The *lin-15* Locus Encodes Two Negative Regulators of *Caenorhabditis elegans* Vulval Development

Linda S. Huang, Phoebe Tzou*, and Paul W. Sternberg

Howard Hughes Medical Institute, Division of Biology 156-29, California Institute of Technology, Pasadena, California 91125

Submitted December 21, 1993; Accepted February 7, 1994

Monitoring Editor: Judith Kimble

During *Caenorhabditis elegans* vulval development, an inductive signal from the anchor cell stimulates three of the six vulval precursor cells (VPCs) to adopt vulval rather than nonvulval epidermal fates. Genes necessary for this induction include the *lin-3* growth factor, the *let-23* receptor tyrosine kinase, and *let-60 ras*. *lin-15* is a negative regulator of this inductive pathway. In *lin-15* mutant animals, all six VPCs adopt vulval fates, even in the absence of inductive signal. Previous genetic studies suggested that *lin-15* is a complex locus with two independently mutable activities, A and B. We have cloned the *lin-15* locus by germline transformation and find that it encodes two nonoverlapping transcripts that are transcribed in the same direction. The downstream transcript encodes the *lin-15A* function; the upstream transcript encodes the *lin-15B* function. The predicted *lin-15A* and *lin-15B* proteins are novel and hydrophilic. We have identified a molecular null allele of *lin-15* and have used it to analyze the role of *lin-15* in the signaling pathway. We find that *lin-15* acts upstream of *let-23* and in parallel to the inductive signal.

INTRODUCTION

Intercellular signaling is a common mechanism used by multicellular organisms to specify cell fate during development, and receptor tyrosine kinases (RTKs)1 (reviewed by Fantl et al., 1993) represent one important class of signaling molecules. In general, the extracellular domain of an RTK binds an intercellular signal and regulates an intracellular tyrosine kinase activity. Upon ligand stimulation, RTKs associate with substrates and other signal transducers. RTKs involved in development include the insulin family RTK *sevenless* required for *Drosophila* photoreceptor development (Hafen et al., 1987), the platelet-derived growth factor (PDGF) family RTK *torso* involved in *Drosophila* terminal development (Sprenger et al., 1989), the *Drosophila* epidermal growth factor (EGF) receptor homologue DER involved in *Drosophila* dorsal/ventral patterning, ommatidial patterning in eye imaginal discs, and neuronal fate (Price et al., 1989; Schejter and Shilo, 1989), the *c-kit* RTK encoded by the W-locus utilized in mouse hematopoiesis and spermatogenesis (Chabot et al., 1988), and the fibroblast growth factor receptor used in *Xenopus* mesoderm induction (Amaya et al., 1991).

RTK activity is normally modulated by reception of ligand (Massagué and Pandielle, 1993). Thus, both ligand expression and localization are important for regulating RTK activity. Control of the expression of the RTKs themselves is another regulatory mechanism; overexpression of the EGF-RTK is seen in human solid tumors as well as tumor cell lines, although it is unclear whether this is a cause or an effect (Cowley et al., 1984; Lin et al., 1984; Merlino et al., 1984; Ullrich et al., 1984; Derynck et al., 1987). Furthermore, downregulation of RTK-mediated signaling through phosphorylation of defined sites of the receptor C-terminus, the activities of phosphatases, and the activity of protein kinase C also occurs (reviewed by Carpenter and Wahl, 1990). Negative regulation of the EGF-RTK has been proposed to occur through Müllerian Inhibitory Substance (Cigarro et al., 1989), a transforming growth factor-β homologue (Cate et al., 1986), although this inhibition may be indirect. Other events, such as ligand-mediated internalization and receptor dimerization, also define steps where potential regulation of RTK activity could occur.

1 Abbreviations used: AC, anchor cell; Berg, Bergerac; Bris, Bristol; EMS, ethylmethanesulfonate; Muv, multivulva; PCR, polymerase chain reaction; Rol, rolling; RTK, receptor tyrosine kinase; VPC, vulval precursor cell; Vul, vulval

*Current address: Department of Biological Science, Dartmouth College, Hanover, New Hampshire 03755.

© 1994 by The American Society for Cell Biology
During Caenorhabditis elegans vulval development, a signal is sent from the anchor cell (AC) of the hermaphrodite gonad to the vulval precursor cells (VPCs), which are P3.p, P4.p, P5.p, P6.p, P7.p, and P8.p, in the ventral epidermis (Kimble, 1981). This inductive signal causes three of the six VPCs to undergo vulval development, whereas the other three cells undergo nonvulval epidermal development. The three VPCs adopting vulval fates do so in a stereotyped pattern. P6.p, the VPC closest to the anchor cell adopts a 1° fate; the neighboring P5.p and P7.p adopt 2° fates. Removal of the inductive signal causes all VPCs to adopt nonvulval epidermal fates (Kimble, 1981; Sulston and White, 1980). Cells that adopt vulval fates undergo three rounds of cell divisions, characterized by stereotyped cell division patterns and morphogenetic movements; cells that adopt nonvulval epidermal fates divide at most only once (Sulston and Horvitz, 1977). The direct observation of cell division patterns provides a straightforward assay of VPC fate.

The inductive signal provided by the AC is an EGF-like growth factor encoded by lin-3 (Hill and Sternberg, 1992; Hill, Katz, and Sternberg, unpublished data). let-23, the candidate receptor for the signal, encodes an EGF-like RTK (Aroian et al., 1990). Several molecules downstream of let-23 have been identified, including sem-5, a SH2/SH3 adaptor protein (Clark et al., 1992); let-60, a ras homologue (Han and Sternberg, 1990); and lin-45, a raf homologue (Han et al., 1993) (see Figure 1). Reduction of function mutations in any of these genes result in a vulvaless (Vul) phenotype, where all six VPCs adopt nonvulval epidermal fates.

Loss of function mutations in the lin-15 locus result in an opposite phenotype. All six VPCs adopt vulval fates, leading to a multivulva (Muv) phenotype (Ferguson and Horvitz, 1985; Ferguson et al., 1987). Thus, lin-15 is a negative regulator of vulval differentiation. Genetic mosaic analysis indicates that lin-15 acts in cells other than the AC and the VPCs (i.e., nonautonomously) (Herman and Hedgecock, 1990). lin-15 is not the only locus involved in this aspect of negative regulation. lin-15 is a member of a set of negative regulators; appropriate combinations of mutations in these loci cause a Muv phenotype (Ferguson and Horvitz, 1989). This group of negative regulators was first defined by the genes lin-8 and lin-9 and now includes many other loci. lin-8 and lin-9 define class A and class B genes, respectively. Animals carrying a single mutation in either A or B genes are wild-type; only animals homozygous mutant for both an A and a B gene are Muv. lin-15 is a complex locus; it is the only genetically identified locus in this pathway to have three kinds of alleles. The A and B alleles of lin-15 have a wild-type vulval phenotype. There are also alleles that confer a Muv phenotype; we refer to these as AB alleles. We cloned the lin-15 locus to study the basis for the two functions and to elucidate the role of lin-15 in vulval differentiation.

