Π₁¹ Borel Sets
Author(s): Alexander S. Kechris, David Marker and Ramez L. Sami
Published by: Association for Symbolic Logic
Stable URL: http://www.jstor.org/stable/2274751
Accessed: 20/05/2013 12:56

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.
§0. Introduction. The results in this paper were motivated by the following question of Sacks. Suppose T is a recursive theory with countably many countable models. What can you say about the least ordinal α such that all models of T have Scott rank below α? If Martin’s conjecture is true for T then $\alpha \leq \omega \cdot 2$.

Our goal was to look at this problem in a more abstract setting. Let E be a Σ^1_1 equivalence relation on ω with countably many classes each of which is Borel. What can you say about the least α such that each equivalence class is Π^0_α? This problem is closely related to the following question. Suppose $X \subseteq \omega$ is Π^1_1 and Borel. What can you say about the least α such that X is Π^0_α?

In §1 we answer these questions in ZFC. In §2 we give more informative answers under the added assumptions $V = L$ or Π^1_1-determinacy. The final section contains related results on the separation of Π^1_{2n+1} sets by Borel sets.

Our notation is standard. The reader may consult Moschovakis [5] for undefined terms.

Some of these results were proved first by Sami and rediscovered by Kechris and Marker.

§1. Borel Π^1_1-sets.

Definition 1.1. If $X \subseteq \omega$, let $\hat{X} = \{\omega \in \omega \text{O} : |w| \in X\}$. If \hat{X} is Π^1_1 in the codes, we say that X is Π^1_α in the codes. An ordinal α is a basis for subsets of ω which are Π^1_1 in the codes iff whenever $X \subseteq \omega$, $X \neq \emptyset$ and \hat{X} is Π^1_1, there is $\beta \in X$ such that $\beta < \alpha$. We let γ^1_α be the least such ordinal.

In [1] Kechris showed that, assuming PD, $\gamma^1_{2n+1} = \delta^1_{2n+1}$ for $n \geq 1$.

Lemma 1.2. If $X \subseteq \omega$ is Π^1_1 and Borel, then X is Π^1_β for some $\beta < \gamma^1_2$.

Proof. Let F be a recursive function such that $x \in X$ if and only if $f(x) \in \omega$. For $\eta < \omega_1$ let $X_\eta = \{x \in X : |f(x)| < \eta\}$. Since X is Borel, $f(X)$ is a Σ^1_1 subset of ω. Thus there is $\eta < \omega_1$ such that $X = X_\eta$. Let $Z = \{w \in \omega \text{O} : \forall x \in X |f(x)| < |w|\}$. Then $Z \in \Pi^1_2$, so there is $w \in Z$ such that $\eta = |w| < \gamma^1_2$. Thus X is Wadge reducible to ω_η, but by Stern [9] ω_η is Σ^0_η. Hence since γ^1_2 is closed under ordinal addition X is Π^1_β for some $\beta < \gamma^1_2$.

Received January 28, 1988; revised May 9, 1988.

The first two authors were partially supported by the National Science Foundation.

© 1989, Association for Symbolic Logic
We will next see that \(\gamma_1^2 \) is the least such ordinal. Suppose \(X \) is a nonempty bounded initial segment of \(\omega_1 \) and \(X \) is \(\Sigma_4^1 \). There is a tree \(\mathcal{T} \) on \(\omega \times \omega_1 \) such that \(X = \{ x \in \omega: 3f: \omega \rightarrow \omega_1 \langle x, f \rangle \in \mathcal{T} \} \). For \(\alpha < \omega_1 \) and \(x \in \omega \), let \(\mathcal{T}_x^n = \{ \tau: n \rightarrow \alpha: n \in \omega \text{ and } \langle x | n, \tau \rangle \in \mathcal{T} \} \). Then there is a recursive function \(f \) such that if \(\omega \in \mathcal{T} \) and \(x \in \omega \), then \(f(\omega, x) \) is a code for \(\mathcal{T}_x^w \) and \(\mathcal{T}_x^w \) is \(\mathcal{T}_x^w \). Let \(R \in \Pi_1^1 \) and \(R \in \Sigma_1^1 \) be such that for \(u, v \in \mathcal{T} \) and \(x \in \omega \)

\[
R^*(u, v, x) \Leftrightarrow R**(u, v, x) \Leftrightarrow R(|u|, |v|, x).
\]

