Supplementary Appendix

Venkat Chandrasekaran and Michael I. Jordan

Proof of Proposition 5

As with the proof of Proposition 4, we condition on \(z = \bar{z} \). Setting \(\delta = x - \bar{x} \) and setting \(\hat{\delta}_n(C) = \hat{x}_n(C)|_{z=\bar{z}} - \bar{x} \), we can rewrite the estimation problem [2] from the main paper as follows:

\[
\hat{\delta}_n(C) = \arg \min_{\delta \in \mathbb{R}^p} \frac{1}{2} \left\| (x^* - \bar{x}) + \frac{\sigma}{\sqrt{n}} \bar{z} - \delta \right\|^2_{\ell_2} \quad \text{s.t.} \quad \delta \in C - \bar{x}.
\]

Letting \(R_1 \) and \(R_2 \) denote orthogonal subspaces that contain \(Q_1 \) and \(Q_2 \), i.e., \(Q_1 \subseteq R_1 \) and \(Q_2 \subseteq R_2 \), and letting \(\delta^{(1)} = \mathcal{P}_{R_1}(\delta), \delta^{(2)} = \mathcal{P}_{R_2}(\delta), \hat{\delta}_n^{(1)}(C) = \mathcal{P}_{R_1}(\hat{\delta}_n(C)), \hat{\delta}_n^{(2)}(C) = \mathcal{P}_{R_2}(\hat{\delta}_n(C)) \) denote the projections of \(\delta, \hat{\delta}_n(C) \) onto \(R_1, R_2 \), we can rewrite the above reformulated optimization problem as:

\[
\left[\hat{\delta}_n^{(1)}(C), \hat{\delta}_n^{(2)}(C) \right] = \arg \min_{\delta^{(1)} \in Q_1, \delta^{(2)} \in Q_2} \frac{1}{2} \left\| \mathcal{P}_{R_1} \left[(x^* - \bar{x}) + \frac{\sigma}{\sqrt{n}} \bar{z} \right] - \delta^{(1)} \right\|^2_{\ell_2} + \frac{1}{2} \left\| \mathcal{P}_{R_2} \left[(x^* - \bar{x}) + \frac{\sigma}{\sqrt{n}} \bar{z} \right] - \delta^{(2)} \right\|^2_{\ell_2}.
\]

As the sets \(Q_1, Q_2 \) live in orthogonal subspaces, the two variables \(\delta^{(1)}, \delta^{(2)} \) in this problem can be optimized separately. Consequently, we have that \(\| \hat{\delta}_n^{(2)}(C) \|_{\ell_2} \leq \alpha \) and that

\[
\| \hat{\delta}_n^{(1)}(C) \|_{\ell_2} \leq \sup_{\delta \in \text{cone}(Q_1) \cap B_{\ell_2}^p} \{ \delta, \frac{\sigma}{\sqrt{n}} \bar{z} + (x^* - \bar{x}) \}.
\]

This bound can be established following the same sequence of steps as in the proof of Proposition 4. Combining the two bounds on \(\hat{\delta}_n^{(1)}(C) \) and \(\hat{\delta}_n^{(2)}(C) \), one can then check that

\[
\| \hat{\delta}_n^{(1)}(C) \|_{\ell_2} + \| \hat{\delta}_n^{(2)}(C) \|_{\ell_2} \leq 2 \left[\frac{\sigma^2}{n} g(\text{cone}(Q_1) \cap B_{\ell_2}^p) + \| x^* - \bar{x} \|_{\ell_2} \right] + \alpha^2.
\]

To obtain a bound on \(\| \hat{x}_n(C)|_{z=\bar{z}} - x^* \|_{\ell_2} \) we note that

\[
\| \hat{x}_n(C)|_{z=\bar{z}} - x^* \|_{\ell_2} \leq 2 \left[\| \hat{x}_n(C)|_{z=\bar{z}} - \bar{x} \|_{\ell_2} + \| x^* - \bar{x} \|_{\ell_2} \right] \leq 2\| \hat{\delta}_n^{(1)}(C) \|_{\ell_2} + 2\| \hat{\delta}_n^{(2)}(C) \|_{\ell_2} + 2\| x^* - \bar{x} \|_{\ell_2}.
\]