MATERIALS AND METHODS

Strains and Culture Conditions

Nematodes were cultured as described (Brenner, 1974; Sulston and Hodgkin, 1988). All experiments were performed at 20°C unless otherwise noted. The following mutations and strains were used in this study: linkage group X: the lin-15 alleles n309, c1763, n1139, n765 (Ferguson and Horvitz, 1985), n744, n767 (Ferguson and Horvitz, 1989), n744sy212, n744sy211 (this study), n767sy222 (Hill, personal communication), n187 (Lee, personal communication), sup-10(n765) (Greenwald and Horvitz, 1982), mec-5(e1340) (Chalfie and Sulston, 1981), unc-3(e151) (Brenner, 1974), lin-8(n111) (Ferguson and Horvitz, 1985), and mnd1p(X;V); mnd4(X) (Meneely and Herman, 1979); linkage group III: lin-36(n766) (Ferguson and Horvitz, 1989); linkage group II: let-239(sy97)/mnc1(dplo-10 unc-59) (Herman, 1978; Aroian and Sternberg, 1991); the wild-type C. elegans strain N2 (Brenner, 1974), and the Bergerac (Berg) BO C. elegans strain (Emmons et al., 1979). Genetic nomenclature follows Horvitz et al. (1979), except we designate the lin-15 allele n765 as "lin-15AB(n765)" because animals carrying this mutation display a Muv phenotype at 20°C, although the B function is restored at 15°C (Ferguson and Horvitz, 1985).

Physical Mapping of the lin-15 Locus

We mapped the lin-15 locus by constructing recombinants between the C. elegans Bristol (Bri) strain and the Berg strain, a C. elegans strain that contains many polymorphisms with respect to the Bri strain as described (Rose et al., 1982). Because lin-15 is X-linked and C. elegans males are XO, we allowed Bri N2 males to mate with Berg BO hermaphrodites, Berg/0 males from this cross were then allowed to mate with lin-15AB(n765) Bri sup-10(n983) Bris hermaphrodites, and their heterozygous cross-progeny hermaphrodites (lin-15AB(n765) Bris sup-10(n983) Bri/lin-15(+) Bergy sup-10 (+ Bergy) were selected and grown at 25°C. Their progeny were screened for animals with the Sup-10(n983) phenotype but not the Muv phenotype; these were presumed to be of the genotype lin-15AB(n765) Bris sup-10(n983) Bri/lin-15(+) Bergy sup-10(n983) Bris. These animals were allowed to self-fertilize, and their Sup-10 progeny that did not segregate Muv animals in the next generation were kept. Twenty recombinants were found. DNA from these animals was prepared, digested with restriction enzymes, Southern blotted, and probed with TU1#W1723, a clone that identified a polymorphism from the sup-10 contig (Driscol and Chalfie, personal communication). Of the genomic DNA from the 20 recombinants, 13 displayed a Bri pattern, five displayed a Berg pattern, and two were ambiguous.

Germline-mediated Transformation by Microinjection

Microinjection was performed as described (Mello et al., 1991), modified from Fire (1986). For all injection experiments, the plasmid pRF4, containing the rol-6(su1006) mutant gene (Mello et al., 1991), was used as a transformation marker at a concentration of 50 ng/µl. Injected animals were placed on new plates at least once per day, and their progeny were examined one to four times per day. F1 rolling (Rol) animals were placed on individual plates as soon as they were identified and scored under a dissecting microscope for rescue of the Muv phenotype upon reaching adulthood. Their progeny were examined for the presence of Rol animals to determine whether the line was stable, and if stable, were checked for their Muv phenotype. All injected animals, F1 transformants, and transgenic lines were maintained at 20°C. Animals of the genotype lin-15AB(n765), lin-8A(n111); lin-15B(n744), and lin-36B(n766); lin-15A(n767) were injected, as described in Figure 2, Figure 8, and Table 1.

RNA Analysis

Mixed stage RNA was prepared from N2 animals using guanidinium thiocyanate and pelleted using CsTFA (Pharmacia, Piscataway, NJ).
Poly A⁺ selection was performed using a poly dT column (Pharmacia). Twice selected poly A⁺ RNA (7.5 μg) was separated on a 1% denaturing formaldehyde agarose gel, blotted onto Hybond-N (Amersham, Arlington Heights, IL), and probed with random-primed DNA labeled with ³²P, according to standard methods (Sambrook et al., 1989; Ausubel et al., 1992). Exposures were done for 2 1/2 wk at ~70°C with an intensifying screen on Kodak (Rochester, NY) XAR film.

Subclones and Southern blots

All subcloning, Southern blotting, and DNA manipulations were performed according to standard methods (Sambrook et al., 1989; Ausubel et al., 1992). C. elegans genomic DNA was prepared according to the methods of Andy Fire as described by Sulston and Hodgkin (1988).

cDNA Analysis

Two cDNA libraries were screened with the 6.8-kilobase (kb) BamHI fragment of plasmid p68B3 (see Figure 1 for location) using standard methods (Sambrook et al., 1989; Ausubel et al., 1992) because p68B3 hybridizes with both transcripts detected on a Northern blot (see Figure 2). One cDNA library was in Adg10 (kindly provided by S. Kim, Stanford University); the other was in ASH12 (kindly provided by C. Martin, Columbia University). Two cDNAs were obtained from the Kim library and six from the Martin library. Two noncross-hybridizing classes of cDNAs were detected, and both classes were represented in both libraries. These cDNAs were mapped to genomic DNA through Southern hybridization using probe synthesized from the cDNA clones against genomic clones digested with various restriction enzyme combinations and blotted on nylon membranes.

The composite cDNA for the upstream transcript appeared not to include the 5' end of the gene based on the apparent size of the transcript as detected on a Northern Blot (see Figure 3). Therefore, a third cDNA library in λZAP (kindly provided by B. Barstead, Oklahoma Medical Research Foundation) was probed with pBlH10, which contains a 1.3 kb-EcoRI fragment from base 3045 to base 4396, upstream of the most 5' cDNA sequence. Six cDNAs were obtained; three were identical clones (cF1, cD1, cF2). The four unique cDNAs were lin-15 clones, as demonstrated by DNA sequencing. However, two of the four cDNAs (cF1, cD3) were fused to cDNAs from other genes, as evidenced by the presence of an EcoRI linker fused to a poly A⁺ tail in the middle of the clone. A third cDNA (cD2) ended at the 3' end of the lin-15 upstream transcript but had a highly rearranged 5' end in previously sequenced DNA. The fourth cDNA (cL1) was an intact cDNA that started 848 basepair (bp) 5' of the genomic 3' end of the upstream transcript. Sequence from cL1 gave 286 bp more cDNA sequence from the previous 5' end. Sequence from the lin-15 portion of cF1 gave 1110 bp more cDNA sequence upstream of that obtained from cL1. However, the cDNA sequence from cF1 was separated from the cDNA sequence inferred from cL1 by a 35 bp genomic gap that was later found to be transcribed, as described below.

Exon Predictions

Because the most 5' cDNA of the upstream transcript was not full length, we predicted potential exons by examining the genomic sequence. Because C. elegans introns have, on average, a 68% AT content (Fields, personal communication), the genomic region was plotted for its relative AT versus GC content. AT-rich regions were considered potential introns. The genomic DNA sequence was scanned by eye for potential splice donor and acceptor sites (Emmons, 1988) that would maintain the open reading frame, on the basis of our known cDNA sequence. Thus, the exons predicted had to fulfill three criteria. 1) The exon had to have an open reading frame that would splice in-frame to the next exon. 2) The exon had to have splice donor and acceptor sites of reasonable consensus. 3) The exon had to have a GC content of ≥35%.

To confirm exon predictions, we used 4.5 μg of once-selected poly A⁺ RNA to synthesize cDNA using primer ml1sq (CGG GTA ACG TAG TTG TAG), primer w2sq (GGA AAC GAT ATCA TTC TTG AG), primer 18BJB (CCG GTG TAG ATG ATG TGC AG), and primer 20J7A (CCG ATA AAT ACA GCC CAA C). The polymerase chain reaction (PCR) was performed on one-tenth of the synthesized cDNA using primer bF (ACA GCA CGA CTT ACA TCA AAC CCG GCA TCA), primer wF (GCC GCT TTG AC ACG CAC GCG CAA ATG TCC), primer mR (GGT TGT ACA ACT GCA CCT TCT TCA ACC AGC), primer wR (GTG GCG ATA TGA CAT GGC TGG CAC AAC), and primer xR (CCG TTG CAA GCT CTC GCC TTC TGG AAT TCC) to confirm exon predictions. PCR was performed using Pfu DNA Polymerase (Stratagene, La Jolla, CA) using the following conditions: 95°C, 1 min; 60°C, 1 min; 72°C, 1 min 30 sec, for 26 cycles. Band of predicted sizes were obtained using combinations of primer bF with primer mR, primer bF with primer wR, and primer wF with primer xR. The bands obtained were cloned and sequenced according to standard methods.