Let

\[
A(v, w', w) \Leftrightarrow w, w', v \in \mathcal{T} \land |w| = |w'| \land \exists n_0, n_1 R^*(v|n_0, v|n_1, w') \land \forall v'(|v'| < |v| \rightarrow \forall w*\{|w*| = |w| \rightarrow \forall n_0, n_1 \rightarrow R**(v'|n_0, v'|n_1, w*)\}).
\]

Then \(A \) is \(\Pi_1^1 \).

For all \(\alpha \in X \) we can find \(\beta_x = \mu \beta \exists w \in \mathcal{T} |w| = \alpha \land \forall \nu \in \mathcal{T} \). Let \(w_x \) be chosen such that \(\mathcal{T}^w_x \notin \mathcal{T} \). Let \(\gamma_x = \mu \gamma R(\beta_x, \gamma, w_x) \) and let \(\delta_x = \sup \{ \beta_x + 1, \gamma_x + 1 \} \). Then

\[
A = \bigcup_{v \in X} \{(v, w', w) : |w| = \alpha \land |v| = \delta_x \land |w| = |w'| \rightarrow R(\beta_x, \gamma_x, w')\}.
\]

Since \(X \) is bounded, \(A \) is a countable union of Borel set and hence Borel. For all \(\alpha \in X \) there are \(V \) and \(w' \) such that \(\{ w : A(v, w', w) \} = \{ w \in \mathcal{T} : |w| = \alpha \} \). Thus, for all \(\alpha \in X \), \(A \) has Borel rank greater than or equal to \(\alpha \).

Lemma 1.3 (Stern [9]). Suppose \(\alpha = \omega^\beta \). Then \(\{ x : x \in \mathcal{T} |x < \alpha \} \) is \(\Sigma_2^{\beta+1} \) and \(\{ x \in \mathcal{T} : |x| \leq \alpha \} \) is not \(\Sigma_2^{\beta+1} \). In particular, \(\{ x \in \mathcal{T} : |x| = \alpha \} \) is not \(\Pi_2^{\beta+1} \).

Theorem 1.4. \(\gamma_1^2 = \sup \{ \alpha : \exists X \subseteq \omega \alpha \text{ } X \text{ is } \Pi_1^1, \text{ Borel and } \alpha \text{ is the least ordinal such that } X \text{ is } \Pi_1^1 \} \).

Proof. In view of Lemma 1.2 we need only show that if \(\delta < \gamma_1^2 \), there is a \(\Pi_1^1 \) Borel set \(A \) which is not \(\Pi_1^0 \).

Let \(X \subseteq \omega_1 \) be nonempty, bounded and \(\Sigma_1^1 \) in the codes such that, for all \(\alpha \leq \delta, \alpha \in X \). Let \(X^* = \{ \beta : \exists x \in X \forall \gamma \leq \alpha \forall y \in X \land \beta \leq \omega^\beta \}. \) There is a recursive function \(f \) such that \(f(x) \in \mathcal{T} \) and \(f(x) = \omega^{|f(x)|} \). Thus \(X^* = \{ \omega \in X \forall n \in \omega \land |n| \leq |f(x)| \}. \) Then \(X^* \) is a proper initial segment of \(\omega_1 \) containing \(\omega^\delta \) which is \(\Sigma_1^1 \) in the codes. By the above construction we can find a \(\Pi_1^1 \) Borel set \(A \) which has \(\{ w \in \mathcal{T} : |w| = \omega^\delta \} \) as a section. By Lemma 1.3, \(A \) is not \(\Pi_1^0 \).