Taking expectations concludes the proof. \(\square \)

Proof of Proposition 9

The main steps of this proof follow the steps of a similar result in [1], with the principal difference being that we wish to bound Gaussian squared-complexity rather than Gaussian complexity. A central theme in this proof is the appeal to Gaussian isoperimetry. Let \(\mathbb{S}^{p-1} \) denote the sphere in \(p \) dimensions. Then in bounding the expected squared-distance to the dual cone \(\mathcal{K}^* \) with \(\mathcal{K}^* \cap \mathbb{S}^{p-1} \) having a volume of \(\mu \), we need only consider the extremal case of a spherical cap in \(\mathbb{S}^{p-1} \) having a volume of \(\mu \). The manner in which this is made precise will become clear in the proof. Before proceeding with the main proof, we state and derive a result on the solid angle subtended by a spherical cap in \(\mathbb{S}^{p-1} \) to which we will need to appeal repeatedly:
Lemma 2 Let \(\psi(\mu) \) denote the solid angle subtended by a spherical cap in \(\mathbb{S}^{p-1} \) with volume \(\mu \in \left(\frac{1}{4} \exp\left\{-\frac{p}{20}\right\}, \frac{1}{4}\right) \). Then
\[
\psi(\mu) \geq \frac{\pi}{2} \left(1 - \sqrt\frac{2\log\left(\frac{1}{4}\right)}{p-1} \right).
\]

Proof of Lemma 2: Consider the following definition of a spherical cap, parametrized by height \(h \):
\[
J = \{ \mathbf{a} \in \mathbb{S}^{p-1} \mid a_1 \geq h \}.
\]
Here \(a_1 \) denotes the first coordinate of \(\mathbf{a} \in \mathbb{R}^p \). Given a spherical cap of height \(h \in [0, 1] \), the solid angle is given by:
\[
\psi = \frac{\pi}{2} - \sin^{-1}(h). \tag{10}
\]
We can thus obtain bounds on the solid angle of a spherical cap via bounds on its height. The following result from [2] relates the volume of a spherical cap to its height:

Lemma 3 [2] For \(\frac{2}{\sqrt{p}} \leq h \leq 1 \) the volume \(\tilde{\mu}(p, h) \) of a spherical cap of height \(h \) in \(\mathbb{S}^{p-1} \) is bounded as
\[
\frac{1}{10h\sqrt{p}}(1 - h^2)^{\frac{p-1}{2}} \leq \tilde{\mu}(p, h) \leq \frac{1}{2h\sqrt{p}}(1 - h^2)^{\frac{p-1}{2}}.
\]

Continuing with the proof of Lemma 2, note that for \(\frac{2}{\sqrt{p}} \leq h \leq 1 \)
\[
\frac{1}{2h\sqrt{p}}(1 - h^2)^{\frac{p-1}{2}} \leq \frac{1}{4}(1 - h^2)^{\frac{p-1}{2}} \leq \frac{1}{4} \exp\left(-\frac{p-1}{2}h^2\right).
\]

Choosing \(h = \sqrt{\frac{2\log\left(\frac{1}{4}\right)}{p-1}} \) we have \(\frac{2}{\sqrt{p}} \leq h \leq 1 \) based on the assumption \(\mu \in \left(\frac{1}{4} \exp\left\{-p/20\right\}, \frac{1}{4}\right) \). Consequently, we can apply Lemma 3 with this value of \(h \) combined with (10) to conclude that
\[
\tilde{\mu}\left(p, \sqrt{\frac{2\log\left(\frac{1}{4}\right)}{p-1}} \right) \leq \mu.
\]
Hence the solid angle \(\psi\left(\tilde{\mu}\left(p, \sqrt{\frac{2\log\left(\frac{1}{4}\right)}{p-1}} \right) \right) \) is less than the solid angle \(\psi(\mu) \). Consequently, we use (10) to conclude that
\[
\psi(\mu) \geq \frac{\pi}{2} - \sin^{-1}\left(\sqrt{\frac{2\log\left(\frac{1}{4}\right)}{p-1}} \right).
\]
Using the bound \(\sin^{-1}(h) \leq \frac{\pi}{2}h \), we obtain the desired bound. □