Identifying Trans-splicing to SL2

cDNA was made from 30 μg of N2 RNA using primers A4-RA6 (GAG ATA CTC GAT GAT CCA GC) and D32R (CCG TTG AGC AGT TGG GAG). PCR was performed using primers SL2 (GTT TTT AAC CCA GTT ACT CAA G) and A4-VR6 (GAT GAG TAT GAT GAC TTC TTT CTG ATC AGG), using one-fifth of the cDNA synthesized. Primer SL2 is the exact sequence of the SL2 trans-splice leader (Huang and Hirsh, 1989). One-tenth of the PCR reaction was separated on a 0.8% Tris-Borate-EDTA (TBE) gel and blotted onto Hybond-N (Amersham). The blot was probed with primed random B11, a cDNA of the downstream transcript obtained from the Martin library, to establish that the 1.2-kb band visualized with ethidium bromide staining was indeed a lin-15 clone. Three different thermostable polymerases, Taq (Cetus, Berkeley, CA), Vent (New England Biolabs, Beverly, MA), and Pfu (Stratagene) were used in three independent PCR reactions to minimize polymerase artifacts. The 1.2-kb bands from the three different reactions were isolated from a low melting point TBE agarose gel, cloned, and sequenced to confirm their identity as lin-15 clones.

Sequencing

Double strand sequencing of all genomic and cDNA clones was performed using a combination of a primer walking, subcloning, and γδ transposon sequencing as described (Sambrook et al., 1989; Strathmann et al., 1991; Ausubel et al., 1992). Sequencing reactions were performed using Sequenase version 2.0 and other reagents from United States Biochemical (Cleveland, OH). Sequencing was compiled using the International Biotechnology programs, MacVector 3.5 (New Haven, CT). The predicted proteins were subjected to database searches against both Genbank and EMBL (Heidelberg, Germany) using BLAST (Altschul et al., 1990), TFASTA (Pearson and Lipman, 1988), and BLASTS (Henikoff and Henikoff, 1991). The BLAST search was performed at the National Center for Biotechnology Information using the BLAST network service. The protein motif finding programs MacPattern and Motifs were used on both predicted proteins. Motifs is within the GCG Package, Version 7, from the Genetics Computer Group, University of Wisconsin (1991). DNA Strider was used to calculate the predicted molecular weight of the proteins and to determine the amino acid composition. MacVector 3.5 was used to plot hydrophilicity, using the Kyte Doolittle hydrophilicity scale.

Screen for New lin-15AB Alleles Starting with a lin-15B Allele

Hermaphrodites homozygous for lin-15B(n744) were mutagenized at 20°C using ethylmethanesulfonate (EMS) as previously described (Brenner, 1974; Sulston and Hodgkin, 1988). P0 animals were allowed to self-fertilize for two generations, and F2 progeny were screened for Muv animals. Of 6900 mutagenized gametes screened, two new lin-15AB alleles, y2121n744 and y2121n744, were recovered.
Noncomplementation Screen Starting with lin-15AB\(^n(765)\)

mece-5(e1340) males were mutagenized at 20°C with EMS as above and allowed to mate with **unc-3(e151) lin-15AB\(^n(765)\)** animals. After EMS treatment, all animals and their progeny were grown at 15°C. The F1 generation breakpoint was screened for Muv animals. Of 35 000 mutagenized gametes screened, no candidates were found. Dominant mutations of other genetic loci were seen, indicating that the mutagen was effective.

unc-3(e151) lin-15AB\(^n(765)\)/\(nm304\) animals were constructed by mating N2 males with hermaphrodites of the genotype **mece-5(e1340)/\(nm304\). \(\text{mm}304\)/\(\text{mm}304\) is a deficiency of the X chromosome that removes lin-15 along with other nearby genes (Meneye and Herman, 1979): this deficiency is covered by the duplication \(\text{mm}301\), which is attached to chromosome V (Herman et al., 1976). This cross was performed at 20°C, the rest of this experiment was performed at 15°C. **mece-5(e1340)/\(nm304\)/\(nm304\)** males from this cross were allowed to mate with **dpy-17(e164); unc-3(e151) lin-15AB\(^n(765)\)** hermaphrodites. In the next generation, non-Dumpy uncoordinated hermaphrodites were scored for their Muv phenotype. The non-Dumpy Uncordinated animals were presumed to be of the genotype **dpy-17(e164)/+; unc-3(e151) lin-15AB\(^n(765)\)/\(nm304\)**. Of the 40 non-Dumpy Uncordinated animals scored, 31 of them (77%) displayed protrusions on their ventral surface that could be easily scored under a dissecting scope.

lin-15A(n767) Deletion Localization

DNA from N2 and **lin-15A(n767)\(^n\)** animals was digested with EcoRI, BamHI, and HindIII, singly and in combination, separated by electrophoresis on agarose gels, and blotted onto Hybond-N according to standard methods (Sambrook et al., 1989; Ausubel et al., 1992). These Southern blots were then probed with pgL12, a 2.8-kb Sal I/BamHI fragment containing DNA from base 6868 to 9659 (see Figure 5). The **lin-15A(n767)** deletion was localized to within a EcoRI/HindIII 336-bp fragment. Primers were designed to allow for PCR of an ~300-bp fragment from **lin-15A(n767)\(^n\)** DNA. PCR on 50 ng of **lin-15A(n767)** and N2 DNA using both Taq (Cetus) and Pfu (Stratagene) DNA polymerases was performed using primers **n767F** (GCC CAC CGT CAC AAA GGG AAT TAC CGG) and **n767R** (CGT CTT CGT TCT ACA GTG TTC TGC ATL). One-tenth of the PCR reaction was separated on a 1% TBE agarose gel, and the PCR product was directly sequenced using primers SQ17 (TTA CTT ACA ACC CGG CAC) and SQ26 (CAG TGT TCT CTA TCT CAC). As primer **n767F** was only 43 bp away and primer SQ26 was only 33 bp away from the 5' end of the deletion breakpoint, it was difficult to read the sequence on the minus strand all the way to the 5' breakpoint. Therefore, we confirmed the location of both the 5' and 3' breakpoints and the structure of the **lin-15A(n767)** mutation by repeating this procedure using primers **n767FZ** (GCG CAC CGG ACA GAT TGA TGC GTG GCC ATG) and **n767RZ** (GGG AAT ATA CGG TTC TCT AGC AAT AGG TAC TTC T) for PCR and primers SQ26Z (GCC CAT GAT ATC TAT AGA GC) and 65QRZ (GCA TCT TCA GTG TTA TGC TC) for sequencing. Both primer sets revealed the same rearrangement.

lin-15AB\(^e(1763)\) Deletion Localization

Because of repetitive DNA, we were unable to determine the 3' deletion breakpoint of **lin-15AB(e1763)** by mapping with genomic Southern blots followed by PCR as performed for **lin-15A(n767)**. Therefore, the **lin-15AB(e1763)** deletion was localized using a variation of ligation-mediated PCR (Mueller et al., 1992). Six micrograms DNA from **lin-15AB(e1763)** animals was ethanol precipitated and resuspended in 18 µl ddH\(_2\)O. The DNA was modified by adding 54 µl 88% formic acid (Mallincrodt, Paris, KY), vortexing for 25 sec, and incubating for 1 min 30 sec. One hundred sixty-four microliters stop solution (0.36 M NaOAc pH 7.0, 0.14 mM EDTA pH 8.0, 0.5 µg/µl tRNA) was added before ethanol precipitation. The modified DNA was then cleaved by resuspension in 200 µl 1:10 diluted piperidine (Aldrich, Milwaukee, WI) at room temperature and heated to 90°C for 30 min. Piperidine-cleaved samples were then recovered as described (Mueller et al., 1992). First strand synthesis was carried out on 200 ng cleaved DNA using a denaturing time of 5 min at 95°C, annealing time of 30 min at 50°C, and extension time of 10 min at 76°C. The remainder of the first strand synthesis and ligation were performed as described (Mueller et al., 1992) using primer LMPCR.1 (CGC GTG ACC CGG GAG ATC TGA ATT T), primer LMPCR.2 (GAA TTC AGA TC), and the lin-15 specific primer, e1763.1 (TCC TTT ATC AAC GGT CA).