Corollary 1.5. For all \(\alpha < \gamma_1^2 \) there is a \(\Sigma_1^1 \) equivalence relation with countably many classes such that each class is Borel but at least one class is not \(\Pi_1^0 \).

Proof. Let \(A \) be \(\Pi_1^1 \) and Borel but not \(\Pi_1^0 \). Let \(\Psi : A \rightarrow \omega_1 \) be a \(\Pi_1^1 \)-norm. Since \(A \) is Borel, there is \(\delta < \omega_1 \) such that \(\forall x \in A \Psi(x) < \delta. \) Define an equivalence relation \(x \equiv y \Leftrightarrow (x \notin A \land y \notin A) \lor \Psi(x) = \Psi(y). \)

If each \(E \) class is \(\Pi_1^0 \), then \(A \) would be \(\Sigma_1^0 \), a contradiction.

If \(E \) is a \(\Sigma_1^1 \) equivalence relation with countably many equivalence classes each of which is Borel, then there is \(\alpha < \gamma_1^2 \) such that all \(E \) classes are \(\Pi_1^0 \). In fact the following stronger theorem is true.
THEOREM 1.6 [6]. If E is a Σ^1_1 equivalence relation with Borel equivalence classes and there is a bound on the ranks of the classes, then there is $\alpha < \gamma^*_2$ such that every E class is Π^0_α.

Proof. Let f be a recursive function such that $xEy \iff f(x, y) \notin WO$. For $\eta < \omega_1$, say

$$xE_{\eta}y \iff \neg(f(x, y) \in WO \land f(x, y) \leq \eta).$$

Then $E = \bigcap_{\eta < \omega_1} E_{\eta}$. For any x, since $\{y : yEx\}$ is Borel, by boundedness we can find a $\gamma_x < \omega_1$ such that $\forall y xE_y \rightarrow xE_{\gamma_x}y$, so $xEy \rightarrow xE_{\gamma_x}y$. If each E class is Π^0_α, then for each β and x we can separate $\{y : xEy\}$ from $\{y : xE_{\beta}y\}$ by a Π^0_α set. On the other hand if for all β we can separate $\{y : xEy\}$ from $\{y : xE_{\beta}y\}$ by a Π^0_β set, then since eventually $\{y : xEy\} = \{y : xE_{\beta}y\}$, $\{y : xEy\}$ is Π^0_α.

Suppose $v, w \in WO$. Since $\{y : yEx\} = \Sigma^1_1(x)$ and $\{y : yE_{|w|x}\}$ is $\Delta^1_1(x, w)$, if they can be separated by a Π^0_1 set, by Louveau's separation theorem [3] they can be separated by a $\Pi^0_{|w|}$ set with code hyperarithmetic in $\langle v, w, x \rangle$.

Thus if $Z = \{w \in WO : \forall E$ class is $\Pi^0_{|w|}\}$, then

$$w \in Z \iff w \in WO \land \forall x, v (v \in WO \rightarrow \exists z \leq hyp \langle x, v, w \rangle z \text{ is a } \Pi^0_{|w|}	ext{-code}$$

$$\land \forall y((xEy \rightarrow y \in B(z)) \land (xE_{|w|x}y \rightarrow y \notin B(z))),$$

where $B(z)$ is the Borel set coded by z. Since the quantifier $\exists z \leq hyp \langle x, v, w \rangle$ is really universal, Z is Π^1_1. Thus there is $w \in Z$ with $|w| < \gamma^*_2$.

Question. Suppose G is a Polish group acting on $^\omega \omega$ with countably many orbits. What can we say about the least α such that every orbit is Π^0_α? By results of Sami [7], $\alpha < \delta^*_2$.

§2. Bounds on γ^*_2.

Lemma 2.1. $\delta^*_2 < \gamma^*_2$.