Proof of Proposition 9: We bound the Gaussian squared-complexity of \(\mathcal{K} \) by bounding the expected squared-distance to the polar cone \(\mathcal{K}^* \). Let \(\tilde{\mu}(U; t) \) for \(U \subseteq \mathbb{S}^{p-1} \) and \(t > 0 \) denote the volume of the set of points in \(\mathbb{S}^{p-1} \) that are within a Euclidean distance of at most \(t \) from \(U \) (recall that the volume of this set is equivalent to the measure of the set with respect to the normalized Haar measure on \(\mathbb{S}^{p-1} \)). We have the
following sequence of relations by appealing to the independence of the direction \(g/\|g\|_{\ell_2} \) and of the length \(\|g\|_{\ell_2} \) of a standard normal vector \(g \):

\[
E[\text{dist}(g, K^*)^2] = E[\|g\|_{\ell_2}^2 \text{dist}(g/\|g\|_{\ell_2}, K^*)^2] = p E[\text{dist}(g/\|g\|_{\ell_2}, K^*)^2] \\
\leq p E[\text{dist}(g/\|g\|_{\ell_2}, K^* \cap S^{p-1})^2] \\
= p \int_0^\infty P[\text{dist}(g/\|g\|_{\ell_2}, K^* \cap S^{p-1})^2 > t]dt \\
= p \int_0^\infty P[\text{dist}(g/\|g\|_{\ell_2}, K^* \cap S^{p-1}) > \sqrt{t}]dt \\
= 2p \int_0^\infty sP[\text{dist}(g/\|g\|_{\ell_2}, K^* \cap S^{p-1}) > s]ds \\
= 2p \int_0^\infty s[1 - \bar{\mu}(K^* \cap S^{p-1}; s)]ds.
\]

Here the third equality follows based on the integral version of the expected value. Let \(V \subseteq S^{p-1} \) denote a spherical cap with the same volume as \(K^* \cap S^{p-1} \). Then we have by spherical isoperimetry that \(\bar{\mu}(V; s) \geq \bar{\mu}(K^* \cap S^{p-1}; s) \) for all \(s \geq 0 \) [3]. Thus

\[
E[\text{dist}(g, K^*)^2] \leq 2p \int_0^\infty s[1 - \bar{\mu}(V; s)]ds. \tag{11}
\]

From here onward, we focus exclusively on bounding the integral.

Let \(\tau(\psi) \) denote the volume of a spherical cap subtending a solid angle of \(\psi \) radians. Recall that \(\psi \) is a quantity between 0 and \(\pi \). As in Lemma 2 let \(\psi(\mu) \) denote the solid angle of a spherical cone subtending a solid angle of \(\mu \). Since the Euclidean distance between points on a sphere is always smaller than the geodesic distance, we have that \(\bar{\mu}(V; s) \geq \bar{\mu}(K^* \cap S^{p-1}; s) \). Further, we have the following explicit formula for \(\tau(\psi) \) [4]:

\[
\tau(\psi) = \omega_p^{-1} \int_0^\psi \sin^{p-1}(v)dv,
\]

where \(\omega_p = \int_0^\pi \sin^{p-1}(v)dv \) is the normalization constant. Combining these latter two observations, we can bound the integral in (11) as:

\[
\int_0^\infty s[1 - \bar{\mu}(V; s)]ds \leq \int_0^\infty s[1 - \tau(\psi(\mu) + s)]ds \\
= \int_0^{\pi - \psi(\mu)} s[1 - \tau(\psi(\mu) + s)]ds \\
= \frac{(\pi - \psi(\mu))^2}{2} - \int_0^{\pi - \psi(\mu)} s\tau(\psi(\mu) + s)ds \\
= \frac{(\pi - \psi(\mu))^2}{2} - \omega_p^{-1} \int_0^{\pi - \psi(\mu)} \int_0^{\psi(\mu) + s} s\sin^{p-1}(v)dvds.
\]
Next we change the order of integration to obtain:

\[
\int_0^\infty s[1 - \bar{\mu}(V; s)]ds \leq \frac{(\pi - \psi(\mu))^2}{2} - \omega_p^{-1} \int_0^\pi \int_{\max\{v - \psi(\mu), 0\}}^{\pi - \psi(\mu)} \sin^{p-1}(v)sdsdv
\]

\[
= \frac{(\pi - \psi(\mu))^2}{2} - \omega_p^{-1} \int_0^\pi \left[(\pi - \psi(\mu))^2 - (\max\{v - \psi(\mu), 0\})^2 \right] \sin^{p-1}(v)dv
\]

\[
= \omega_p^{-1} \int_0^\pi (\max\{v - \psi(\mu), 0\})^2 \sin^{p-1}(v)dv
\]

\[
= \omega_p^{-1} \int_\psi(\mu) (v - \psi(\mu))^2 \sin^{p-1}(v)dv.
\]

We now appeal to the inequalities \(\omega_p^{-1} \leq \sqrt{p-1}/2\) and \(\sin(x) \leq \exp(-(x - \frac{\pi}{2})^2/2)\) for \(x \in [0, \pi]\) to obtain

\[
\int_0^\infty s[1 - \bar{\mu}(V; s)]ds \leq \frac{\sqrt{p-1}}{2} \int_\psi(\mu) (v - \psi(\mu))^2 \exp \left[-\frac{(v - \frac{\pi}{2})^2}{2}\right] dv.
\]

Performing a change of variables with \(a = \sqrt{p-1}(v - \frac{\pi}{2})\), we have

\[
\int_0^\infty s[1 - \bar{\mu}(V; s)]ds \leq \frac{1}{2} \int_{\sqrt{p-1}(\psi(\mu) - \pi/2)}^{\sqrt{p-1}(\psi(\mu) - \pi/2)} \left(\frac{a^2}{p-1} + (\frac{a}{2} - \psi(\mu))^2 \right) \exp[-\frac{a^2}{2}]da
\]

\[
= \frac{1}{2} \left[\int_{\sqrt{p-1}(\psi(\mu) - \pi/2)}^{\sqrt{p-1}(\psi(\mu) - \pi/2)} \left(\frac{a^2}{p-1} + (\frac{a}{2} - \psi(\mu))^2 \right) \exp[-\frac{a^2}{2}] \right] \exp[-\frac{a^2}{2}]da
\]

\[
= \frac{1}{2} \left[\int_{-\infty}^{\sqrt{p-1}(\psi(\mu) - \pi/2)} \exp[-\frac{a^2}{2}]da + \int_{-\infty}^{\sqrt{p-1}(\psi(\mu) - \pi/2)} (\frac{a}{2} - \psi(\mu))^2 \exp[-\frac{a^2}{2}]da + \int_0^{\frac{2a}{\sqrt{p-1}}} (\frac{a}{2} - \psi(\mu)) \cdot \exp[-\frac{a^2}{2}]da \right]
\]

\[
= \frac{1}{2} \left[\frac{\sqrt{p-1}}{p-1} + \sqrt{2\pi}\left(\frac{\psi(\mu)}{2}\right)^2 + \frac{2a}{\sqrt{p-1}} \left(\frac{a}{2} - \psi(\mu)\right) \cdot \exp[-\frac{a^2}{2}] \right]
\]

Here the inequality was obtained by suitably changing the limits of integration. We now employ Lemma 2 to obtain the final bound:

\[
g(\mathcal{K} \cap B_{\ell_2}^p) \leq p \left[\frac{\sqrt{2\pi}}{p-1} + \sqrt{2\pi} \left(\frac{2\log\left(\frac{\psi(\mu)}{2}\right)}{p-1}\right)^2 + \frac{2}{\sqrt{p-1}} \left(\frac{2\log\left(\frac{\psi(\mu)}{2}\right)}{p-1}\right) \right]
\]

\[
= \frac{p\sqrt{2\pi}}{p-1} \left[1 + \pi \log \left(\frac{1}{10}\right) + \sqrt{\pi} \sqrt{\log \left(\frac{1}{10}\right)} \right]
\]

\[
\leq 20 \log \left(\frac{1}{10}\right).
\]

Here the final bound holds because \(\mu < 1/4e^2\) and \(p \geq 12\). \(\Box\)

References