The first round of PCR was performed on one-half of the ligated DNA in a mixture consisting of 10 µl DNA, 20.5 µl ddH\(_2\)O, 2.5 µl 20 µM primer LMPCR.1, 2.5 µl 20 µM primer e1763.2 (TGT CTA GAA CAT TAT CTC TCT AAC AT), 5 µl Pfu buffer (Stratagene), 8 µl 1.25 mM dNTPs, 1.5 µl Pfu (3.75u, Stratagene), and 50 µl mineral oil, using PCR conditions as follows: 95°C, 1 min; 60°C, 1 min; 72°C, 3 min, 20 cycles total. One-half of the PCR reaction was separated on a 0.8% low melting point TBE agarose gel. DNA migrating between 600 bp and 1.2 kb was isolated from the gel, and one-half of the recovered DNA was subjected to a second round of PCR in a mixture consisting of 10 µl DNA, 23.5 µl ddH\(_2\)O, 1 µl 50 µM primed kit primer LMPCR.1, 1 µl 50 µM primed kit primer e1763.3 (CTA GAA CAT TAT CTC TCT TTC ATT GTC TA), 5 µl Pfu buffer, 8 µl 1.25 mM dNTPs, 1.5 µl Pfu (3.75 u, Stratagene), and 50 µl mineral oil, using PCR conditions as follows: 95°C, 1 min; 61°C, 1 min; 72°C, 3 min for 25 cycles. One-half of the PCR reaction was separated on a 0.8% low melting point TBE agarose gel, and DNA running between 600 bp and 1.2 kb was recovered from the gel. The recovered DNA was cloned into Bluescript SK* (Stratagene), and four independent isolates were sequenced to determine the 3' breakpoint of **lin-15AB(e1763)**. This result was confirmed by performing PCR on 50 ng of **lin-15AB(e1763)** genomic DNA using primers e1763.1chF (GCT GCC ATA AAA TCT AAT AAC CGG CAT CAC) and e1763.chR (TTC TAA CCT GAA AAA TTT CGT GTG ACC GA). The ~350-bp band obtained from this PCR reaction was sequenced to confirm its identity as a **lin-15AB(e1763)** clone.

Construction of let-23(syg97); lin-15AB(e1763)

let-23(e97)/\(m1c1\) (dpy-10 unc-52) males were allowed to mate with **lin-15AB(e1763)** hermaphrodites. L4 hermaphrodite cross-progeny were placed onto individual plates and allowed to self-fertilize. The genotype of **let-23(e97)**/\(+; lin-15AB(e1763)**/+ was determined upon scoring of both Muv and Vuls in the next generation. Muv and Vul progeny from **let-23(e97)**/\(+; lin-15AB(e1763)**/+ were selected. No Muv were found segregating from Vul hermaphrodites, whereas Vuls were found segregating from Muv hermaphrodites. The Vuls segregating from the Muv hermaphrodites were the desired genotype **let-23(e97); lin-15AB(e1763)**.

Gonad Ablations, Vulval Differentiation, Vulval Lineages, and Photography

Animals were mounted on 5% Noble agar pads containing ~3 mM sodium azide as an anesthetic, and gonad precursor cells were killed by laser ablation in L1 animals as previously described (Sulston and White, 1980; Avery and Horvitz, 1987; Sternberg, 1988). Ablations were verified 4–20 h after surgery, before the time of vulval differentiation. Vulval differentiation was scored during or after the L3 molt.

To score vulval differentiation, living animals were mounted on 5% Noble agar pads and examined under Nomarski microscopy as previously described (Sulston and Horvitz, 1977; Sternberg and Horvitz, 1981). The number of cells undergoing vulval differentiation was tabulated by scoring for the presence of vulval cells versus large nonvulval epidermal cells after the L3 molt, the time after vulval differentiation occurs in intact animals. The percentage of cells undergoing vulval differentiation was determined as previously described (Aroian and Sternberg, 1991). In some cases, vulval cell lineages were followed by watching cell divisions under Nomarski microscopy. Photomicrographs were taken on Kodak technical pan film on a Zeiss Axioskop (Thornwood, NY) under Nomarski optics with a 40x objective.
RESULTS

Identification of the lin-15 Genomic Region

We correlated the genetic and physical map in the lin-15 sup-10 region of the X chromosome by making recombinants between the highly polymorphic C. elegans Berg BO strain and the C. elegans Bris strain as described in MATERIALS AND METHODS. By probing the recombinant genomic DNA with radiolabeled probe synthesized from the polymorphism-containing clone, TU#W1723 (M. Driscoll and M. Chalfie, personal communication), we determined that TU#W1723 was approximately one-third of the distance from sup-10 to lin-15 (see MATERIALS AND METHODS for details). The cloning of sdc-1 (Nonet and Meyer, 1991), which genetically maps between sup-10 and lin-15 (Villeneuve and Meyer, 1990), confirmed our map data and strongly suggested that lin-15 was near the end of the then existing sup-10 contig, an overlapping set of genomic clones for the left end of the X chromosome. Thus, we injected PS#74B3, a cosmid mapping to the end of the sup-10 contig, overlapping cosmids F14H4 and C29B12 (Mendel and Coulson, personal communication). Microinjection-mediated germline transformation using PS#74B3 rescued the lin-15 Muv phenotype (Figure 2).

To further define the lin-15 containing region, we injected smaller subclones from the cosmid and found that the pJM23 plasmid would rescue lin-15.

Genomic Analysis of the Rescuing Region

Genomic subclones from the region contained in the pJM23 15-kb rescuing fragment were used to probe a Northern blot containing RNA from wild-type animals. Two transcripts were detected (Figure 3). The larger transcript was recognized by both probes (p18B3 and p68B3); the smaller transcript was only recognized by one probe (p68B3). cDNA libraries were probed using a subclone that recognized both transcripts (see MATERIALS AND METHODS). Two noncross-hybridizing classes of cDNAs were found. The clones were mapped to the genomic DNA. As both classes of cDNAs had members that contained poly A tails, we could infer...
Analysis of the Downstream Transcript

One cDNA of the downstream transcript, B11c, is likely to be near full length as it contains 3 bp of the trans-spliced leader SL2 (Huang and Hirsh, 1989). SL2 is a 22 nucleotide trans-spliced leader that is spliced to the 5' end of certain C. elegans transcripts (for a review of trans-splicing, see Blumenthal and Thomas, 1988). We confirmed that the downstream transcript is indeed trans-spliced to SL2 by performing PCR using reverse transcribed cDNA. We were able to amplify a band using the lin-15 specific primer A4-VR6 and an SL2 primer. This band hybridized to probe made from the B11c cDNA. DNA sequencing confirmed that it was a lin-15 clone and that trans-splicing of SL2 occurs as predicted from the cDNA.

