Aghia Paraskevi, Greece
40 University of Athens, Athens, Greece
41 University of Ioánnina, Ioánnina, Greece
42 KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
43 Institute of Nuclear Research ATOMKI, Debrecen, Hungary
44 University of Debrecen, Debrecen, Hungary
45 Panjab University, Chandigarh, India
46 University of Delhi, Delhi, India
47 Saha Institute of Nuclear Physics, Kolkata, India
48 Bhabha Atomic Research Centre, Mumbai, India
49 Tata Institute of Fundamental Research-EHEP, Mumbai, India
50 Tata Institute of Fundamental Research-HECR, Mumbai, India
51 Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
52a INFN Sezione di Bari, Bari, Italy
52b University di Bari, Bari, Italy
52c Politecnico di Bari, Bari, Italy
53a INFN Sezione di Bologna, Bologna, Italy
53b Università di Bologna, Bologna, Italy
54a INFN Sezione di Catania, Catania, Italy
54b Università di Catania, Catania, Italy
55a INFN Sezione di Firenze, Firenze, Italy
55b Università di Firenze, Firenze, Italy
56 INFN Laboratori Nazionali di Frascati, Frascati, Italy
57a INFN Sezione di Genova, Genova, Italy
57b Università di Genova, Genova, Italy
58a INFN Sezione di Milano-Bicocca, Milano, Italy
58b Università di Milano-Bicocca, Milano, Italy
59a INFN Sezione di Napoli, Napoli, Italy
59b Università di Napoli “Federico II”, Napoli, Italy
60a INFN Sezione di Padova, Padova, Italy
60b Università di Padova, Padova, Italy
60c Università di Trento (Trento), Padova, Italy
61a INFN Sezione di Pavia, Pavia, Italy
61b Università di Pavia, Pavia, Italy
62a INFN Sezione di Perugia, Perugia, Italy
62b Università di Perugia, Perugia, Italy
63a INFN Sezione di Pisa, Pisa, Italy
63b Università di Pisa, Pisa, Italy
63c Scuola Normale Superiore di Pisa, Pisa, Italy
64a INFN Sezione di Roma, Roma, Italy
64b Università di Roma, Roma, Italy
65a INFN Sezione di Torino, Torino, Italy
65b Università di Torino, Torino, Italy
66a Università del Piemonte Orientale (Novara), Torino, Italy
67a INFN Sezione di Trieste, Trieste, Italy
67b Università di Trieste, Trieste, Italy
68 Kangwon National University, Chunchon, Korea
69 Kyungpook National University, Daegu, Korea
69 Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
70 Korea University, Seoul, Korea
71 University of Seoul, Seoul, Korea

072002-15
Sungkyunkwan University, Suwon, Korea
Vilnius University, Vilnius, Lithuania
Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
Universidad Iberoamericana, Mexico City, Mexico
Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
University of Auckland, Auckland, New Zealand
University of Canterbury, Christchurch, New Zealand
National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
National Centre for Nuclear Research, Swierk, Poland
Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
Laboratorio de Instrumentacion e Fisica Experimental de Particulas, Lisboa, Portugal
Joint Institute for Nuclear Research, Dubna, Russia
Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
Institute for Theoretical and Experimental Physics, Moscow, Russia
Moscow State University, Moscow, Russia
P.N. Lebedev Physical Institute, Moscow, Russia
State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
Universidad Autonoma de Madrid, Madrid, Spain
Universidad de Oviedo, Oviedo, Spain
Instituto de Fisica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
CERN, European Organization for Nuclear Research, Geneva, Switzerland
Paul Scherrer Institut, Villigen, Switzerland
Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
Universität Zürich, Zurich, Switzerland
National Central University, Chung-Li, Taiwan
National Taiwan University (NTU), Taipei, Taiwan
Chulalongkorn University, Bangkok, Thailand
Cukurova University, Adana, Turkey
Middle East Technical University, Physics Department, Ankara, Turkey
Bogazici University, Istanbul, Turkey
Istanbul Technical University, Istanbul, Turkey
National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
University of Bristol, Bristol, United Kingdom
Rutherford Appleton Laboratory, Didcot, United Kingdom
Imperial College, London, United Kingdom
Brunel University, Uxbridge, United Kingdom
Baylor University, Waco, Texas, USA
The University of Alabama, Tuscaloosa, Alabama, USA
Boston University, Boston, Massachusetts, USA
Brown University, Providence, Rhode Island, USA
University of California, Davis, Davis, California, USA
University of California, Los Angeles, Los Angeles, California, USA
University of California, Riverside, Riverside, California, USA
University of California, San Diego, La Jolla, California, USA
University of California, Santa Barbara, Santa Barbara, California, USA
California Institute of Technology, Pasadena, California, USA
Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
University of Colorado at Boulder, Boulder, Colorado, USA
Cornell University, Ithaca, New York, USA
Fairfield University, Fairfield, Connecticut, USA
Fermi National Accelerator Laboratory, Batavia, Illinois, USA
University of Florida, Gainesville, Florida, USA
Florida International University, Miami, Florida, USA
Florida State University, Tallahassee, Florida, USA
Florida Institute of Technology, Melbourne, Florida, USA
University of Illinois at Chicago (UIC), Chicago, Illinois, USA
The University of Iowa, Iowa City, Iowa, USA
SEARCH FOR Z' RESONANCES DECAYING TO \ldots

PHYSICAL REVIEW D 87, 072002 (2013)