Proof. If $X = \{x : \alpha < \delta^*_1\}$, then $\hat{X} = \{y \in WO : \exists x \in \Delta^1_1 x \in WO \land |x| = |y|\}$. Since \hat{X} is Σ^1_2, there is $\delta \in \omega_1 - X$ such that $\delta^*_2 \leq \delta < \gamma^*_2$.

Theorem 2.2 [5]. If $V = L$, then $\gamma^*_1 = \delta^*_1$.

Proof. If $V = L$, then Δ^1_3 is a basis for Σ^1_3. Thus every nonempty Π^1_1 set contains a Δ^1_3 member. So $\gamma^*_1 \leq \delta^*_3$.

Suppose $y \in WO$ is Δ^1_3. Say $y(n) = m \iff \exists r A(r, \langle n, m \rangle)$ and $y(n) \neq m \iff \exists r B(r, \langle n, m \rangle)$, where A and B are Π^1_1. Then

$$x = y \iff \exists r \forall n, m((x(n) = m \rightarrow A(r_n, \langle n, m \rangle)) \land (x(n) \neq m \rightarrow B(r_m, \langle n, m \rangle))).$$

Thus $x = y \iff \exists r C(r, x)$, where C is Π^1_1 and x is recursive in every element of C.

Let $Z = \{z \in WO : L_{|z|} \models KP \land \exists r, x \in L_{|z|}(r, x) \in C\}$. Since $V = L$, Z is non-empty. Thus

$$Z' = \{z \in WO : \forall x \in L_{|z|} (x \in WO \rightarrow |x| < |z|) \land \exists r, x \in L_{|z|}(r, x) \in C\} \models Z \neq \emptyset.$$

But “$x \in L_{|z|}$” is Δ^1_1 and if $r, x \in L_{|z|}$, then $r, x \leq hyp z$, so

$$z \in Z' \iff \forall x((x \in L_{|z|} \land x \in WO) \rightarrow |x| < |z|) \land \exists r, x \leq hyp z (r, x) \in C.$$

So Z' is Π^1_1. Thus there is $z \in Z'$ such that $|z| < \gamma^*_2$ and $y \in L_{|z|}$. Thus $|y| < |z| < \gamma^*_2$. \square
We will see that under the assumption of H_1-determinacy γ_2 is quite large in L but much smaller than δ_1.

Theorem 2.3. Suppose, for all $\xi < \gamma_2$, $\mathcal{N}_{\xi}^L < \aleph_1$. Then, for all $\xi < \gamma_2$, $\mathcal{N}_{\xi}^L < \gamma_2$.

Proof. Pick $\xi < \gamma_2$. Let $X \subseteq \omega_1$ be a bounded initial segment of ω_1 containing ξ which is Σ^1_2 in the codes.

Suppose (ω, E) is a transitive, well founded model of $KP + V = L$. If $w \in \omega_1$ and $f: \text{dom}(w) \rightarrow \omega$ we say that f is a ω-chain in (ω, E) if and only if for all $n \in \text{dom}(w)$ if $f(n) = m$, then $(\omega, E) \models \"m = \mathcal{N}_{[w[n]]}\".$

Claim. For all $\alpha < \gamma_2$, $\mathcal{N}_\alpha^L = \sup \{\mathcal{N}_{(\omega, E)}^L: (\omega, E) \text{ is a transitive, well founded model of } KP + V = L, \alpha < \text{On}(\omega, E) \text{ and } (\omega, E) \models \mathcal{N}_\alpha \text{ exists}\}$.

(\geq) Clear since, for some β, $(\omega, E) \models (\mathcal{E}^{\omega+1}_\beta)$; then $\mathcal{N}_{(\omega, E)}^L = \mathcal{N}_\beta^L$. This is possible since $\alpha + 1 < \gamma_2$, so $\omega_{\alpha+1} < \aleph_1$.