Analysis of the Upstream Transcript

Three cDNA libraries were screened, and a composite cDNA of 3.5 kb was compiled (see MATERIALS AND METHODS and Figure 4). Because this composite cDNA was not complete, introns and exons were predicted from the genomic sequence (see MATERIALS AND METHODS). Predictions were confirmed by performing PCR on reverse-transcribed RNA. From the predicted exons, primers for reverse transcription as well as for PCR were designed. All PCR primers were required to span a predicted intron to allow discrimination of potential genomic contaminants (none were seen). These bands were cloned and sequenced, and the corresponding exons are shown in Figure 4. The first 21 nucleotides of the 5' most exon, including the initiating methionine, is predicted from the genomic sequence.

Both Transcripts Constitute lin-15 Function

Southern blots containing DNA from the lin-15AB alleles n1139, n377, e1763, and n309 were probed with radiolabeled subclones of the 15-kb lin-15 rescuing gene.

Figure 4. cDNA analysis. Primers used for RT-PCR are shown below the exon intron map with an arrowhead indicating their orientation. Only relevant restriction sites are shown. Probe p6883 was used to isolate cDNAs #3, A2a, A4a, and B11c. Probe pbwLH60 was used to isolate cDNAs cF1, cD1, cF2, cL1, cD2, and cD3. Only cDNAs that were analyzed beyond sizing are shown on this map. pbwLH67 is an RT-PCR fragment generated using primers bF and mR. pbwLH68 is an RT-PCR fragment generated using primers bF and wR, and pbwLH66 is an RT-PCR fragment generated using primers wF and xR. Details about the isolation of the cDNAs and the RT-PCR fragments are given in MATERIALS AND METHODS. Abbreviations: X, Xba I; B, BamHI; Xh, XhoI; RI, EcoRI; S, Sal I.

Figure 3. RNA analysis. Poly A+ RNA from the wild-type nematode strain N2 was electrophoresed and transferred to a nylon membrane. A was probed with p18B3, a 1.8-kb BamHI fragment. B was probed with p6883, a 6.8-kb BamHI fragment. P18B3 and p6883 are both subclones of cosmids PS#74B3 (see Figure 2). Abbreviations: X, Xba I; B, BamHI; S, Sal I.

that both cDNAs are transcribed in the same direction (Figure 4).

The cDNAs and the corresponding genomic regions were sequenced (Figure 5). Exons are shown in capital letters, and the predicted amino acids are shown below. Only 105 bp of genomic sequence separates the 3' end of the upstream transcript from the 5' end of the downstream transcript.

L.S. Huang et al.
C. elegans lin-15 Locus

Figure 5. (Continued)
C. elegans lin-15 Locus

RGDHLKGGVTSNTPLYSFKNSIKSYYRHNHPVRMVNGSL

for lin-15AB polymorphisms for similar a communication (lane DNA resolutions rescuing genomic of 1/3500. We were determined for 14 EcoRI-, and 5' EcoRV-digested lin-15 show detectable in (Figure 6, lanes 2–5). These DNA polymorphisms were determined to be deletions from the lin-15 rescuing region by mapping of the polymorphisms using BamHI-, HindIII-, EcoRI-, and EcoRV-digested DNAs on Southern blots that were probed with subclones of the 15-kb lin-15 rescuing genomic DNA contained in pJM23. These deletions appear to affect both transcribed regions.

However, not all Muv alleles of lin-15 show detectable polymorphisms for the lin-15 rescuing region. Screens for new lin-15AB alleles using EMS mutagenesis starting with the lin-15B allele n744 yielded two new lin-15AB alleles, sy211n744 and sy212n744. These alleles were recovered at a frequency of ~1/3500. We looked for polymorphisms using BamHI-, HindIII-, EcoRI-, and EcoRV-digested DNA on Southern blots that were probed with subclones of the 15 kb lin-15 rescuing genomic DNA contained in pJM23. No polymorphisms were detected (for example, see lane 13 and 14 of Figure 6). New polymorphisms were also not found for the lin-15AB allele n767sy222, which was obtained in a similar screen starting with lin-15A(n767) (Hill, personal communication) (lane 11).

We were unable to detect polymorphisms associated with the A and B alleles of lin-15, except for the lin-15A allele, n767 (lanes 9, 10, and 12 of Figure 6). We determined the location of the n767 polymorphism through restriction analysis followed by PCR. This 179-bp deletion lies in the downstream transcript and spans the final two exons (see Figure 7 for details). The n767 mutation would lead to a truncated A protein, missing 347 amino acids from the C-terminus, as well as 40 amino acids from the middle of the predicted protein.

All these results together suggest that both transcripts constitute wild-type lin-15 activity and both must be eliminated to produce a Muv phenotype. This hypothesis is consistent with results from a lin-15 noncomplementation screen that could recover null alleles, as 77% of animals of the genotype lin-15AB(n765)/Df are Muv at 15°C. We mutagenized mec-5(e1340) males, allowed them to mate with unc-3(e151) lin-15AB(n765) hermaphrodites, and screened 35 000 F1 progeny raised at 15°C. Although standard mutagenesis protocols result in a C. elegans gene knockout frequency between 1/2000 to 1/3300 (Brenner, 1974; Greenwald and Horvitz, 1980; Park and Horvitz, 1986), we recovered no new lin-15 mutations. However, EMS usually generates point mutations (Anderson and Brenner, 1984; Dibb et al., 1985). Thus, if two independent point mutations or a deletion are required for recovery of lin-15AB alleles, mutations that fail to complement lin-15AB(n765) would be rare. Our failure to recover additional lin-15 alleles is consistent with lin-15 being a complex locus.
These mutagenesis EMS X, DNA agarose (Horvitz, 1985).

Transgenes containing pJM23 rescue lin-36B(n766); lin-15A(n767) animals to a wild-type vulval phenotype. Therefore, the lin-15A region is contained within this plasmid. As plmLH4 does not rescue lin-36B(n766); lin-15A(n767) animals, a third transcript 3' of the downstream transcript encoding lin-15A function is unlikely. A 12-kb plasmid (plmLH5) containing all of the downstream transcript plus ~3 kb upstream will not rescue lin-15A. Although this could indicate a requirement for 5' sequences, we believe this is because transcription of the upstream transcript is required for transcription of the downstream transcript. Spieth et al. (1993) have demonstrated that polycistronic transcription exists in C. elegans and that polycistronic transcripts are trans-spliced to the SL2 leader. In these polycistronic messages, the downstream transcript is often separated by ~100 bp from the upstream transcript. Because the lin-15A transcript is trans-spliced to SL2 and is separated from the upstream lin-15B transcript by 105 bp, it is likely that lin-15A is being cotranscribed with lin-15B and then processed.

The construct pbLH51 is the same as pJM23 except that 330 bp is deleted from an exon in the lin-15B transcript. lin-36B(n766); lin-15A(n767) animals are rescued to a wild-type phenotype when they carry this construct as a transgene. Injection of pbLH51 into lin-8A(n111); lin-15B(n744) animals does not rescue the vulval phenotype. Thus, pbLH5 will rescue lin-15A but not lin-15B. Because pJM24 will not rescue lin-36B(n766); lin-15A(n767) animals, we believe the ability of pbLH51 to rescue lin-36B(n766); lin-15A(n767) animals results from the addition of important regulatory sequences for the lin-15A transcript, rather than some function of the lin-15B gene product.