133 Johns Hopkins University, Baltimore, Maryland, USA
134 The University of Kansas, Lawrence, Kansas, USA
135 Kansas State University, Manhattan, Kansas, USA
136 Lawrence Livermore National Laboratory, Livermore, California, USA
137 University of Maryland, College Park, Maryland, USA
138 Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
139 University of Minnesota, Minneapolis, Minnesota, USA
140 University of Mississippi, Oxford, Mississippi, USA
141 University of Nebraska-Lincoln, Lincoln, Nebraska, USA
142 State University of New York at Buffalo, Buffalo, New York, USA
143 Northeastern University, Boston, Massachusetts, USA
144 Northwestern University, Evanston, Illinois, USA
145 University of Notre Dame, Notre Dame, Indiana, USA
146 The Ohio State University, Columbus, Ohio, USA
147 Princeton University, Princeton, New Jersey, USA
148 University of Puerto Rico, Mayaguez, Puerto Rico
149 Purdue University, West Lafayette, Indiana, USA
150 Purdue University Calumet, Hammond, Indiana, USA
151 Rice University, Houston, Texas, USA
152 University of Rochester, Rochester, New York, USA
153 The Rockefeller University, New York, New York, USA
154 Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA
155 University of Tennessee, Knoxville, Tennessee, USA
156 Texas A&M University, College Station, Texas, USA
157 Texas Tech University, Lubbock, Texas, USA
158 Vanderbilt University, Nashville, Tennessee, USA
159 University of Virginia, Charlottesville, Virginia, USA
160 Wayne State University, Detroit, Michigan, USA
161 University of Wisconsin, Madison, Wisconsin, USA

\^\text{a}Deceased.
\^\text{b}Also at Vienna University of Technology, Vienna, Austria.
\^\text{c}Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
\^\text{d}Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.
\^\text{e}Also at Universidade Federal do ABC, Santo Andre, Brazil.
\^\text{f}Also at California Institute of Technology, Pasadena, CA, USA.
\^\text{g}Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.
\^\text{h}Also at Suez Canal University, Suez, Egypt.
\^\text{i}Also at Zewail City of Science and Technology, Zewail, Egypt.
\^\text{j}Also at Cairo University, Cairo, Egypt.
\^\text{k}Also at Fayoum University, El-Fayoum, Egypt.
\^\text{l}Also at British University in Egypt, Cairo, Egypt.
\^\text{m}Now at Ain Shams University, Cairo, Egypt.
\^\text{n}Also at National Centre for Nuclear Research, Swierk, Poland.
\^\text{o}Also at Universit\'e de Haute Alsace, Mulhouse, France.
\^\text{p}Also at Joint Institute for Nuclear Research, Dubna, Russia.
\^\text{q}Also at Moscow State University, Moscow, Russia.
\^\text{r}Also at Brandenburg University of Technology, Cottbus, Germany.
\^\text{s}Also at The University of Kansas, Lawrence, KS, USA.
\^\text{t}Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
\^\text{u}Also at E\'otv\'os Lor\'and University, Budapest, Hungary.
\^\text{v}Also at Tata Institute of Fundamental Research - HECR, Mumbai, India.
\^\text{w}Now at King Abdulaziz University, Jeddah, Saudi Arabia.
\^\text{x}Also at University of Visva-Bharati, Santiniketan, India.
\^\text{y}Also at Sharif University of Technology, Tehran, Iran.
\^\text{z}Also at Isfahan University of Technology, Isfahan, Iran.
\^\text{aa}Also at Shiraz University, Shiraz, Iran.
\^\text{bb}Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Also at Facoltà Ingegneria, Università di Roma, Roma, Italy.
Also at Università della Basilicata, Potenza, Italy.
Also at Università degli Studi Guglielmo Marconi, Roma, Italy.
Also at Università degli Studi di Siena, Siena, Italy.
Also at University of Bucharest, Faculty of Physics, Bucuresti-Magurele, Romania.
Also at Faculty of Physics of University of Belgrade, Belgrade, Serbia.
Also at University of California, Los Angeles, Los Angeles, CA, USA.
Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy.
Also at INFN Sezione di Roma, Roma, Italy.
Also at University of Athens, Athens, Greece.
Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.
Also at Paul Scherrer Institut, Villigen, Switzerland.
Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.
Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland.
Also at Gaziosmanpasa University, Tokat, Turkey.
Also at Adiyaman University, Adiyaman, Turkey.
Also at Izmir Institute of Technology, Izmir, Turkey.
Also at The University of Iowa, Iowa City, IA, USA.
Also at Mersin University, Mersin, Turkey.
Also at Ozyegin University, Istanbul, Turkey.
Also at Kafkas University, Kars, Turkey.
Also at Suleyman Demirel University, Isparta, Turkey.
Also at Ege University, Izmir, Turkey.
Also at Mimar Sinan University, Istanbul, Istanbul, Turkey.
Also at Kahramanmaras Sütçü İmam University, Kahramanmaraş, Turkey.
Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.
Also at INFN Sezione di Perugia, Università di Perugia, Perugia, Italy.
Also at Utah Valley University, Orem, UT, USA.
Now at University of Edinburgh, Scotland, Edinburgh, United Kingdom.
Also at Institute for Nuclear Research, Moscow, Russia.
Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.
Also at Argonne National Laboratory, Argonne, IL, USA.
Also at Erzincan University, Erzincan, Turkey.
Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary.
Also at Kyungpook National University, Daegu, Korea.