Let $Z = \{v \in \omega_1: \exists E, f, w, g(\omega, E) \text{ is a transitive well founded model of } KP + V = L, w \in \vec{X}, f: \text{dom}(w) \rightarrow \omega \text{ is a } \omega \text{-chain for } (\omega, E) \text{ and } g: \text{dom}(v) \rightarrow \{m \in \omega: \exists n \in \text{dom}(w) (\omega, E) \models \("m \text{ is an ordinal and } m \leq f(n)\") \text{ is order preserving}\} \}$. Then $Z = \Sigma^1_2$ and $Z = \{v \in \omega_1: \exists \delta \in \omega \mid |v| < \mathcal{N}_{\delta}^L\}$. Let $z \in \omega_1 - Z$ be such that $|z| < \gamma_2$. Then $\mathcal{N}_{\gamma_2}^L < \gamma_2^L$.

Corollary 2.4. $(\forall x \mathcal{N}_{\mathcal{L}^{\omega}(x)}^L < \aleph_1) \mathcal{N}_{\gamma_2}^L = \gamma_2$.

Proof. \aleph_1 is inaccessible in L. Thus $\aleph_1 = \mathcal{N}_{\aleph_1}^L$. So $\mathcal{N}_{\gamma_2}^L < \aleph_1$.

On the other hand, γ_2 will always behave reasonably well in L.

Theorem 2.4. γ_2 is definable in L and $\text{cf}_L(\gamma_2) = \omega$.

Proof. In [2] Kechris and Moschovakis show that every subset of ω_1 which is H_2 in the codes is constructible. In fact if $U \subseteq \omega \times R$ is an ω-universal Π^1_2 set and $\vec{U} = \{(n, x): x \in \omega_1 \land \forall y \in \omega_1 \mid |y| = |x| \rightarrow (n, y) \in U\}$, then $Y = \{(n, x) \in \omega \times \omega_1: \exists x \in \omega_1 \land (n, x) \in U\}$ is constructible. Thus in L we can define $\langle \alpha_n: n \in \omega \rangle \in L$, where

$$\alpha_n = \begin{cases} 0 & \forall \alpha < \omega_1 (n, \alpha) \notin Y, \\ \text{least } (n, \alpha) \in Y & \text{otherwise}. \end{cases}$$

Then $\gamma_2 = \sup_n \alpha_n$. [We thank the referee for pointing out this simple argument.]

Corollary 2.5 (Π^1_2-AD). γ_2 is less than the first Silver indiscernible, so $\gamma_2 < \delta_1$.

§3. A separation theorem for Π^1_{2n+1}-sets. We assume projective determinacy. Let U be an ω-universal Π^1_{2n+1} set. Let $\varphi: U \rightarrow \delta_{2n+1}$ be a Π^1_{2n+1}-norm. Let A and B be disjoint Π^1_{2n+1} sets, and let $e_0, e_1 \in \omega$ be such that $A = \{x: (e_0, x) \in U\}$ and $B = \{x: (e_1, x) \in U\}$. For $\eta < \delta_{2n+1}$, let $A_\eta = \{x: \varphi(e_0, x) < \eta\}$ and $B_\eta = \{x: \varphi(e_1, x) < \eta\}$.

The following is a generalization of a weak version of a theorem of Stern [10].

Theorem 3.1. Suppose, for all $\eta < \delta_{2n+1}$, A_η and B_η are Π^0_2-separable. Then A and B are Π^0_2-separable.

The proof uses the analysis of certain Wadge-like games from [8]. If $X_0 \cap X_1 = Y_0 \cap Y_1 = \emptyset$, consider the game $G(\langle X_0, X_1 \rangle, \langle Y_0, Y_1 \rangle)$ where if I plays $\alpha \in \omega \omega$ and II plays $\beta \in \omega \omega$, then II wins if and only if $\alpha \in X_0 \rightarrow \beta \in Y_0$ and $\alpha \in X_1 \rightarrow \beta \in Y_1$. We write $\langle X_0, X_1 \rangle \leq \langle Y_0, Y_1 \rangle$ if and only if II has a winning strategy.
LEMMA 3.2. Assume all X_i and Y_i are projective. If $\langle X_0, X_1 \rangle \not\leq \langle Y_0, Y_1 \rangle$, then $\langle Y_0, Y_1 \rangle \not\leq \langle X_1, X_0 \rangle$.