The lin-15 Locus Can Be Divided into a lin-15A and a lin-15B Region

Because animals carrying either lin-15A alleles or lin-15B alleles are phenotypically wild-type, it is conceivable that rescued animals could be phenotypically wild-type while still genotypically A or B. To exclude this possibility, we tested for lin-15A and lin-15B function independently. To test for rescue of lin-15B, we injected animals of the genotype lin-8A(n111); lin-15B(n744). To test for rescue of lin-15A, we injected animals of the genotype lin-36B(n766); lin-15A(n767) (Figure 8 and Table 1). The plasmid pJM24, which contains the genomic sequence that encodes the upstream transcript and the first exon of the downstream transcript, will rescue lin-8A(n111); lin-15B(n744) but not lin-36B(n766); lin-15A(n767).

Therefore, the upstream transcript is the lin-15B transcript.

Figure 6. Southern analysis of the lin-15 locus. One microgram genomic DNA for each strain was digested with BamHI, separated on an agarose gel by electrophoresis, and transferred to a nylon membrane. These membranes were probed with p68B3, a 6.8-kb BamHI genomic subclone. The lin-15 Muv alleles el1763, n377, n309, and n1139 are all derived from mutagenesis of the wild-type N2 strain (Ferguson and Horvitz, 1985). The lin-15 Muv allele n767s222 is derived from EMS mutagenesis of lin-15A(n767). The lin-15 Muv alleles sy210n744 and sy211n744 are derived from EMS mutagenesis of lin-15B(n744). Abbreviations: X, Xba I; B, BamHI; S, Sal I.

The lin-15A and lin-15B Protein Products

The sequences of the predicted protein products from the two transcripts (Figure 5) are different and appear to show no similarity to any currently known proteins. Each transcript contains one large open reading frame that spans all exons. Because the other potential reading frames contain many stop codons and do not code for continuous proteins, we presume the large open reading frames code for the lin-15A and lin-15B proteins. The methionines at the start of the proteins were chosen because they were the ones closest to the 5' end.

Both predicted proteins are hydrophilic. The 1440 amino acid lin-15B protein has a predicted molecular weight of 163 kDa and contains 8.4% acidic and 15.3% basic residues. The 722 amino acid lin-15A protein has a predicted molecular weight of 81 kDa and contains 10.7% acidic and 17.8% basic residues. Neither protein contains known protein motifs except for potential N-glycosylation, phosphorylation, and myristoylation sites in both, and potential amidation sites in the lin-15A protein. However, the presence of these sites is not suf-
Figure 7. The lin-15A(n767) mutation. The lin-15A(n767) deletion detectable on a Southern blot (see Figure 6) was localized using PCR (see MATERIALS AND METHODS). The lin-15A(n767) mutation deletes 120 bp from the A transcript as well as a 59-bp intron, while inserting 12 As, thus fusing the final two exons of the lin-15A transcript in frame. An extra A is added six bases after the fusion, causing a frame shift resulting in a stop codon three codons later (TGA is boxed). In addition, 11 bp after the stop codon, a G has been changed to an A. The relevance of this G to A change is unknown and could have occurred upon maintenance of this strain, as there would be no pressure to maintain the fidelity of the bases after the new stop codon in lin-15A(n767).

sufficient to conclude that these sites are used, and we have no evidence that the presence of these sites is significant.

e1763 is a Candidate Null Allele of lin-15
As Southern blot analysis demonstrated lin-15AB(e1763) was a deletion of a large part of the genomic DNA contained in pJM23, we localized the deletion breakpoints of lin-15AB(e1763) by ligation-mediated PCR. The extent of the deletion was confirmed by PCR directly from lin-15AB(e1763) genomic DNA. Our analysis demonstrates that the e1763 allele deletes DNA from base 33 beyond the XbaI site to base 9588 in the 3' UTR of the lin-15A transcript, effectively deleting all coding regions contained in the rescuing fragment, pJM23. Previously published experiments with lin-15 have used the allele n309, which contains a smaller deletion than e1763 (see Figure 8). Thus, we characterized animals carrying the lin-15 molecular null, e1763, to determine if there were any differences that would affect interpretation of earlier studies.

Gonad Independence of lin-15AB(e1763) Vulval Differentiation
In lin-15AB(e1763) animals, essentially all VPCs undergo vulval differentiation. To determine if the Muv phenotype of lin-15AB(e1763) mutant animals is dependent on the inductive signal from the gonad, we performed gonad ablation experiments. lin-15AB(e1763) animals whose gonads were ablated in the first larval stage (L1)
L.S. Huang et al.

Table 1. Rescue of lin-15A and lin-15B

<table>
<thead>
<tr>
<th>Plasmid injected</th>
<th>Concentration injected</th>
<th>Number F1 rescued</th>
<th>Total number F1s rescued</th>
<th>Number stable lines rescued</th>
<th>Number of stable lines rescued</th>
</tr>
</thead>
<tbody>
<tr>
<td>pJM23</td>
<td>50 ng/μl</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>pJM23</td>
<td>25 ng/μl</td>
<td>29</td>
<td>29</td>
<td>ND</td>
<td>3</td>
</tr>
<tr>
<td>pbLH98*</td>
<td>25 ng/μl</td>
<td>25</td>
<td>25</td>
<td>ND</td>
<td>25</td>
</tr>
<tr>
<td>pbLH99</td>
<td>25 ng/μl</td>
<td>25</td>
<td>25</td>
<td>ND</td>
<td>25</td>
</tr>
<tr>
<td>pJM24</td>
<td>50 ng/μl</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>pmLH5</td>
<td>25 ng/μl</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>pbLH51</td>
<td>50 ng/μl</td>
<td>27</td>
<td>27</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>pbLH51</td>
<td>25 ng/μl</td>
<td>25</td>
<td>25</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>pmLH4</td>
<td>25 ng/μl</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

* Stable rescue of lin-15A and lin-15B was determined by transmission of the Rol phenotype, unless otherwise noted. These Rol nonMuv animals typically have progeny rescued for lin-15, which are nonMuv Rol and nonMuv nonRol (which are rescue for lin-15 but do not express the Rol marker), as well as nonrescued isolates, which are Muv nonRol. This is a typical range of phenotypes, as injected DNA exist in extrachromosomal arrays that are not transmitted to 100% of an animal’s progeny.

* pbLH98 is an independently derived isolate of the 15-kb lin-15-rescuing fragment subcloned directly from cosmid PS#74B3, like pJM23. pbLH98 and pJM23 carry the insert in the XbaI site of Bluescript SK+ (Stratagene) in the same orientation.

* pbLH99 is an independent isolate of the 15-kb lin-15-rescuing fragment subcloned directly from cosmid PS#74B3 into the XbaI site of Bluescript SK+ (Stratagene) in the opposite orientation of pJM23 and pbLH98. We cannot explain the incomplete F1 rescue of pJM23, pbLH98, and pbLH99 of lin-15B, especially given the rescuing ability of pJM24 of lin-15B. However, the incomplete rescue does not appear to be caused by a mutation in pJM23 or by the orientation of the insert relative to the vector sequence.

Of the eight F1 rescued animals, only two of the eight were nonMuv Rol; the other six were nonMuv nonRol.

* Of the two Rol F1–rescued lines, both produced Muv and nonMuv progeny, although the Rol phenotype used as a selectable marker was lost. Of the six nonMuv nonRol F1 animals, two of the six produced both Muv and nonMuv progeny, although no Rol animals were seen. This suggests that the expression of the pRF4 Rol plasmid was not sufficient for cotransformation with pJM23. Thus, we lowered the concentration of pJM23 to 25 ng/μl and the results are given above.

* This stable line segregated nonMuv Rol, Muv Rol, nonRol Muv, and nonRol nonMuv animals.

* One stable line never segregated Rol animals but segregated animals that were nonMuv. When these nonMuv nonRol animals were cloned, they segregated Muv and nonMuv animals, but no Rol animals. The other stable lines behaved normally.

display vulval differentiation (see Table 2). This gonad independence is consistent with previous results using lin-15AB(n309) (Sternberg and Horvitz, 1989).

Epistasis of lin-15AB(e1763) and let-23(sy97)

To confirm the order of action of lin-15 and let-23, the candidate receptor for the inductive signal, we performed double mutant analysis with let-23(sy97), the most severe viable allele of let-23 (Aroian and Sternberg, 1991). Wild-type animals are defined as having 100% vulval differentiation, corresponding to three of six VPCs generating vulval tissue (Figure 9 and Table 2). Animals homozygous for let-23(sy97) are Vul and display no (0%) vulval differentiation; animals homozygous for lin-15AB(e1763) are Muv and have essentially 100% vulval differentiation (all six VPCs assume vulval fates). The double mutant let-23(sy97); lin-15AB(e1763) displays the let-23(sy97) Vul phenotype and 14% vulval differentiation. Gonad ablations on let-23(sy97); lin-15AB(e1763) animals were performed to determine whether the residual activity is gonad dependent. No vulval differentiation was observed in gonad ablated let-23(sy97); lin-15AB(e1763) animals. Therefore, the residual differentiation seen in let-23(sy97); lin-15AB(e1763) animals is probably because of residual activity of the sy97 allele (see below).

DISCUSSION

We have cloned the C. elegans lin-15 locus by isolating a 15-kb genomic fragment, pJM23, that will rescue the lin-15 Muv, A, and B phenotypes in transgenic animals. lin-15B alleles n309, n1139, n377, and e1763, derived from EMS mutagenesis of a wild-type strain, all contain deletions corresponding to sequences within this rescuing fragment. Two transcripts are encoded by this region, transcribed in the same direction, and separated by 105 bp. The upstream transcript encodes the lin-15B activity; a subclone containing essentially only the upstream transcript will rescue lin-15B mutant animals but not lin-15A mutant animals. Two experiments suggest that the downstream transcript encodes the lin-15A activity. First, the lin-15A allele n767 contains a deletion/insertion in the downstream transcript. Second, pbLH51, a derivative of pJM23 that deletes 330 residues from an
exon of the upstream B transcript, will rescue lin-15A but not lin-15B. Clark, Lu, and Horvitz (personal communication) have also cloned lin-15 and have obtained similar results.

lin-15A and lin-15B Encode Novel Gene Products
Sequence analysis of the cDNAs and genomic sequence corresponding to the two lin-15 transcripts indicates their predicted protein products are not similar to any currently identified proteins. Furthermore, motif analyses show no significant recognizable protein motifs. Because the lin-15 locus behaves nonautonomously in genetic mosaic analysis, it has been proposed that lin-15 is or controls the production of a negative signal produced by the epidermis that prevents vulval differentiation (Herman and Hedgecock, 1990). Because there are no clear consensus signal sequences, it is unlikely that either lin-15A or lin-15B is secreted. Thus, lin-15 may regulate production of such a signal. However, the lack of a signal sequence does not formally rule out the possibility that either product of lin-15 may be secreted. For instance, *Saccharomyces cerevisiae* a-factor is clearly exported although its sequence does not have a consensus signal sequence (Brake et al., 1985).

It is not surprising that lin-15A and lin-15B are novel gene products, because they act in a pathway that nonautonomously regulates RTK activity or effect, originating from neither the signaling nor the receiving tissue but from a third tissue, the nonvulval epidermis. Such nonautonomous regulators of RTKs have not been previously identified because of the assays typically used to study RTKs. Cell culture systems usually contain homogeneous cell populations supplied with growth factors in the media; in vivo the receiving cells resides near the signaling tissue and is surrounded by other cell types. Therefore, a negative signal from a nonreceiving nonsignaling tissue might not have been detected by cell culture assays. A genetically identified locus in *Drosophila*, argo/giant lens(gil), may behave like lin-15 in *Drosophila* photoreceptor development (Freeman et al., 1992; Kretzschmar et al., 1992); argos/gil acts nonautonomously to affect cell fate determination (Freeman et al., 1992) and encodes a potentially secreted factor with an EGF-like motif that displays no sequence similarity to either lin-15A or lin-15B.

Two genetic activities, A and B, were previously defined for lin-15 as well as for the other A and B genes, such as lin-8A, lin-9B, lin-36B, lin-37B, and lin-38A (Ferguson and Horvitz, 1989). Although lin-15 was shown to have both A and B genetic activity, the mechanism of this dual function was unclear. For instance, the lin-15 locus could have encoded a bifunctional protein that could be independently mutated to become defective in either A or B activity. This would have suggested that lin-15 was an integrator of the A and B pathways. Instead, the lin-15 locus contains two nonoverlapping transcripts; one encodes A function, the other encodes B function. In fact, the lin-15 locus could be viewed as containing a class A and a class B gene. Their physical juxtaposition could have no more functional significance than, for example, if lin-8A and lin-9B were to be tightly linked on the same chromosome. However, the lin-15 genomic structure fits the emerging consensus for polycistronic transcripts (Spieth et al., 1993). Thus, it is possible that lin-15A and lin-15B together are important either in controlling or in being controlled by other A and B genes because of the potential for lin-15A and lin-15B to be cotranscribed and coordinately regulated.

Ferguson and Horvitz (1989) demonstrated that A and B activities are redundant, because animals homozygous mutant for either A or B are wild-type; animals display the Muv phenotype only when homozygous mutant for both A and B. However, the nature of the redundancy was unknown. Our transgenic studies demonstrate that the lin-15A product and the lin-15B product cannot substitute for each other, nor can they substitute for other class A and class B genes. If lin-15A could substitute for lin-15A, we would not have been able to distinguish the two transcripts by rescue experiments, as injection of a subclone containing the lin-15B transcript would have rescued lin-15A and vice versa. Furthermore, if lin-15B could substitute for lin-36B, injection of a subclone containing the lin-15B transcript would have rescued lin-36B. A similar argument can be used for lin-15A substituting for lin-8A. Finally, sequence comparison of the lin-15A protein to the lin-15B protein reveals no similarity. Therefore, A and B are genetically redundant but not molecularly redundant. They do not appear to encode related proteins and are not able to functionally substitute for each other in transgenic assays.

Role of lin-15 in Regulation of the let-23 Pathway
lin-15 acts as a negative regulator of the let-23-mediated signaling pathway (Ferguson et al., 1987). Our genetic analysis demonstrates that lin-15 acts upstream of let-23; a let-23 Vul mutation is epistatic to a lin-15 Muv mutation. This conclusion is supported by the fact that alleles of let-23, as well as alleles of the downstream genes *sem-5*, *let-60*, and *lin-45*, have been isolated as suppressors of lin-15 (Beitel et al., 1990; Han et al., 1990, 1993; Clark et al., 1992a,b). Furthermore, the patterning of vulval differentiation in lin-15 mutant animals is dependent on the inductive signal. P6.p, the VPC closest to the AC (Sulston and Horvitz, 1977), always adopts a 1° fate in intact lin-15 mutant animals, whereas in gonad-ablated lin-15 mutant animals, P6.p can adopt either a 1° fate or a 2° fate (Sternberg, 1988). VPCs in lin-15 mutant animals thus retain the ability to respond
Table 2. Double mutant analysis of lin-15 and let-23

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Gonad</th>
<th>Percentage* differentiation</th>
<th>n^b</th>
<th># of VPCs differentiated^c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>N2</td>
<td>+</td>
<td>100</td>
<td>many^d</td>
<td>all</td>
</tr>
<tr>
<td>N2</td>
<td>−</td>
<td>0</td>
<td>many*</td>
<td>all</td>
</tr>
<tr>
<td>lin-15(e1763)</td>
<td>+</td>
<td>199</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>lin-15(e1763)</td>
<td>−</td>
<td>200</td>
<td>13</td>
<td>13^f</td>
</tr>
<tr>
<td>let-23(sy97)</td>
<td>+</td>
<td>0</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>let-23(sy97)</td>
<td>−</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>let-23(sy97);lin-15(e1763)</td>
<td>+</td>
<td>14</td>
<td>40</td>
<td>24</td>
</tr>
<tr>
<td>let-23(sy97);lin-15(e1763)</td>
<td>−</td>
<td>0</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

* Percentage differentiation reflects the amount of VPC differentiation observed of a genotype relative to wild-type animals.
^b n is the number of animals examined.
^c The numbers in this column represent the number of animals displaying a particular amount of VPCs differentiated.
^* See Sulston and White, 1980; Kimble, 1981.
^f Occasionally, P cells were killed during gonad ablations of lin-15AB(e1763), resulting in fewer than normal VPCs. However, all VPCs present differentiated in the lin-15AB(e1763) animals.