PROOF. By PD, I has a winning strategy σ in $G(\langle X_0, X_1 \rangle, \langle Y_0, Y_1 \rangle)$. Suppose II plays $G(\langle Y_0, Y_1 \rangle, \langle X_1, X_0 \rangle)$ using σ (and ignoring I's last move). If I plays α and II plays β, then I wins $G(\langle X_0, X_1 \rangle, \langle Y_0, Y_1 \rangle)$ on the play β, α. So either $\beta \in X_0$ and $\alpha \notin Y_0$ or $\beta \in X_1$ and $\alpha \notin Y_1$. Thus $\alpha \in Y_0 \rightarrow \beta \in X_1$ and $\alpha \in Y_1 \rightarrow \beta \in X_0$. So this is a winning strategy for II in $G(\langle Y_0, Y_1 \rangle, \langle X_1, X_0 \rangle)$.

LEMMA 3.3. Let \mathcal{C} be any Wadge class. If $\langle X_0, X_1 \rangle \not\leq \langle Y_0, Y_1 \rangle$ and Y_0, Y_1 can be separated by some $D \in \mathcal{C}$, then X_0 and X_1 can be separated by some $\hat{D} \in \mathcal{C}$.

PROOF. Let \hat{D} be the inverse image of D under the winning strategy.

LEMMA 3.4. If X_0 and X_1 are projective and C is complete Π_0^0, then $\langle X_0, X_1 \rangle \not\leq \langle C, \neg C \rangle$ if and only if X_0 and X_1 are Π_0^0-separable.

PROOF. (\Rightarrow) Clear by 3.3.

(\Leftarrow) Let $D \in \Pi_0^0$ separate X_0 and X_1. Then D is Lipschitz reducible to C. II can win $G(\langle X_0, X_1 \rangle, \langle C, \neg C \rangle)$ by playing the winning strategy in the Lipschitz game.

PROOF OF 3.1. Suppose A and B are not Π_0^0-separable. Then $\langle A, B \rangle \not\leq \langle C, \neg C \rangle$, where C is complete Π_0^0. Thus, as 3.2, $\langle \neg C, C \rangle \not\leq \langle A, B \rangle$. Let σ be II's strategy in $G(\langle \neg C, C \rangle, \langle A, B \rangle)$ and let f_σ be the continuous function it determines. Then $f(\neg C) \subseteq A$ and $f(C) \subseteq B$. Since $f(\neg C)$ and $f(C)$ are Σ_1^1 sets, by boundedness there is $\eta < \delta_{2n+1}$ such that $f(\neg C) \subseteq A_\eta$ and $f(C) \subseteq B_\eta$. Thus, using σ, II also wins $G(\langle \neg C, C \rangle, \langle A_\eta, B_\eta \rangle)$. So $\langle \neg C, C \rangle \not\leq \langle A_\eta, B_\eta \rangle$. Since A_η and B_η are Π_0^0-separable, $\langle A_\eta, B_\eta \rangle \leq \langle C, \neg C \rangle$. But then $\langle \neg C, C \rangle \leq \langle C, \neg C \rangle$. But then $\neg C$ is Lipschitz reducible to C, a contradiction.

This proof also works if we replace Π_0^0 by a Wadge class of Λ_{2n+1} sets containing a complete set.

Question. Suppose X and Y are disjoint Σ_{2n+2} sets, A and B are Π_{2n+1} sets such that $\pi(A) = X$ and $\pi(B) = Y$ and, for $\eta < \delta_{2n+1}$, $X_\eta = \pi(A_\eta)$ and $Y_\eta = \pi(B_\eta)$. Suppose, for all η, X_η and Y_η can be separated by a Π_0^0 set. Can X and Y be separated by a Π_0^0-set? Stern [10] showed the answer is yes if $n = 0$ (using the weaker assumption $\forall \eta \forall \xi_\eta^{\Pi_0^0} < \eta$).