To inductive signal. Therefore, lin-15 acts in parallel with the inductive signal to regulate let-23. Because we use vulval differentiation as the assay for activity of let-23 and lin-15, we can only discuss the genetic activities of these loci; our analysis does not imply a direct biochemical interaction of lin-15 with let-23. Formally, the let-23 pathway could act positively on a downstream molecule, X, whereas the lin-15 pathway acts negatively on X in parallel to the let-23 pathway (where X has no activity completely dependent on ligand stimulated let-23). Our genetic analysis indicates that lin-15 regulates let-23, as lin-15 is required only in the presence of functional let-23.

It is clear that lin-15 regulates let-23 basal activity. Vulval differentiation occurs independently of the inductive signal in lin-15AB(n309) mutant animals (Ferguson et al., 1987; Sternberg and Horvitz, 1989). Similarly, in lin-15AB(e1763), a molecular null, all VPCs undergo the cell division patterns and morphogenetic movements characteristic of vulval fates even in the absence of the gonad. The VPC's ability to undergo inductive-signal independent differentiation implies lin-

Figure 9. Double mutant analysis of let-23(sy97); lin-15AB(e1763). All photographs are of the middle third of adult hermaphrodite animals. Top left: the wild-type N2 strain. Arrow points to vulva. Top right: lin-15AB(e1763). Bottom left: let-23(sy97). Note the lack of a functional vulva. Bottom right: let-23(sy97); lin-15AB(e1763). Bar, 20 μm. See text.
removal of the ligand regulates basal activity, where basal activity is defined as the potential of let-23 activity to cause vulval differentiation in the absence of its ligand.

We cannot conclude whether lin-15 preferentially regulates basal or stimulated activity of let-23. Signal-dependent vulval differentiation is seen in the let-23(sy97); lin-15AB(e1763) double mutant, although the extent of vulval differentiation is not wild-type. Thus, removal of the negative regulation conferred by lin-15 allows detection of the low level of residual-stimulated activity of the LET-23(sy97) mutant protein. The response of the LET-23(sy97) mutant protein to ligand activation is not surprising, as the let-23(sy97) allele harbors a point mutation in a 3’ splice acceptor, causing misspliced RNAs that, when translated, would result in a C-terminal truncation of the protein (Aroian et al., 1994). Because this truncation does not disrupt the kinase domain and let-23(sy97) can function in at least one tissue (Aroian and Sternberg, 1991), the truncated molecule retains a low level of activity. The gonad dependent differentiation seen in let-23(sy97); lin-15AB(e1763) implies that lin-15 has an effect on ligand bound receptors, assuming that all receptors present were occupied by ligand during the signaling event. However, if receptors are in excess on each cell, it would be unclear whether lin-15 activity regulates both ligand unbound as well as ligand bound receptors.

Negative Regulation and Inductive Signaling

The signal transduction pathway functioning in vulval development uses C. elegans homologues of molecules involved in cell proliferation and determination throughout the animal kingdom. Besides lin-3 and let-23, there is sem-5, SH2/SH3 adaptor protein, let-60, a ras protein, and lin-45, a rap protein. This particular signaling cascade is used in Drosophila R7 photoreceptor determination and in the proliferative response of mammalian cell culture systems. The high degree of conservation of these components throughout the animal kingdom strongly suggests that lin-15 homologues may exist in these and other systems.

The emerging picture of signal transduction shows that, in general, receptors are expressed with less specificity than their ligands. For example, the RNA and protein products of the Drosophila PDGF-family RTK torso have no apparent localization and are expressed all over the embryo, even though torso acts to specify cell fate in the termini of the embryo (Sprenger and Nüsslein-Volhard, 1992). Similarly, the RTK sevenless required for Drosophila R7 photoreceptor development is expressed in cells other than R7 (Banerjee et al., 1987; Tomlinson et al., 1987). The localization of the boss ligand to the apical surface of R8, the signaling cell, is one reason why R7 is the only sevenless expressing cell that responds to the boss ligand (Van Vactor et al., 1991).

During C. elegans vulval development all six VPCs are competent to undergo vulval differentiation upon receipt of the inductive signal (Sulston and White, 1980; Sternberg and Horvitz, 1986; Thomas et al., 1990; Hill, Katz, and Sternberg, unpublished data). Presumed overexpression of the lin-3 signal causes up to six VPCs to adopt vulval fates (Hill and Sternberg, 1992). Thus, lin-3 must be precisely regulated during wild-type vulval development.

As Gurdon (1992) points out, the number of cells competent to respond to a particular signal exceeds the number that actually respond. Davidson (1993) has argued that competence could be viewed as a cell possessing the appropriate receptors, signal transduction molecules, and transcription factors, with the molecular response of a cell being limited by the expression of the signal. Receptor tyrosine kinase activation most likely involves precise temporal, spatial, and quantitative control of ligand expression. However, because receptor expression is more ubiquitously expressed, receptor activity must be precisely regulated to prevent incorrect development. Thus, the study of lin-15 and how this pathway prevents inappropriate RTK activity should yield new insights on RTK regulation as well as how cells can respond appropriately to a localized ligand.

ACKNOWLEDGMENTS

We are greatly indebted to the generosity of Min Han, Jane Mendel, and Russell Hill for assistance with the microinjections; Jane Mendel for isolating P#7483; Andrea Holboke for help in mapping the lin-15 region; Alan Coulson for numerous discussions and assistance with correlating the physical and genetic maps around lin-15; Monica Driscoll and Marty Chalfie for TUN1723; Mike Nonet and Barbara Meyer for communicating the cloning of sdc-1 before publication; Mimi Sen Gupta for help with the lin-15B(n744) mutagenesis; Tom Blumenthal for discussions regarding SL2 trans-splicing; Junho Lee for lin-15A(sy97); Russell Hill for lin-15AB(n7675)229; the Horvitz lab for lin-368B(n766) and the lin-15 alleles n765, n377, n309, e1763, and n1139; Chris Martin, Stuart Kim, and Bob Barstead for cDNA libraries; and Paul Garrity for hints on LMPCR and gifts of primers LMPCR1 and LMPCR2. We are grateful to Helen Chamberlin, Tom Clandinin, Paul Garrity, Wendy Katz, Andy Golden, Yvonne Hajdu, Paul Kayne, and Bino Palmer for critically reading this manuscript. Some nematode strains used in this study were provided by the Caenorhabditis Genetics Center, which is funded by the National Institutes of Health (NIH) National Center for Research Resources. This work was supported by a grant from the March of Dimes Birth Defects Foundation to F.W.S. and NIH award GM-07616 to L.S.H. P.W.S. is an investigator of the Howard Hughes Medical Institute.

REFERENCES

C. elegans lin-15 Locus