COROLLARY 3.5. If A and B are Borel separable Π_{2n+1} sets, then A and B can be separated by a Π_0^0 set for some $\alpha < \gamma_{2n+2}$.

PROOF. Let $Z = \{w \in W0: A$ and B are Π_0^0-separable}. Then

$$w \in Z \iff \forall \eta < \delta_{2n+1} (\exists z(z \text{ is a } \Pi_0^0\text{-code} \land \forall x(x \in A_\eta \rightarrow x \in B(z))) \land \forall y(y \in B_\eta \rightarrow y \notin B(z))),$$

where $B(z)$ denotes the Borel set coded by z. By Louveau and Saint Raymond ([3] and [4]), A_η and B_η are Π_0^0-separable if and only if for any $(e, s) \in U$ with $\varphi(e, s) = \eta$, there is a Π_0^0 set separating A_η and B_η with code in $\Lambda_{2n+1}(w, s)$. Thus

$$w \in Z \iff \forall e, s(e, s) \in U \rightarrow \exists z \in \Lambda_{2n+1}(w, s)(z \text{ is a } \Pi_0^0\text{-code} \land \forall x(\varphi(e_0, x) < \varphi(e, s) \rightarrow x \in B(z)) \land \forall y(\varphi(e_1, y) < \varphi(e, s) \rightarrow y \notin B(z))).$$

Thus Z is Π_{2n+2}^1. The next result shows this is best possible.
PROPOSITION 3.6. For each \(\alpha < \gamma \frac{1}{2n+2} \) there are \(\Pi^1_{2n+1} \) sets \(A \) and \(B \) which are Borel separable but not separable by a \(\Pi^0_\omega \) set.

PROOF. As in 1.4 we can find a bounded initial segment \(X \) of \(\mathbb{N}_1 \), containing \(\omega^x \) such that \(\hat{X} \) is \(\Sigma^1_{2n+2} \) and if \(U \) is a universal \(\Pi^1_{2n+1} \) set and \(\Psi: U \to \delta^1_{2n+1} \) is a \(\Pi^1_{2n+1} \) norm, we can find a \(\Pi^1_{2n+1} \) \(A \subseteq U \times \hat{X} \times \hat{X} \) such that the following conditions hold:

(i) If \(A(v, w', w) \), then \(|w| = |w'| \).

(ii) For all \(w \in \hat{X} \) there is a unique \(v \) such that for some \(w', w'' \)

\[|w'| = |w''| = |w| \wedge A(v, w', w''). \]

(iii) If \(A(v, w', w) \) and \(|w''| = |w| \), then \(A(v, w', w') \).

Let \(B(v, w', w) \iff A(v, w', w') \wedge |w| \neq |w'| \). Then \(B \) is \(\Pi^1_{2n+1} \) and \(A \cap B = \emptyset \). Let \(C = \{(v, w', w); |w'| = |w| \in X\} \). Then since \(X \) is bounded, \(C \) is Borel. Clearly \(A \subseteq C \) and \(B \cap C = \emptyset \), so \(A \) and \(B \) are Borel separable. But if \(D \) separates \(A \) and \(B \), then \(\{z \in \mathcal{W}_\omega; |z| = \omega^x\} \) is a section of \(D \). Thus \(D \) is not \(\Pi^0_\omega \).

\[\square \]

REFERENCES

DEPARTMENT OF MATHEMATICS
CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA, CALIFORNIA 91125

DEPARTMENT OF MATHEMATICS, STATISTICS, AND COMPUTER SCIENCE
UNIVERSITY OF ILLINOIS AT CHICAGO
CHICAGO, ILLINOIS 60680

DEPARTMENT OF MATHEMATICS
CAIRO UNIVERSITY
CAIRO, EGYPT

UER DE MATHEMATICQUE
UNIVERSITE PARIS-VII
75251 PARIS, FRANCE